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Abstract—In this paper, we explore the field of self-
reconfigurable modular robots, representing a significant ad-
vance in robotic technology. These robots have many capabil-
ities, offering high adaptability and flexibility for a variety of
applications. However, computing the stability is challenging
as it is computationally intensive, it needs to be distributed
and fast, as close as possible of real-time. In this article, we
introduce a distributed algorithm designed to overcome these
challenges while taking mechanical constraints into account.
At the heart of this algorithm is the notion of the ’support
polygon”, which enables the stability of a modular robot to
be assessed in real time. The algorithm is based on a fully
distributed tree partitioning approach, facilitating efficient com-
munication and collaboration between modules. The algorithm
also uses a polygon merging approach to reduce the number of
messages when creating the polygon support, thus significantly
reducing response time. In fact, the response time of the
method used is very small compared to other research. We
also present simulation results on a simulator, VisibleSim, as
well as experimental validation on real robotic modules, which
underlines the practical viability of the approach. Overall, this
work lays a solid base for further advances aiming to guarantee
the stability of modular robots.

Keywords: Modular robots, Distributed algorithms, Stability,
Support polygon.

I. INTRODUCTION

Programmable matter [1], [2] can change its physical
properties, such as color and even shape, by reconfiguring
itself. This revolutionary capability opens the way to inno-
vative applications and a futuristic vision of robotics and
materials technology. Programmable matter can be imple-
mented using self-reconfiguring modular robots [3], [4], [5],
arousing growing interest among engineers and researchers.
Their innovative design aims to offer exceptional adaptability
and flexibility, enabling autonomous reconfiguration to meet
a variety of requirements. These systems open up new
perspectives in a wide range of application fields.

However, despite their promising potential, these robots
present complex challenges. Stability remains a major con-
cern, both from a mechanical and algorithmic point of views,
requiring in-depth resolution to exploit their full potential.
The danger lies in the fact that their design can influence
their ability to maintain a solid and coherent structure,
which could have potentially damaging consequences and
compromise their usefulness in critical applications. If a
modular robot is autonomous, its stability must therefore be
collectively verified and controlled by the modules, taking
into account mechanical constraints. Mechanical constraints
result from the need to ensure the integrity and stability of
the entire modular robot, so that the structure cannot break
or lose its balance during deployment in real-life scenarios.

Currently, the majority of algorithms for planning and
controlling the self-reconfiguration of modular robots do not
take mechanical constraints into account. Only few of them
take these constraints into consideration. An approach using
the finite element method (FEM) was presented in [6] and
[7] and an associated mass-spring discretization was used
to study the mechanical properties of modular structures in
[8], while constraints in a special class of modular structures
were also examined in [9] and [5]. In [10], Bray and
Grof} used a distributed control strategy to reconfigure self-
assembled structures that fill a void, while incorporating
local force measurements to build structures that do not
disintegrate under their own weight. However, autonomous
reconfiguration planning that takes mechanical constraints
into account remains an open and complex problem, which
is tackled in this article.

Our main objective is to develop a rapid decision tool for
interactive distributed planning which takes mechanical con-
straints into account and is capable of verifying the stability
of modular robots through the development of distributed
algorithms. The ability for a modular robot to verify its own
stability is defined as self-control.

To illustrate the effectiveness of our approach, we will
present a large-scale demonstration using different numbers
of modules.

We address the same objective as in [10] of stability
verification, but we use a different approach based on weight
distribution allowing a faster answer. We have developed the
approach introduced in [7], in the case where the robot is
rigid and stands on a flat ground. The approach relies on
maintaining the center of gravity above the convex enve-
lope of support points, but we used a completely different
method for stability verification. Indeed, in this paper, the
stability verification procedure is based on the creation of
the support polygon using a fusion of elementary polygons,
which considerably reduces the number of modules to be
sent, retaining only those needed to determine the convex
envelope. Our method is applicable to all types of ground
contact, unlike the one described in [7], which is fast but
less general. In [7] they also used another approach based on
the finite element method, which is more accurate but more
time-consuming. Our results are fast, general and suitable
for self-reconfiguration contexts. The verification is carried
out in a dedicated simulator VisibleSim [11], as well as
experimentally on real robotic modules Blinky Blocks [12].

II. EXPLORING MODULAR ROBOT STABILITY

With its versatility and adaptability, the Blinky Blocks [12]
prove to be a fitting choice for approaching the challenge of



stability verification in the context of modular robots.

The interconnected system of Blinky Blocks constitutes a
distributed system with the following characteristics:

o All modules share a common coordinate system, and
each module stores its coordinates locally, as described
in [13], [14]. Modules placed on the ground will have
a z-coordinate equal to 0.

o A Blinky Block can react to the reception of a message
and the connection or disconnection of a neighbor.

o All Blinky Blocks run the same distributed program,
performing calculations locally within each module.

o Communication occurs in a localized manner, allowing
a module to exchange messages exclusively with its
directly connected neighbors.

o The interconnection graph must maintain continuous
connectivity.

Stability verification in the context of modular robots is
crucial to ensure safe and efficient operations. An essential
verification criterion in this field is weight distribution.
Weight distribution refers to the balanced distribution of
modules to ensure that the modular robot maintains its
equilibrium under various operating conditions.

The choice of weight distribution as a stability verification
criterion is based on several key factors. Firstly, it is closely
linked to robot mechanics, as poor weight distribution can
lead to physical instability. In addition, weight distribution
can be adapted to the specific tasks the robot is intended
to perform. Furthermore, the weight distribution criterion
can be modified over time as the modular robot undergoes
modifications or evolves to meet new needs, making it a
versatile criterion for ensuring stability in a wide range of
scenarios.

Checking the weight distribution generally involves sev-
eral steps. First of all, a weight measurement is performed,
in our case all modules have the same weight. Next, we
calculate the center of gravity, usually expressed in three-
dimensional coordinates. Another important step is to de-
termine the support polygon, which is the convex envelope
encompassing all points of contact between the modular
robot and its support. We consider that the modular robots are
placed on flat surface known as the ground. Finally, stability
is verified.

The stability condition is formulated as follows: An immo-
bile body subjected only to its own weight and the reaction
of the ground is in equilibrium if, and only if, the line of
action of the weight (the vertical line passing through the
center of gravity) intersects the supporting surface.

In conclusion, weight distribution is a fundamental crite-
rion for assessing the stability of modular robots, because of
its direct impact on the robot’s ability to maintain its balance
and avoid potential falls. Therefore, this criterion is essential
for ensuring the stability of modular robots. This refers to the
way in which the robot’s total weight is distributed between
its modules.
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Fig. 1: Overview of the Algorithm.

III. DISTRIBUTED ALGORITHM
A. Overview Algorithm

The proposed algorithm is designed as a fully distributed
tree-based partitioning algorithm that can efficiently handle
a substantial number of modules. It provides scalability
by efficiently handling communication limited to neighbor-
to-neighbor which means that modular robots interact and
collaborate autonomously to solve the stability problem.
The algorithm is based on the idea that modular robots can
communicate with each other, exchanging information such
as their position. This communication is crucial for effective
cooperation between modules.

In this context, the use of a spanning tree becomes of
great importance and the first thing to start with, as shown
in Figure [} The spanning tree organizes communication
between modules in a structured way, creating a hierarchy
in the transmission of information, and removing loops. Its
construction begins with the selection of the central node,
acting as the root (leader). The selection is either manual, as
we have chosen, or automated [15]. The leader connects all
modules and allows to transfer information throughout the
entire system.

A notable aspect of this algorithm is that it clearly displays
whether the modular robot is stable or unstable in each of
the simulated scenarios (See Figure [I). This provides an
immediate view of the modular robot’s performance under
various conditions. The results of these simulations enable
informed decisions to be made on the design, improvement
and use of modular robots, while minimizing potential risks
and optimizing their operation.

B. Detailed View Algorithm

At the heart of our method, we find a process orchestrated
by a designated leader. The algorithm deploys a strategy of
diffusion of relative coordinates from the leader, by flooding
information through a spanning tree. As shown in Figure [2]
each module actively participates by performing complex
calculations.

To compute the center of mass we apply the following
recursive relation at each module M of the spinning tree:

Sump(S,N) = (P, 1)+ > Sume (1)
children C
where Py, is the position of M.
First, each module calculates Sum, which represents the
sum of its relative position in the spanning tree and the coor-
dinates of the sub-trees. Next, it determines Poly by merging



its coordinates with those of its peers if its z coordinate is
equal to 0. Finally, the module transmits the results to its
parent, packing Sum, N, the number of modules beneath it,
and Poly in a message.

At the end of the algorithm, as shown in Figure [2] the
leader performs global calculations to assess the system’s
stability. He determines GC, the ratio of the sum of coor-
dinates to the total number of modules which is the gravity
center, and Poly, the global support polygon:

1
GC = N X Sumleader (2)

The robot equilibrium is established by checking whether
GC is contained within Poly, i.e. whether the vertical line
passing through the center of gravity intersects the support
polygon or not.

C. Pseudo Code Algorithm

The algorithm is designed to verify the stability of modular
robots, it starts with the startup function as shown in
Algorithm [T} If a module is designated as the leader, it sends
a request to all its neighbors and waits for their replies. When
a message is received, in myBroadcast F'unc, each module
updates its parent and sends requests to its neighbors if it has
not already received one. It then waits for the replies and
aggregates the results. When responses from all neighbors
are received, in myAcknowledge Func, the module adds its
coordinates to the sum and merges its polygon with those
of its neighbors. If the module is the root which means
the leader, it calculates the center of gravity and checks
if it is inside the support polygon. Finally, it updates the
color accordingly. If the module is not the root, it sends the
aggregated result to its parent. In this way, the algorithm
verifies the stability of the distributed system by analyzing
the configuration and relative position of the modules.
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Y
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Fig. 2: Detailed View of the Algorithm.

Algorithm 1: Stability Verification Algorithm.

1 void startup():
2 if isLeader then

3 nbWaitedAnswers =
sendMessageToAllNeighbors("Request”)

4 void myBroadcastFunc (msg, sender):

5 if parent == nullptr then

6 parent <— sender

7 nbWaitedAnswers =
sendMessageToAllNeighbors("Request”)

8 if nbWaitedAnswers == 0 then

9 sum < module—position

10 if module—position.pt[2] == 0 then

11 Add the 4 vertices to Poly

12 setColor(BLUE)

13 sendMessage("Result”,(sum, Poly),parent)

14 else

15 ‘ sendMessage(”Result”, empty, sender)

16 void myAcknowledgeFunc (msg, sender):
17 nbWaitedAnswers——
18 if not msg.empty() then

19 sum + = msg.first

20 Poly.merge(Poly,msg.second)

21 if nbWaitedAnswers == 0 then

22 sum + = module—position

23 if module—position.pt[2] == 0 then

24 Add the 4 vertices to Poly

25 Poly.merge(Poly,msg.second)

26 setColor(BLUE)

27 if parent == nullptr then

28 Calculate gravity center

29 if Poly.isInside((G,,G,)) == 1 then
30 ‘ setColor(GREEN)

31 else

2 | setColor(RED)

33 else

34 ‘ sendMessage("Result”,(sum, Poly),parent)

IV. CREATION OF THE SUPPORT POLYGON

The support polygon is created during communication
between modules. The leader begins by sending a request
to all its neighbors, and this request is then propagated.
Each module that receives the leader’s request sends it to
its own neighbors, if it has any. This broadcasts the request
from module to module, until there are no more neighbors
to contact.

When a module receives the request, it checks its own
position. If it is on the ground, which means, its z coordinate
is equal to 0, it creates a polygon with the four sides of its
perimeter, as shown for example on modules 7 and 10 in
Figure [3] Once the polygon has been created (or an empty
polygon if it is not on the ground), the module sends its
response to its parent, meaning, to the module that sent it
the request. This response contains either the polygon created



or an empty polygon.

Each module, once it has received responses from all its
children (neighboring modules), merges the polygons it has
received. Taking module 6 as an example, it merges the 2
polygons it received from modules 7 and 8 in Figure [3] If
the module is on the ground z = 0, it inserts its own four
sides into the global polygon resulting from the merge. This
enlarges the polygon to include the contours of all ground-
based modules.

Once the global polygon has been updated, each module
sends the resulting polygon to its parent, until finally, the
leader receives the polygon built by all the other modules.
The leader also inserts its own four sides, if it is on the
ground, into the global polygon, as in Figure [3] with the
module 1. The final result is a support polygon drawn in
red in Figure @ The polygon contains the elements of the
modular robot base, in other words, the modules that are on
the ground z = 0.

a) Advantages of Polygon Fusion: The process of
creating the support polygon is characterized by the use
of polygon fusion when transmitting messages between
modules. This approach offers a significant advantage over
the alternative method of sending all the basic elements
directly to the leader, and then building the polygon. In
the polygon fusion process, instead of sending all the base
elements (represented by coordinates) to the leader to create
the polygon, each module transmits a polygon by merging
all the polygons it has received. This method considerably
reduces the amount of data to be transmitted, as only a
limited set of coordinates is sent. In comparison, in an
approach where all the elements of the base are sent directly
to the leader, the number of coordinates to be transmitted
would be proportional to the number of modules on the
ground, that is, 4 x Ny where Ny is the number of modules
on the ground, as shown in Figure [5a] This would result in
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Fig. 3: Polygon Creation using Fusion.

Module 6
Module4 Module5

Modl&e 30

e

Module 8

! F Module 9

N

Module 2

&

Fig. 4: Configuration used to Explain our Algorithm, with
the Support Polygon in Red and Center of Mass in Green.

= Et

o Yo
g S
-

Module 7 Module 10

a much more intensive transmission of data, which would
be inefficient and would consume more memory, especially
when we have a large number of modules on the ground.

One of the main advantages of polygon fusion is that
it automatically eliminates points located inside the convex
polygon. In other words, only the points required to define
the convex envelope of the base elements are retained.
This ensures that the resulting support polygon effectively
contains all the ground contact areas of the modules, without
including redundant points within this envelope. As a result,
the final polygon is more compact and more accurate, while
saving unnecessary communications. As shown in Figure [5b]
we have reduced the number of coordinates to be sent from
12 to 5. In addition, by reducing the number of points to
transmit, the size of the messages decreases. Consequently,
the transmission time of the message is reduced since it
is calculated based on the message size [16]. Thus, the
optimization of communication through the polygon fusion
process, not only minimizes unnecessary data transmission,
but also efficiently reduces message size, thereby decreasing
transmission time.

b) Complexity: The complexity in time of the algorithm
is directly linked to the number of communications produced
during the computation of the stability. It depends on the
height of the spanning tree, i.e. the eccentricity of the root
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(b) Coordinates with Fusion.

Fig. 5: Number of Coordinates to Send.
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Fig. 6: The same configuration simulated on VisibleSim and
computed by real Blinky Blocks.

node. This distance is majored by the diameter of the graph
describing the configuration of the modules. We can conclude
that the complexity in time is O(diameter).

V. EXPERIMENTS AND RESULTS
A. VisibleSim Simulation

Our development process was based on the VisibleSim
simulator to create a robust decision-making tool. The pro-
posed tool is used to check the stability of modular robots
in various virtual scenarios. The resulting model provides a
clear visualization, indicating whether the modular robot is
in a stable or unstable state. For communication simulation,
we used the model proposed in [16].

The Figure [6la provides a tangible illustration of this
capability, featuring our configuration with Blinky Blocks
on VisibleSim. In this simulation, the modular robot reacts
dynamically to the configuration of the blocks. Detection of a
balanced arrangement leads to a change in the leader’s color
to green, signaling stability. Blue blocks detected on the floor
provide additional information on the layout of the elements.
The response time of this configuration was 64.326 ms.
Comparing the three illustrations in Figure [7] we see that
the second one represents an unstable configuration, as the
leader’s color is red, while the other two illustrate stable con-
figurations. The response time of these three configurations is
21.438 ms, 21.447ms, and 32.172ms, respectively. We can
observe significantly smaller response times, which allows
to make thousands of self-reconfiguration experiments.

To overcome instability, our approach includes the use of
counterweights which have the ability to modify the robot’s
center of gravity, thus helping to maintain its equilibrium.
Another strategy is to widen the contact area with the ground,
thus widening the support polygon, by adding a module to
the ground, as shown in the third illustration in Figure [7}
Both approaches proved effective in ensuring the stability of
the modular robot in a variety of configurations.

In short, our decision tool, developed on VisibleSim,
is proving to be a powerful resource for analyzing and
improving the stability of modular robots in a variety of
situations. The results obtained are opening the way to
concrete applications of these modular robots in variable and
complex environments.

B. Demonstration on Real Robotic Modules

In this section, we are demonstrating our decision tool on
a real modular robot. To do this, we will present several

Fig. 7: Three Experiments on VisibleSim, the Head Block is
Green if the Structure is Balanced and Red Otherwise.

experiments, each of them providing unique perspectives on
the functionalities of these modules.

We have tested the same experimental configurations in
simulation and in the real world, enabling a direct compar-
ison between the theoretical results obtained on VisibleSim
and practical observations.

Initiating this exploration, we delve into the first illustra-
tion. The Figure [6]b shows an example of how the Blinky
Blocks configuration works and shows that the results ob-
tained in reality are similar to the ones previously generated
by the simulator. The modular robot is able to detect that the
blocks are arranged in a balanced way. The leader changes
its color to green to signal the stability of the configuration,
while the blue blocks indicates that they are detected at the
ground level. This representation reveals how the modular
robot detects the balance of the blocks, signalling the stability
of the configuration through color changes.

The second illustration, Figure [8] shows our three distinct
configurations already used on VisibleSim. In the middle
configuration, the leader changes its color to red, indicating
that the modular robot is not stable. By removing the
block responsible for the imbalance, the center of gravity
is modified, resulting in a color change of the leader to
green, indicating that the configuration is now stable. By
retaining the initially unstable configuration and adding a
ground module to widen the support polygon, the modular
robot achieves stability, which is indicated by the leader
changing its color to green. These examples illustrate the sys-
tem’s ability to react dynamically to configuration changes,
showing the flexibility and adaptability of modular robots in
practical situations.

After this in-depth analysis and comparison, we will move
on to other example cases, providing a comprehensive un-
derstanding of the performance and practical applications of
these robotic modules. The illustrations in Figures[9]highlight
more complex configurations, involving larger number of
modules, allowing us to visualize the remarkable perfor-
mance of our decision tool. In these scenarios, modules
interact synchronously to maintain balance in more elaborate
structures. The effectiveness of our tool is revealed through
its ability to make fast and precise decisions to ensure the
stability of the whole. For example, in the second illustration
in Figure 0] the leader shows that the configuration is not
stable, but by adding more modules the leader changes its
color to indicate that it has become stable, as shown in the
third illustration in Figure ] These examples demonstrate the



power of our decision-making system, capable of managing
complex modular robot assemblies quickly and efficiently.

A Vide(ﬂ completes these examples by presenting the
algorithm’s behavior on several configurations of Blinky
Blocks. The implementation takes account of changes in the
number of Blinky Blocks by restarting the calculation from
the leader each time a block is added or removed.

VI. CONCLUSION AND FUTURE WORK

In this article we have presented a distributed algorithm
that can efficiently evaluate and guarantee the stability of
modular robots. The introduction of the notion of the support
polygon has proven to be essential to this task, making it
possible to determine whether a robot is stable by verifying
that its center of gravity remains within this convex envelope.
Thus, the use of polygon fusion during communication
between modules considerably reduced the data transmission
load, while maintaining the accuracy of the support polygon.

We also presented the results of our simulations, using
different configurations and various numbers of modules,
which illustrated the benefits of the algorithm’s speed feature.
Experimental validation of our approach with real modular
robots has also been conducted, which is a crucial step in
assessing its robustness under practical conditions.

Furthermore, this work opens the way to many future
research opportunities. Firstly, the optimization of the al-
gorithm and the refinement of the stability criterion by
taking into account other factors such as the forces applied
to the connections and environmental characteristics remain
promising areas.

Finally, an interesting possible approach is to use the
minimum distance between the robot’s center of gravity and
the support polygon to determine the safest position for a
module, thus contributing to proactive stability management.
All in all, our work provides a solid basis for future inves-
tigations aimed at perfecting and exploiting this innovative
approach to stability assurance for modular robots.

'Our algorithm in action, YouTube video: |https://youtu.be/ZjUnI90osFR4

Fig. 9: Other experiments on real Blinky Blocks.
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