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Abstract. This paper presents an approach (called Hino) to detect
outliers present in a data set, also called aberrations or anomalies. These
data may reduce the quality of data analysis and lead to erroneous re-
sults. In the case of learning algorithms, they can deviate their behavior,
i.e. reduce their efficiency. Thus, outlier detection is crucial where it im-
proves performance by providing better data quality and reduces the
influence of outliers. Inter Quartiles Range (IQR) is a popular statisti-
cal detection method, which has the advantage of being simple and fast
in calculation time. It is based on the distribution quartiles of a data
set and considers the most extreme values as outliers. This means that
this method only searches for point outliers, which is a restrictive and
naive approach. Indeed, nothing prevents an element from having an ex-
treme value while remaining consistent with the rest of the elements. The
proposed method is also a statistical detection method based on quan-
tiles, but it looks for contextual outliers instead of point outliers
and consider the context of a point to determine whether it is an outlier
or not. The effectiveness of Hino is compared with the original IQR
method and other approaches, including Isolation Forest, SVM, and
LOF, using 16 real and 278 synthetic data sets.

Keywords: Outliers detection · Data filtering · Interquartile range ·
Machine learning.

1 Introduction

An important principle in the use of artificial intelligence algorithms (AIs) is the
quality of the learning data. So, the implementation of tools to help filter the
data is a critical point [10]. However, data sets may contain outliers, which can
be defined as "an observation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data" [3]. Outliers can reduce the
quality of data analysis and lead to erroneous results. And in the case of AIs,
they can deviate behavior of AIs and reduce their efficiency with two effects:

1. Weaken the predictive power of the model obtained after the learning phase.
2. Weaken the score obtained from the model during its validation phase.

Therefore, it is essential to identify and eliminate them directly. Thus, the quality
of the data is improving and outlier’s influence is reducing [9].

Three categories of outliers are identified [8]:
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1. Points outliers are isolated individuals, they are far from other data.
2. Contextual outliers are isolated individuals in a specific context, i.e. ac-

cording to their relations between their attributes and their behavioral val-
ues.

3. Collective outliers are a set of individuals consistent with each other but
isolated from the rest of the data.

The IQR approach considers the distribution of a point to determine if it is iso-
lated which makes it a statistical detection method. And since the context is not
taken into consideration, then this method detects point outliers. Moreover,
this method considers that a point with at least one of these values isolated is
sufficient to consider it as an outlier. However, we will see that this method is in-
effective for detecting aberrations. The objective is to extend the IQR approach
so that it is able to detect contextual outliers and tolerate that the values
of a point can be isolated a minimum number of times before considering the
point fully isolated. This new approach is called Hunting inside n-quantiles
of outliers (Hino).

Since Hino is looking for contextual outliers and the data sets used in the
experimentation are spatial (see Section 5), then the terminology defines two
types of attributes [1, Chapter 11]:

1. Behavioral attributes are attributes of interest measured for each point,
commonly called class. For example: the type of glass, the presence of a heart
abnormality, or the description of an image. A behavioral value is a value of
this attribute. For example, a behavioral attribute that describes 7 different
glass categories, here 1 would be one of the existing behavioral values.

2. Contextual attributes is an attribute expressing the characteristics of a
point, commonly called feature. For example: the composition of a glass pane,
the number of heartbeats per minute, or the color of a pixel.

The Section 2 present the IQR method of detection by quantiles, its function-
ing and the problems it raises. Then, the Section 3 present the Hino approach,
its functioning and its meta-parameters. Follow-up of the Section 4 which pro-
poses a methodology to generate the synthetic data sets used (see Section 4.1)
and equations to calculate the Hino meta-parameters (see Section 4.2). Finally,
the performance detection of Hino is compared with three methods (IQR, Iso-
lation Forest, SVM and LOF) on a panel of 278 synthetic data sets (see
Section 5.1) and on a panel of 16 real data sets (see Section 5.2) to conclude
with a discussion of some biases present in the evaluation of real data sets and
on the values used for the meta-parameters (see Section 5.3).

2 Detection method based on the interquartile range

In general, the median divides a data set into two more or less equal parts
(depending on if the number of elements is even or odd), so approximately half
of the elements are below the median and the rest are above it. On the same
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principle, it is possible to make this division into two unequal parts such that a
percentage p of the data is less than a certain number and a percentage 1 − p
is greater than that number. This number is called the 100p empirical percentile
or the pth empirical quantile and is denoted by qn(p) [5].

To calculate the interquartile range, the data set is divide into four parts.
Using the previous definition we define: the 25th empirical percentile qn(0.25) is
called the lower quartile (Q1) and the 75th empirical percentile qn(0.75) is called
the upper quartile (Q3). Together with the median, they allow the division of a
data set into four parts more or less equal in number of elements. The distance
between these two quartiles gives an indication of the skewness of the data set.
This distance is called IQR (Inter Quartile Range), and it equals to:

IQR = Q3−Q1 = qn(0.75)− qn(0.25) (1)

The interquartile range is used to describe the spread of a distribution. Thus,
it is possible to detect outliers by considering the most scattered elements as
outliers. For this, it is necessary to define thresholds that will cover the majority
of the points so that only the most scattered ones are considered as outliers.
The lower fence is equal to Q1 − 1.5 ∗ IQR and the upper fence is equal to
Q3+1.5∗IQR. The constant 1.5 allows controlling the sensitivity of the interval
and thus the rule of detection. A larger one would cause outliers to be considered
healthy, while a smaller one would cause some points to be detected as outliers.
Thus, with a Gaussian distribution, then a constant equal to 1.5 gives fences
covering −2.698σ (see equation 2) and 2.698σ or 99.3% of the points.

Q1− 1.5 ∗ IQR = Q1− 1.5 ∗ (Q3−Q1)

= − 0.6745σ − 1.5 ∗ (0.6745σ − (−0.6745σ))
= − 0.6745σ − 1.5 ∗ 1, 349σ = −2.698σ

(2)
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Fig. 1: Box plot and the Gaussian prob-
ability density of interquartile range

Figure 1, gives a visualization of
quartiles and fences as a box plot
and relates them to a Gaussian dis-
tribution. The majority of the points
are included between these fences and
only a small part of the points, the
most extreme, will be excluded. Vin-
utha et al. [11] use the interquartile
range as an outlier detection method.
For each contextual attribute, this
range is calculated and all points
within are considered as outliers.

This method have three problems
that make hazardous the use of the
interquartile range as an outlier de-
tection method. First, it removes the
points that have extreme values who
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aren’t always outliers. Indeed, nothing prevents an inlier to be extreme. Second,
it doesn’t consider the individual distribution of a behavioral value. One of them
can be essentially present on the extreme values which would be suppressed with
this approach. Third, there is no tolerance limit to determine if a point is an
outlier. With only one extreme values among the contextual attribute, the large
data sets are disadvantaged and risk to have a high false positivity rate because
a point will have more chance to have an extreme value.

3 Extension of the IQR method

As a reminder, an outlier can be defined as an abrupt change. IQR detects only
point outliers and considers as outliers the points with at least one extreme
values. As explained previously, this approach is problematic. Thus, our objective
is to extend IQR to be able to detect contextual outliers and tolerate the
isolation of a point for few attributes before being an outlier.

For this purpose, we propose to separate the data set into several quantiles
for each contextual attribute, instead of only 4. For each quantile, we check that
all the behavioral values that constitute it are also present in adjacent quantiles.
Otherwise, all representatives of absent values are considered isolated for this
attribute. Except in the case where all the representatives of a value are present
in a single quantile. A point isolated for few attributes is not necessarily an
outlier. Indeed, depending on the total number of attributes, an isolation for
just one of them does not have the same impact. For example, an isolation for
1 attribute out of 10 does not have the same significance for 100. Our approach
tolerates a certain level of isolation before identifying a point as an outlier. To
summarize, an outlier is a point "too often" isolated.

Our extension is summarized in the Algorithm 1. It takes as parameters the
data set (P ), the number of quantiles used (n_qtils), the tolerance limit (limit)
and the maximum percentage of points that can be considered as outliers (pmax)
to preserve the consistency of data set. And it returns the mapping between
the points in P and a Boolean to indicate if they are outliers. Except P , the
other arguments strongly influence the detection result. However, it is difficult to
determine the best values for each of them to obtain an optimal outlier detection.

– pmax is set at 20%, greater, we assume the data set will be distorted.
– n_qtils is calculated according to the number of points they must contain.

They must be small enough so that the points they contain share similar
characteristics and make it easier to detect abrupt changes.

– limit is calculated according to the number of contextual attributes and be-
havioral values. When the number of contextual attributes and/or behavioral
values are high, there’s a greater chance of obtaining many isolated values.

This algorithm has been implemented in Python and its time complexity is
equal in the worst case to O(p(ac+ a+ 1)), while in the best case to O(p(ac+
a

a+1 + 1)), where p is the number of points, a is the number of attributes and
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c is the number of behavioral values. Plus, its memory complexity is equal to
O(p(a+ a

a+1 )).

Algorithm 1: Hino.
input : Let P be a set of n points

Let n_qtils ≥ 2 be the number of quantiles
Let limit > 0 be the maximum of breaking rule
Let pmax be the maximum percentage of outliers

output: Let result be an mapping indicating if a point is an outlier
1 Ac be the set of contextual attributes labels in P
/* Counters that track the frequency of isolated points. */

2 n_cdt← {(p, 0)|p ∈ P}
3 for a ∈ Ac do
4 qtils← A list of list that groups the points divided by n_qtils

quantiles on the attribute a
5 for i ∈ [0, card(qtils)[ do

/* Gets the behavioral values of the previous, next
and current quantile, respectively. */

6 prev_cls← ∅
7 if i > 0 then
8 prev_cls← Behavioral values in qtils[i− 1]
9 next_cls← ∅

10 if i < card(qtils)− 2 then
11 next_cls← Behavioral values in qtils[i+ 1]
12 cur_cls← Behavioral values in qtils[i]

/* Missing behavioral values are those in the current
quantile, but absent from the two adjacent ones. */

13 missing_cls← cur_cls \ (prev_cls ∪ next_cls)
/* If one is missing, then the counters of their

points in the current quantile are increased. */
14 if card(missing_cls) > 0 then
15 for pq ∈ qtils[i] do
16 pq_cls← Behavioral value of pq
17 all_here← True if all of pq_cls are in qtils[i]

/* In that case their counters are not
incremented. */

18 if pq_cls ∈ missing_cls and not all_here then
19 n_cdt[pq] + +

/* Repeat with a limit incremented if a behavioral value is
fully identified as an outlier or if more than pmax

points are outliers. */
20 repeat
21 result← {(p, False)|p ∈ P}
22 for (p, count) ∈ n_cdt do
23 result[p] = count > limit
24 limit++

25 until (countTrue(result) ≤ pmax and not viableCls(result))
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4 Determination of meta-parameters

The first meta-parameters is the number of quantiles and it equals to p
c+1 to

ensure that each quantile is large enough so that each behavioral value is rep-
resented at least once. The second meta-parameter is the maximum percentage
of outliers set at 20%, we assume that over this value a data set may become
inconsistency. The third meta-parameter is the tolerance limit, which is de-
termined by the number of attributes and behavioral values. However, building
an equation from these values is difficult, so it’s estimated empirically using a
regression study based on synthetic data sets (see Section 4.2).

4.1 Generation of synthetics data sets and these outliers

Synthetic data sets are created with the same algorithm designed to generate
Madelon [6]. They all have only one behavioral attribute whose values are homo-
geneously distributed. And all contextual attributes are useful for establishing
the behavioral value. The original generation does not contain any outliers, but
they are added after by using different approaches of machine learning algo-
rithms (ML) from the Python library scikit-learn1: SVC 2, K Neighbors Clas-
sifier2, Random Forest Classifier3, Extra Trees Classifier3, Gradient Boosting
Classifier2 and Logistic Regression4.

The goal is to detect the most useful points for predictions in order to change
their behavioral value. Thus, the chance of having strong outliers which are
harmful to the predictions is increased. While a purely random method wouldn’t
prevent the selection of points that are not very useful for the prediction. For
this purpose, the data sets are randomly divided 10 times into a pair of training
T (70%) and test V (30%) sets. For each pairs, the ML are trained with T and
predict the points in V. The number of times each point is wrongly predicted are
counted. Thus, each point will have an associated counter with a value between
0 and 60 = 10 ∗ 6 (ML algorithms). Those with the lowest values will be the
points that have been most frequently correctly predicted. Finally, the n points
that will become outliers are the first n with the lowest scores. Where there are
more than 2 behavioral values, the new one is chosen randomly.

4.2 Tolerance limit estimation

The tolerance limit is determined by a regression study based on 346 data sets
which contain 5% of outliers. Plus, they have distinct characteristics in order to
cover a large set of attribute and behavioral value number (see Table 1). The
number of points is small in order to perform a large amount of computation in
a reasonable time. Since Hino works with quantiles of fixed sizes, so the number
of points has no influence on the outlier detection.
1 https://scikit-learn.org/stable/index.html
2 All meta-parameters have the default values.
3 All meta-parameters have the default values, except n_estimator set to 200.
4 All meta-parameters have the default values, except max_iter set to 1 000.
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Points (p) Attributes (a) Behavioral
values (c)

250 10 . . . 50, 25 2 . . . 5
500 10 . . . 70, 25, 75 2 . . . 5
1 000 10 . . . 100, 25, 75 2 . . . 7
2 500 10 . . . 100, 25, 75 2 . . . 8
5 000 10 . . . 100, 25, 75, 125 2 . . . 11

Table 1: data sets used in regression
study with a step of 10 for a and 1 for c

This study consists of determining
what is the optimal tolerance limit
for each data set. It is based on the as-
sumption that there is a relationship
between this limit, the numbers of
contextual attributes and behavioral
values. More concretely, all possible
tolerance limits are used in order to
determine which one is the best. A de-
tection is performed for each limit and
a sensitivity and specificity score is
calculated. These scores are determined with the numbers of true positive (TP),
true negative (TN), false positive (FP) and false negative (FN).

sensitivity =
TP

TP + FN
(3) specificity =

TN

TN + FP
(4)

The sensitivity measures the ability of a test to give a positive result when
a hypothesis is verified, and it is calculated using equation 3. It corresponds to
the percentage of correctly detected outliers. While the specificity measures the
ability of a test to give a negative result when the hypothesis is not verified, and
it is calculated using equation 4. It corresponds to the percentage of undetected
points that are actually healthy. These metrics are interpreted together, a good
tolerance limit must give these scores as close to 100% as possible.

Plus, a good tolerance limit must not remove all points of a behavioral
value, and it must not remove too many points, e.g. 20%. The optimal limit
is selected from the remaining ones, and is the one with the highest sum of
sensitivity and specificity. Thus, those found for each data set are visualized
on a 3D graph according to the number of contextual attributes and behavioral
values in Figure 2a. This limit is shown to increase with the number of attributes
and behavioral values, which confirms the relationship between them.
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efficients

[c = 2]0.03183a [c = 3]0.07163a [c = 4]0.08832a [c = 5]0.1009a [c = 6]0.1099a [c = 7]0.1193a [c = 8]0.1202a
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(c) Linear function for each behavioral value

Fig. 2: Regression study
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From this relation, a second regression is performed in order to determine
the slope of each linear line in Figure 2a according to the number behavioral
values. Note that the equations of these lines are shown in Figure 2c. As shown
in Figure 2b, these slopes do increase with the characteristics of the data set,
but logarithmically. Thus, this regression gives the following equation:

0.0205 ∗ log2(−1.623730 + c) + 0.062579 (5)

Finally, it is possible to establish an equation that will approach the optimal
tolerance limit with the number of attributes and behavioral values:

⌊(0.0205 ∗ log2(−1.623730 + c) + 0.062579) ∗ a⌉ (6)

The result is only an estimation and is not guaranteed to be the optimal
tolerance limit. This is due to the choices made on the characteristics of the
synthetic data sets and the approximations made during the regressions. How-
ever, we can be confident that this estimation gives a viable solution.

5 Experimentation

The efficiency of the IQR (see Section 2), Isolation Forest [7], SVM [2],
LOF [4] and Hino (see Section 3) methods are compared to their ability to
correctly detect outliers on two kinds of data sets: synthetics (different from those
in Table 1) and real. Computations have been performed on the supercomputer
facilities of the Mésocentre de calcul de Franche-Comté. The results obtains are
present in a GitHub directory5.

5.1 On synthetic data sets

Points (p) Attributes (a) Behavioral
values (c)

375 10 . . . 50 2 . . . 5
1 250 10 . . . 100 2 . . . 7
3 000 10 . . . 100 2 . . . 8
6 000 10 . . . 100 2 . . . 9
10 000 10, 50, 75, 100 2, 3, 5, 7, 9, 11
25 000 10, 50, 75, 100 2, 3, 5, 7, 9, 11

Table 2: Data sets used in evaluation
with a step of 10 for a and 1 for c

An additional 278 data sets with their
outliers are created with the same
way as those used in the Section 4.1,
which has the characteristics present
in Table 2. LOF, Isolation Forest
and SVM come from the Python li-
brary scikit-learn and performed with
the default settings. Meta-parameters
used for Hino are already established
in Section 4.2.

Outliers detected are compared
with the real ones in order to deter-
mine a sensitivity and specificity.
Results are given in Figure 3 and the best method is the one that has these two
scores closest to 100%. The results conclude:
5 https://github.com/JessyColonval/Hino
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– IQR have a linear relationship between these scores, it means that the num-
ber of false positives is proportional to the number of outliers detected.

– The whole sensitivity of Isolation forest remains < 20% (the majority is
< 10% or = 0%) while its specificity is between 80% and 100%. It means
few or no outliers are removed, but it’s always removing inliers.

– SVM and LOF preserve correctly the inliers with a score of specificity
> 96%. However, they remove a fewer percent of outlier, i.e. < 5%.

– The sensitivity of Hino are < 60% (the majority are between 10 and 40%),
while the specificity are > 70% (the majority are > 80%). It means that
generally, it remove more outlier than inliers unlike IQR but also a larger
number than the Isolation Forest.
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Fig. 3: Specificity and sensitivity on the 5 methods

5.2 On real data sets

Data sets Points Attributes Behavioral
values

annthyroid 7 200 21 3
breastW 683 9 2
cardio 2 126 21 10
glass 214 9 6
ionosphere 351 33 2
isolet 7 797 617 26
letter

20 000 16 26recognition
mammo-

11 183 6 2graphy

Data sets Points Attributes Behavioral
values

multiple
2 000 619 10features

musk 6 598 166 2
parkinson 756 752 2
pendigits 10 992 16 10
satimage2 6 435 36 6
shuttle 58 000 9 7
wine 178 13 3
wine-

1 599 11 6quality

Table 3: Characteristics of real data sets.

In order to confirm the ef-
fectiveness of Hino com-
pared to state-of-the-art
methods, the outlier de-
tection is computed on 16
real data sets from UCI
Machine Learning Repos-
itory6. Few are used, due
to the difficulty of finding
ones with expected char-
acteristics. Their contex-
tual attributes are numer-
ical values and they rep-
resents a panel of different characteristics (see Table 3) in order to observe the
behavior of these methods according to these different characteristics.

Two detections are analyzed with Hino: one with the meta-parameters cal-
culation described in Section 4.2, and other one with the best solution among all
possible tolerance limits. The goal is to validate the tolerance limit provide
6 https://archive.ics.uci.edu/ml/index.php
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by equation 6 and observe the variation with the optimal one. Once detected,
these outliers are removed from the data set, and the relevance of this removal is
measured using two metrics by using 6 ML algorithms described in Section 4.1:

– Cross-validation measures the prediction performance of these algorithms.
We assume that the presence of outliers reduces the performance of these
algorithms, then it determines which removal was the most beneficial.

– False positive measure the performance of these ML algorithms to cor-
rectly predict the outliers detected. We assume that the outliers removed
from the training set cannot be correctly predicted by these algorithms..

Table 4 summarizes and presents these results in 2 separate columns:

– Cross-validation cells contain the percentage of cross-validation (1st line);
the standard deviation (2nd line) and tolerance limit (only for Hino) | per-
centage of outliers | ✓ if all behavioral values are kept, ✗ otherwise (3rd line).
Tolerance limits annotated with a ’*’ are those that have been modified
to obtain a percentage of outliers < 20%.

– False positive cells contain the percentage of points falsely detected as
outliers, and the standard deviation of this percentage.

Cases where no outliers have been detected are indicated by the value None
with the cross validation of the full data set. Cells with Error imply that the
computations of the metrics could not be done because of an overly distorted
data set. For example, when a behavioral value has only one representative.

A method is considered better when: it doesn’t suppress any behavioral value;
the number of points removed isn’t too high; the cross-validation is higher and
the false positive is lower. Sometimes the choice is not obvious, and the method
that is considered better depends on the weight given to these different metrics.
These choices are symbolized by two color: gray when one solution is better;
light gray when multiple solutions are closed and better than the others.

According to Table 4, Hino gives equivalent or better results for almost all
data sets with the estimation of the meta-parameters proposed in Section 4
(column Hino). Except for wine, where the best solutions are given by SVM
and LOF. But by manually changing the tolerance limits, it is possible to get
better results (column Best of Hino). Thus, out of 16 data sets, the results are
clearly improved for 8, remain equivalent for 5 and do not change for the last 3.

5.3 Discussion

The use of ML algorithms to compute false positives introduces a bias. Indeed,
a point detected as an outlier, but correctly predicted, does not necessarily mean
that the detection has failed. In a case where too many inliers have been removed
from the training set, then it is possible that the ML algorithms no longer have
enough information to correctly predict the outliers. Thus, these outliers would
be wrongly predicted because the training set is too distorted. This situation is
less likely when few points are removed, but it should be read carefully and in
addition to the other metrics.
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IQR Isolate Forest SVM LOF Hino Best of Hino

Data sets Cross False Cross False Cross False Cross False Cross False Cross False
validation positive validation positive validation positive validation positive validation positive validation positive

annthyroid
Error 97.68% 94.22% 97.12% 97.98% 98.12% 94.72% 97.65% 94.43%

±0.19 ±0.07 ±0.22 ±0.06 ±0.22 ±0.12 ±0.19 ±0.06 No change
53.6% 5.54% | ✓ 3.01% | ✓ 11.22% | ✓ 2 | 10.4% | ✓

breastW
97.13% 91.66% 98.61% 94.22% 97.09% 99.67% 96.73% 95.08% 98.24% 89.66% 97.61% 81.48%
±1.12 ±0.36 ±0.29 ±0.90 ±0.91 ±0.0 ±1.19 ±0.25 ±0.86 ±0.17 ±1.18 ±0.00

28.1% | ✓ 37.63% | ✓ 7.32% | ✓ 24.60% | ✓ 2∗ | 12.7% | ✓ 3 | 3.95% | ✓

cardio
81.4% 60.35% 81.23% 72.71% 82.06% 71.67% 82.45% 71.67% 83.16% 39.72% 84.76% 43.77%
±1.94 ±0.19 ±1.26 ±0.35 ±1.5 ±0.3 ±1.69 ±3.15 ±1.30 ±0.59 ±1.3 ±0.57

56.3% | ✗ 16.04% | ✓ 3.15% | ✓ 1.69% | ✓ 3 | 5.9% | ✓ 2 | 12.61% | ✓

glass
73.46% 28.12% 74.75% 48.7% 72.28% 49.17% 73.49% 40.98% 73.95% 29.25% 72.16% 0.00%
±4.87 ±1.09 ±5.05 ±1.71 ±4.66 ±1.76 ±5.15 ±1.25 ±4.21 ±1.29 ±5.55 ±0.00

36.4% | ✗ 16.82% | ✓ 1.87% | ✓ 15.89% | ✓ 2∗ | 9.35% | ✓ 4 | 0.93% | ✓

ionosphere
95.12% 59.47% 90.81% 86.54% 91.21% 91.67% 94.23% 55.61% 92.46% 78.02% 92.57% 63.54%
±2.58 ±0.43 ±1.97 ±0.52 ±1.88 ±0.00 ±2.00 ±0.72 ±2.19 ±0.47 ±2.26 ±0.00

48.1% | ✓ 32.48% | ✓ 2.85% | ✓ 34.76% | ✓ 6∗ | 16.8% | ✓ 9 | 4.56% | ✓

isolet
Error 93.1% 93.4% 93.53% 90.55% 93.60% 75.00% 95.08% 76.61%

±0.49 ±0.14 ±0.44 ±0.25 ±0.50 ±0.00 ±0.40 ±0.23 No change
96.6% 14.21% | ✓ 2.98% | ✓ 0.05% | ✓ 97 | 13.7% | ✓

letter
recognition

90.04% 68.37% 91.48% 88.15% 91.64% 92.75% 91.48% 94.52% None - 91.72% 91.93% 64.47%
±0.38 ±0.23 ±0.27 ±0.09 ±0.32 ±0.12 ±0.25 ±0.23 ±0.24 ±0.15

47.4% | ✓ 13.57% | ✓ 3.01% | ✓ 0.19% | ✓ 3 | 0.0% 0 | 8.16% | ✓

mammo-
graphy

99.41% 94.33% 99.26% 91.06% 98.69% 91.23% 98.66% 90.98% 99.85% 83.75% 99.24% 27.28%
±0.04 ±0.03 ±0.03 ±0.2 ±0.12 ±0.16 ±0.00 ±0.19 ±0.03 ±0.05 ±0.15 ±0.47

37.6% | ✓ 19.88% | ✓ 3.08% | ✓ 1.78% | ✓ 1∗ | 10.7% | ✓ 3 | 1.11% | ✓

multiple
features

Error 35.3% 99.0% 91.15% 98.29% 90.14% 98.33% 3.33% 99.43% 85.2% 98.7% 25.6%
±0.74 ±0.45 ±0.2 ±0.45 ±0.54 ±0.47 ±10.54 ±0.25 ±0.37 ±0.34 ±2.18

97.65% | ✗ 35.45% | ✓ 3.00% | ✓ 0.05% | ✓ 78 | 17.9% | ✓ 119 | 0.7% | ✓

musk
91.38% 59.22% 96.39% 98.78% 96.45% 99.31% 96.54% 93.17% 98.31% 43.46% 97.47% 22.91%
±4.61 ±0.37 ±0.34 ±0.06 ±0.27 ±0.25 ±0.35 ±0.41 ±0.23 ±0.31 ±0.36 ±0.72

97.4% | ✓ 6.68% | ✓ 2.99% | ✓ 0.32% | ✓ 6 | 4.5% | ✓ 11 | 1.55% | ✓

parkinson Error 87.04% 86.19% 86.45% 87.03% 86.67% 83.26% 96.93% 9.48% 96.94% 9.47%
±1.78 ±1.14 ±1.9 ±1.08 ±1.67 ±0.79 ±0.80 ±0.29 ±1.06 ±0.29

100% 2.78% | ✓ 3.04% | ✓ 3.04% | ✓ 95∗ | 19.8% | ✓ 96 | 19.71% | ✓

pendigits
98.58% 85.18% 98.87% 50.45% 98.52% 94.99% 98.67% 76.34% 98.63% 97.27% 98.58% 0.00%
±0.20 ±0.17 ±0.23 ±0.17 ±0.16 ±0.16 ±0.20 ±0.45 ±0.20 ±0.04 ±0.12 ±0.00

4.7% | ✓ 51.91% | ✗ 2.98% | ✓ 1.56% | ✓ 2 | 16.7% | ✓ 9 | 0.01% | ✓

satimage2
89.19% 96.65% 88.48% 58.24% 89.28% 97.56% 89.89% 76.35% 90.04% 88.20% 90.10% 93.89%
±0.46 ±0.16 ±0.75 ±4.04 ±0.52 ±0.06 ±0.52 ±0.49 ±0.48 ±0.10 ±0.48 ±1.76

8.4% | ✓ 19.40% | ✓ 2.97% | ✓ 1.54% | ✓ 9∗ | 18.9% | ✓ 18 | 0.05% | ✓

shuttle
99.83% 81.91% 99.78% 60.8% Error Error 99.36% 56.97% 99.36% 51.67%
±0.05 ±0.0 ±0.03 ±0.04 ±0.03 ±1.28 ±0.03 ±4.56

79.6% | ✗ 15.62% | ✗ 2.79% 19.00% 6∗ | 0.02% | ✓ 7 | 0.01% | ✓

wine
98.03% 90.2% 95.96% 95.83% 98.3% 88.12% 98.11% 70.67% 96.94% 95.56% 98.14% 91.67%
±1.66 ±0.0 ±2.81 ±0.00 ±1.45 ±1.01 ±1.54 ±1.41 ±2.37 ±0.0 ±1.35 ±0.00

9.6% | ✓ 13.48% | ✓ 4.49% | ✓ 2.81% | ✓ 2∗ | 8.4% | ✓ 3 | 1.12% | ✓

winequality
64.42% 51.85% 63.99% 46.05% 63.48% 35.72% 63.66% 41.31% 63.08% 0.00%
±2.17 ±0.61 ±1.95 ±0.57 ±1.85 ±1.16 ±1.69 ±1.02 ±2.15 ±0.00 No change

25.2% | ✓ 16.45% | ✓ 2.88% | ✓ 2.94% | ✓ 7∗ | 1.06% | ✓

Table 4: Detection methods comparison on real data sets

The way the tolerance limit equation is established in Section 4.2 is strongly
related to the maximum percentage of inlier that is agreed to be removed (i.e.
20%). A different hypothesis would change this equation and the resulting de-
tection. Plus, for the preservation of data sets, the algorithm shifts these limit
when the maximum number of outliers is reached or when a behavioral value is
completely removed. In practical, in Table 4, the limits of 9 detections has been
shifted: 7 cause the maximum number of outliers and 2 cause the integrity of
behavioral values. Despite this precaution, the tolerance limit doesn’t always
provide the optimal solution. As Table 4 shows, there is a much better solution
in 7 over 16 cases. Thus, the tolerance limit suit better as a meta-parameter.

6 Conclusion

This paper presented a parameterized method of outlier detection based on the
quantile principle and a calculation to determine the parameters to be used.
This method was compared with a state-of-the-art method (IQR, Isolation
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Forest, SVM and LOF) on 278 synthetic data sets and 16 real data sets. It was
clearly shown that the Hino approach was the more efficient. The computational
efficiency of meta-parameters for Hino has been discussed and can be studied
to adapt it to take into account the context of data sets. Finally, this approach
can be easily integrated into standard machine learning library (as scikit-Learn
or Tensor Flow) to help preparation of data sets.
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