
DEEM: A Novel Approach to Semi-Supervised and

Unsupervised Image Clustering under Uncertainty

using Belief Functions and Convolutional Neural

Networks

Loïc Guizioua, Emmanuel Ramassoa, Sébastien Thibauda, Sébastien
Denneulinb

aUniversité Marie et Louis Pasteur, SUPMICROTECH, CNRS, institut FEMTO-ST
(UMR 6174), F-25000 Besançon, France

bSAFRAN CERAMICS, rue de Touban, 33185, Le Haillan, France

Abstract

DEEM (Deep Evidential Encoding of iMages) is a clustering algorithm that
combines belief functions with convolutional neural networks in a Siamese-
like framework for unsupervised and semi-supervised image clustering. In
DEEM, images are mapped to Dempster-Shafer mass functions to quantify
uncertainty in cluster membership. Various forms of prior information, in-
cluding must-link and cannot-link constraints, supervised dissimilarities, and
Distance Metric Learning, are incorporated to guide training and improve
generalisation. By processing image pairs through shared network weights,
DEEM aligns pairwise dissimilarities with the con�ict between mass func-
tions, thereby mitigating errors in noisy or incomplete distance matrices.
Experiments on MNIST demonstrate that DEEM generalises e�ectively to
unseen data while managing di�erent types of prior knowledge, making it a
promising approach for clustering and semi-supervised learning from image
data under uncertainty.

Keywords: Image clustering, Uncertainty, Deep learning, Unsupervised
learning, Semi-supervised learning, Constrained clustering, Siamese
architecture.

1. Introduction

Clustering is a fundamental task in data analysis across diverse �elds
such as medicine, social science, marketing, and physics [1, 2]. By grouping
similar objects based on their inherent characteristics, clustering enables a
deeper understanding of complex phenomena. Over the decades, clustering
algorithms have evolved signi�cantly, employing hierarchical, density-based,
and centroid-based approaches. However, no single method emerges as the
best, re�ecting the complexity involved in data segmentation and pattern
recognition. The challenges of clustering arise from factors such as high di-
mensionality of features, varied data structures (shapes, sizes, densities), and
the presence of noise and outliers that can distort results. Real-world data
often contain overlapping clusters and incomplete information, posing signif-
icant hurdles for accurate clustering. Consequently, managing uncertainty
has become essential in modern clustering techniques.

To enhance robustness and accuracy, several formalisms have been de-
veloped to represent uncertainty about cluster membership. Methods like
fuzzy clustering, probabilistic clustering, and possibilistic clustering � includ-
ing Fuzzy C-Means (FCM) [3], the Gustafson-Kessel algorithm [4], mixture
models [5], and Possibilistic C-Means (PCM) [6] � allow data points to belong
to multiple clusters through varying degrees of membership or probability as-
signments. Bayesian clustering provides another approach by incorporating
prior knowledge and probabilistic reasoning to manage uncertainties in pa-
rameter estimation and cluster assignments. For instance, Dirichlet Process
Mixtures (DPM) allow for an in�nite number of potential clusters, automat-
ically adjusting model complexity based on the data [7]. Ensemble clustering
techniques like Consensus Clustering [8] enhance robustness by aggregating
results from di�erent algorithms or multiple runs of the same algorithm,
leading to insights unobtainable from single methods [9, 10].

Recently, the Dempster-Shafer theory [11] has been leveraged to handle
uncertainties and incomplete information in clustering by associating basic
belief assignments with clusters. Since belief functions can represent both
probabilities and possibilities, extensions of clustering methods to this for-
malism have been proposed [12, 13], such as Evidential C-Means [14], the Ev-
idential Mixture Model [15, 16], and Evidential Hidden Markov Models [17].
Other notable methods include Belief-Peaks Evidential Clustering [18] and
Model-Based Evidential Clustering [19].

2

In a toolbox [20] proposed by T. Den÷ux, many clustering methods based
on belief functions have been implemented and compared on benchmark
datasets. These methods include extensions of the EVCLUS algorithm [21],
which performs relational clustering based on belief function theory. Im-
provements to the EVCLUS algorithm have incorporated new constraints,
as in CEVCLUS [22], or enhanced scalability for large datasets, as in k-
CEVCLUS [23]. Another extension, Neural-Network-based Evidential Clus-
tering (NN-EVCLUS) [24], demonstrated superior performance compared to
existing approaches on several datasets. NN-EVCLUS distinguishes itself by
integrating pairwise dissimilarities with the �exible and powerful framework
of neural networks.

Neural network-based clustering methods have gained popularity due to
their ability to learn complex, non-linear representations of data. These
methods include various architectures. For example, autoencoders [25] and
their variational extension [26] learn compact representations that can be
used in clustering and classi�cation [27, 28]. Siamese Networks [29] form
another class of neural network architectures designed to learn similarity
metrics by processing two identical subnetworks with shared weights. By
minimising a contrastive loss function, Siamese Networks e�ectively distin-
guish between similar and dissimilar pairs. This type of network has proved
e�ective for tasks such as image veri�cation, face and signature veri�cation,
where dissimilarity between two inputs is critical [30].

NN-EVCLUS bridges the gap between distance-based and neural network
approaches by integrating the strengths of both methodologies. Similarly to a
Siamese Network, it relies on two identical subnetworks with shared weights.
However, there are two main di�erences: (1) the loss function is designed
to enable learning without labels, and (2) it incorporates prior knowledge
such as class labels, uncertain priors, or pairwise constraints (must-link and
cannot-link) [23]. These features ensure rigorous theoretical foundations,
enabling NN-EVCLUS to deliver valid clustering results and providing a
strong basis for extending the method to image clustering.

Despite its advanced features, the original NN-EVCLUS architecture is
not well-suited for processing images without preliminary hand-crafted fea-
ture extraction. Extending NN-EVCLUS to handle images would automate
this process. From an image processing perspective, this extension could
facilitate clustering or semi-supervised learning by encoding uncertainties in
images using belief functions.

3

Neural network approaches make it possible to capture intricate relation-
ships within data, making them suitable for high-dimensional and complex
datasets like images. In recent years, signi�cant advancements in image
clustering have emerged due to progress in deep learning techniques. Many
state-of-the-art methods leverage autoencoders for this task. One pioneering
method, Deep Embedded Clustering (DEC), employs a feature extraction
technique that minimises the Kullback-Leibler (KL) divergence for cluster-
ing, with initialisation facilitated by an autoencoder [31]. This method has
been further enhanced by incorporating convolutional layers to better pre-
serve local structures in images [32].

Dimensionality reduction algorithms are essential for transforming images
into meaningful features or embeddings, often serving as a pre-processing
step in image clustering based on neural networks [33]. Methods such as
t-SNE [34] and UMAP [35] surpass Principal Component Analysis (PCA)
by utilising non-linear transformations to better capture complex data struc-
tures. An innovative approach, N2D (�Not Too Deep Clustering�), integrates
manifold learning techniques with autoencoders, showcasing the e�ectiveness
of t-SNE and UMAP in image clustering tasks [36].

Recent approaches like Spectral Deep Clustering (SDC) combine spectral
clustering with deep learning, achieving improved clustering results [37, 38].
Self-supervised learning techniques have also gained traction, enabling mod-
els to learn from unlabelled image datasets, as demonstrated by methods like
SimCLR and BYOL [39, 40].

Contributions � These advancements highlight the potential of integrat-
ing neural networks directly with clustering tasks, particularly for image
data. Inspired by these developments, we introduce DEEM (Deep Eviden-
tial Encoding of iMages) [41], a novel unsupervised clustering algorithm that
integrates belief functions with distance-based learning and neural networks.
The belief functions framework enables DEEM to e�ectively represent un-
certainty in clusters and incorporate prior knowledge, whether in the form of
labels on images or from constraints (must-link and cannot-link) on pairs of
images during training. Coupled with a DML algorithm [42], DEEM is capa-
ble of e�ciently processing large image datasets while generating distances
between pairs of images.

Enhancing NN-EVCLUS, DEEM utilises convolutional neural networks
(CNNs) to directly handle image data, thereby eliminating the need for ex-
plicit feature extraction. By embedding belief functions within a CNN-based

4

clustering framework, DEEM achieves robust clustering performance, even
in the presence of uncertainty and complex data structures. To our knowl-
edge, this is the �rst neural network-based clustering method able to generate
belief functions from images. By fully exploiting the bene�ts o�ered by cus-
tomisable layers, e�cient optimisation algorithms, and other state-of-the-art
techniques, DEEM allows for image clustering under uncertainty and can be
used as a mass function generator.

First, the extended algorithm NN-EVCLUS is presented along with belief
function theory in Section 2. The methodology of our proposed approach is
then detailed in Section 3, while Section 4 presents the experimental results.

2. NN-EVCLUS

In this section, we outline the operational principle of the NN-EVCLUS
algorithm as described in [24]. To do so, we �rst recall some key concepts
regarding belief functions and evidential partitions.

2.1. Theory of belief functions background

The theory of belief functions, also known as the Dempster-Shafer theory,
provides a mathematical framework for representing and managing uncer-
tainty [11]. In the context of clustering, it allows masses to be assigned to
subsets of a frame of discernment, enabling the quanti�cation of uncertainty
about cluster memberships.

The frame of discernment, Ω = {ω1, . . . , ωc}, is a �nite set containing, for
example, the possible clusters for a given problem. The mass function is a
mapping from the power set of Ω to [0, 1]:

m : 2Ω 7→ [0, 1]
A → mΩ(A) such that

∑
A mΩ(A) = 1.

Subset A is called a focal set if mΩ(A) > 0. From masses, other functions can
be computed to represent various properties [43, 44]. Of practical interest,
the plausibility Pl(A) measures the extent to which one fails to believe in
A [45], or the part of belief that could potentially be allocated to A. It is
de�ned as

Pl(A) =
∑

B∩A ̸=∅

m(B),∀A ⊆ Ω. (1)

5

The function pl : Ω 7→ [0, 1] that maps each element ω ∈ Ω to its plausibility,
pl(ω) = Pl({ω}), is called the contour function associated with m and is
often used for decision-making.

The unnormalised Dempster's rule allows two independent masses to be
combined conjunctively if they come from di�erent sources:

(m1 ∩m2) (C) =
∑

A∩B=C

m1(A) ·m2(B),∀C ⊆ Ω.

If the intersection between two subsets A and B is empty, as with {ω1} and
{ω2, ω3}, for instance, a con�ict arises and is quanti�ed as follows:

κ = (m1 ∩m2) (∅) =
∑

A∩B=∅

m1(A) ·m2(B). (2)

This con�ict has been used in several algorithms based on belief functions,
such as target association [46] or the evidential hidden Markov model [47].
In NN-EVCLUS, con�ict is key as it quanti�es the dissimilarity between
two objects. For example, consider a clustering problem with two possible
clusters, ω1 and ω2, and two objects, o1 and o2, with the evidential partition
speci�ed in Table 1.

Table 1: Example of BBA for two objects.

m(∅) m({ω1}) m({ω2}) m({ω1, ω2})
o1 0.05 0.2 0.6 0.15
o2 0.04 0.5 0.3 0.16

The contour function associated with object o1 is

Pl1({ω1}) = m1({ω1}) +m1({ω1, ω2}) = 0.2 + 0.15 = 0.35,

P l1({ω2}) = m1({ω2}) +m1({ω1, ω2}) = 0.6 + 0.15 = 0.75.

Thus, this object can be assigned to cluster ω2 in this example.
The dissimilarity between the two objects can be quanti�ed using Equa-

tion (2), which represents the con�ict κ12:

κ12 = m1(∅) +m2(∅) +m1({ω1}) ·m2({ω2}) +m1({ω2}) ·m2({ω1})
κ12 = 0.05 + 0.04 + 0.2 · 0.3 + 0.6 · 0.5
κ12 = 0.45,

which is the complement of Pl12(Ω), representing the plausibility that objects
o1 and o2 belong to the same class, as κ12 = 1− Pl12(Ω).

6

2.2. Evidential clustering

Following the formalism of T. Den÷ux [24], consider a set of n objects,
such as images, denoted as O = {o1, . . . , on}. Each object is assumed to
belong to at most one cluster in the set Ω = {ω1, . . . , ωc}, and the partial
knowledge about the cluster membership of an object oi is represented by
a mass function mi on Ω. The n-tuple M = (m1, . . . ,mn) is referred to as
an evidential (or credal) partition of O and encompasses a broad range of
clustering structures.

Evidential clustering entails grouping objects (such as images) to form
an evidential partition that satis�es an optimality criterion. Within the
framework of belief functions, the foundational work of Den÷ux and Masson
introduced an algorithm known as EVCLUS [21]. EVCLUS assigns belief
masses to clusters using a dissimilarity matrix D = (δij), where δij quanti�es
the dissimilarity between objects oi and oj without the requirement to satisfy
strict distance properties.

The core principle of EVCLUS is that similar objects should have higher
plausibility of belonging to the same cluster. This is accomplished by min-
imising the degree of con�ict κij between their mass functions, with plau-
sibility de�ned as plij = 1 − κij. Consequently, the evidential partition
M = (m1, . . . ,mn) is optimised to align the degrees of con�ict with the
dissimilarities through a monotonic transformation, drawing parallels with
MDS [48].

Since the introduction of EVCLUS, several related algorithms have been
developed, as detailed in [24] and [49]. Examples include CEVCLUS [22],
which incorporates pairwise constraints, and a scalable version designed for
large datasets [50, 23].

2.3. NN-EVCLUS for feature vector clustering

NN-EVCLUS is a neural network-based algorithm speci�cally designed
for evidential clustering. It learns to map input feature vectors to mass
functions de�ned over a frame Ω of clusters. Similarly to EVCLUS, the
algorithm ensures that similar inputs are associated with mass functions
exhibiting lower levels of con�ict.

The algorithm operates on two primary inputs: a set of feature vectors
and a dissimilarity matrix. If additional information, such as pairwise con-
straints or labelled data, is available, it can be incorporated into speci�c loss
functions to re�ne the clustering process.

7

The neural network used in NN-EVCLUS has a multilayer architecture
made of fully connected layers and ReLU activation functions (although other
functions could be used), combined with a custom loss function. This loss
function minimises the discrepancy between dissimilarities and the degrees
of con�ict for object pairs. A key distinction from EVCLUS is that NN-
EVCLUS encodes data representations in its connection weights, enabling the
model to generalise to new data and produce evidential partitions without
requiring retraining. The computation of quantities such as con�ict has been
formalised in matrix form, allowing for highly e�cient implementation. While
the generalisation of the network to new data was not clearly demonstrated
in the original work, this is one of the primary focuses of the present study.

Similar to a Siamese network, training involves processing pairs of inputs.
A forward pass is applied to each element of a pair using the same network
(shared weights). Backpropagation is performed after computing the con�ict
between the two generated mass functions. In the original implementation,
details on gradient computation were provided to manually perform back-
propagation. In this work, automatic di�erentiation will be utilised.

The network parameters, θ, are obtained by minimising the following loss
function:

Ld =
N∑
i=1

∑
j>i

(δij − κij(θ))
2 . (3)

This function depends on two key quantities: the con�ict κij(θ) (de�ned in
Equation (2)) between the masses mi and mj predicted for inputs xi and xj

(both in ℜd), and the dissimilarity δij between these feature vectors.
Various types of distance measures can be used, such as Euclidean dis-

tance or cosine distance applied to feature vectors. Since the con�ict is
bounded within [0, 1], the distance dij must be rescaled to this range and
interpreted as a dissimilarity measure δij. A commonly used transformation
is:

δij = 1− exp (−γdij) ,

where the scaling factor γ is de�ned as proposed in [24]:

γ = − log(0.05)

d0
,

with d0 being a normalising factor set in NN-EVCLUS as:

d0 = Percentile 90 (dij | (i, j) are pairs of data points) ,

8

which represents the value below which 90% of the distances between all
considered pairs of data points fall.

The objective of minimising the cost function is to �nd the masses that
produce a con�ict matching the known distance between two points. There-
fore, the method for computing distances must be chosen carefully to align
with the expected output classes. This consideration becomes especially crit-
ical when dealing with high-dimensional data, such as images.

3. DEEM for image clustering

In this section, we present the DEEM algorithm. We begin by describing
the advantages and general principles of this algorithm compared to NN-
EVCLUS. Then, we emphasise the importance of dissimilarity generation, a
key element for successful convergence.

3.1. Advantages of DEEM

DEEM is an extension of the NN-EVCLUS algorithm that handles image
inputs. After training, a basic belief assignment can be generated from a
given image. The main features of this extension include:

� DEEM provides access to the entire realm of deep learning, leveraging
its advancements. It fully exploits the bene�ts o�ered by customisable
layers, sophisticated optimisation algorithms, and other state-of-the-art
techniques.

� The network weights are optimised using automatic di�erentiation
(AD) [51], enabling users to con�gure the network according to spe-
ci�c application needs.

� The scalability of the implementation, using GPU and minibatches,
is demonstrated on the MNIST dataset (60k images for training and
10k for testing generalisation). This is achieved with a self-designed
network detailed below, as well as with a ResNet18 model [52] (11m
parameters), demonstrating transfer learning capabilities on deep net-
works.

� Our implementation includes the option to incorporate priors on labels
or constraints on pairs, similar to NN-EVCLUS.

9

We particularly focus on e�ciently computing distances. Since images
are high-dimensional, direct computation of pairwise distances is often inef-
fective. To address this, we propose several procedures, including a highly
e�cient approach based on DML.

3.2. DEEM algorithm

The learning process in DEEM is illustrated in Figure 1. The network
requires two inputs: image data and pairwise dissimilarities. Dissimilarities
can either be pre-computed and stored or computed online using a DML
approach. For simplicity, a speci�c section is dedicated to this latter method.

For unsupervised tasks, straightforward pairwise distance calculations or
other image-speci�c dissimilarity measures can be employed.

Figure 1: Unsupervised learning process of the DEEM method.

During training, a minibatch is sampled (e.g., 128 pairs of images). Im-
ages in a pair (xi, xj) are presented sequentially to the network. Each image
passes through the network layers, which can be con�gured by the user. The
network outputs a basic belief assignment mi and mj for each input image.
The focal sets considered include the empty set, singletons, full ignorance,
and pairs.

For each pair of masses corresponding to a pair of images, the con�ict
κij(θ) is computed using the current network parameters. This con�ict is
then incorporated into the loss function (Eq. (3)) with the corresponding

10

dissimilarity δij:
Lij = (δij − κij(θ))

2.

If the true class of an image is known (yik = 1 for class ωk for i-th image),
an additional term can be added to the loss:

LLABi =
∑
ωk

(plik − yik)
2, (4)

where yik = I(yi = ωk), plik = pli(ωk) with pli the contour function corre-
sponding to the mass function mi generated by the network for image i.

If prior information about the pair is available (e.g., whether the im-
ages are similar or dissimilar), speci�c loss terms can be de�ned, as initially
proposed in CEVCLUS [53] and NN-EVCLUS [24]:

PML =
∑

(i,j)∈ML

(
Plij(Sij) + 1− Plij(Sij)

)
,

PCL =
∑

(i,j)∈CL

(
Plij(Sij) + 1− Plij(Sij)

)
,

whereML and CL denote must-link (same classes) and cannot-link (di�erent
classes) constraints. Expressions for Plij(Sij) and Plij(Sij) are derived by
Antoine et al. [53]:

Plij(Sij) = 1− κij(θ),

and

Plij(Sij) = 1−mi(∅)−mj(∅) +mi(∅)mj(∅)−
K∑
k=1

mi({ωk})mj({ωk}),

where K represents the number of subsets retained among the 2Ω possible
subsets. The composite loss is then de�ned as:

LC =
1

|ML|
PML +

1

|CL|
PCL, (5)

where |ML| and |CL| denote the number of must-link and cannot-link con-
straints, respectively.

The �nal loss function combines these terms:

Lnet = Ld + λLLAB + ξLC, (6)

11

where λ and ξ are hyperparameters that control the in�uence of supervised
terms. Setting these coe�cients to zero results in fully unsupervised training.
Regularisation terms on the parameters can also be included (typically im-
plemented in Python). Adjusting these hyperparameters enables the model
to handle incomplete or partially supervised scenarios, which adapt to real-
world cases.

The network parameters are optimised using automatic di�erentiation.
Various optimisers, such as Adam [54], Stochastic Gradient Descent with
Momentum (SGDM), or RMSProp, can be employed. Learning rate sched-
ulers are also available to adapt the training process dynamically.

3.3. How to generate relevant pairwise distances?

In the DEEM algorithm, the cost function relies on dissimilarities com-
puted from the input data, aiming to align the predicted con�icts with the
actual distances. The e�ciency of training is strongly in�uenced by the
quality of the dissimilarity matrix Dij. Poorly chosen distances can hinder
convergence, highlighting the importance of �nding a matrix that closely ap-
proximates the known labels. Both unsupervised and supervised approaches
for determining dissimilarities are discussed below.

3.3.1. Unsupervised approaches for determining dissimilarities

Figure 2 illustrates three di�erent approaches. The �rst one consists
in vectorising images and applying a pairwise distance. This is the simplest
and less e�ective approach since a pixel-wise comparison between two images
often fails to capture geometric subtleties and is sensitive to variations like
rotation, translation, and lighting.

12

Vectorise

2x28x28 2x784

DEEMPdist

൝
𝟏 − 𝒓 𝒊𝒇 𝒚𝒊 ≠ 𝒚𝒋
𝒓 𝒊𝒇 𝒚𝒊 = 𝒚𝒋

Pre-

clustering

1st

method

2nd

method

3rd

method

i

j

δij

Dim.

reduction

2x28x28 2x2

DEEMPdist
i

j

δij

Dim.

reduction

2x28x28 2x2

DEEM
i

j

δij
𝑦

Figure 2: Presentation of three unsupervised methods for Dij computation. Digit images
from MNIST are used for illustration. �pdist� stands for pairwise distance.

The second approach relies on applying a dimensionality reduction
method on the vectorised form, and then applying a pairwise distance. It
partly overcomes the previous challenges because images are represented
using a reduced set of features with some statistical properties. The im-
ages can also be pre-processed using for example Structural Similarity In-
dex Measure (SSIM) [55], Scale-Invariant Feature Transform (SIFT) [56],
Speeded-Up Robust Features (SURF) [57], and Oriented FAST and Ro-
tated BRIEF (ORB) [58]. Dimensionality reduction techniques include Prin-
cipal Component Analysis (PCA), t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [34], and Uniform Manifold Approximation and Projection
(UMAP) [35]. While PCA captures linear relationships, t-SNE and UMAP
excel at capturing non-linear structures, making them e�ective for complex
data. In the following tests, PCA, t-SNE, and UMAP are compared.

The third approach is mentioned as pre-clustering in the �gure. It relies
on the idea that a clustering method can be applied after dimensionality re-

13

duction in order to generate pseudo-labels. These labels can then be used to
compute the dissimilarity matrix. Common methods include K-means, Gaus-
sian Mixture Models (GMM), and hierarchical clustering which are compared
in the experiment section. The dissimilarity matrix is generated by compar-
ing pseudo-labels as follows:

δij =

{
1− r if yi ̸= yj,

r if yi = yj,
(7)

where yi represents the pseudo-label of image i, and r is a random noise value
drawn from a uniform distribution in [0, 1].

3.3.2. Supervised approaches for determining dissimilarities

A simple way to incorporate supervision in Dij computation is to apply
Equation (7) to real labels, identifying must-link (ML) and cannot-link (CL)
cases. The loss function is designed to minimise con�ict κij in ML cases and
approach 1 in CL cases.

Another approach involves training an intermediate algorithm to generate
dissimilarities, thereby improving generalisability and reducing the reliance
on labels. This can be achieved using a Distance Metric Learning (DML)
procedure with triplet loss [59]. In the context of triplet-based learning, an
anchor (an image in our context) is a reference input from the dataset. It
serves as the basis for comparing two other inputs: the positive and the nega-
tive. The positive input is a sample that is similar to the anchor. Speci�cally
for this work, it belongs to the same class. The negative input, in contrast,
is a sample that di�ers signi�cantly from the anchor, from a di�erent class
in our case. The goal of the triplet loss function is to learn an embedding
function f such that the distance between the anchor (a) and positive (p)
embeddings is minimised, while the distance between the anchor and neg-
ative (n) embeddings is maximised, with a margin (α) ensuring su�cient
separation:

Lt(a, p, n) = max(0, ||f(a)− f(p)||2 − ||f(a)− f(n)||2 + α),

By training on anchor-positive-negative triplets, the model learns an em-
bedding space suitable for computing dissimilarities (likewise to the �code�
generated by an autoencoder), which can then be used as input to the DEEM
algorithm. The pairwise distance is therefore applied on the output of the

14

1st method 2nd method

DML

training

DML

training

DEEM

training

DEEM

training

MNIST MNIST

MNIST

Train

MNIST

Test

MNIST

Train

MNIST

Test

DEEM

inference

DML

inference

Clusters Clusters

Figure 3: Two di�erent usages of the DML model.

DML model. A small amount of prior is generally su�cient to generate very
e�cient DML models.

Figure 3 illustrates two methods for utilising DEEM with a DML model.
In both approaches, DML is trained on a given training dataset to generate
embeddings by inference. The distinction lies in how DEEM is used:

� First method: DEEM is trained on the outputs of DML derived from
the training set. During testing, DEEM infers clusters directly from
images of the testing set, enabling an evaluation of generalisation ca-
pabilities. DML is not used on the testing set.

� Second Method: The DML model generates embeddings for the testing
set, which are then used to compute pairwise distances. DEEM is
subsequently trained on the testing set in an unsupervised manner.
While this may seem questionable, it is essential to note that no labels
or supervised information are used during this process. The test set is
only used for parameter updates under purely unsupervised conditions,

15

with the assumption that the test data is available in its entirety or in
su�ciently large batches to perform minibatch updates.

Figure 4 summarises the entire process of coupling DML and DEEM us-
ing the �rst method, with two approaches for integrating prior knowledge.
Positive and negative pairs are assigned based on anchor classes, with an ad-
justable percentage of labelled data. This percentage is varied in subsequent
tests to evaluate performance under di�erent amounts of prior information,
considering either class labels or pairwise similarity.

Training

dataset

Testing

dataset

MNIST

dataset

Training

stage

Validation

stage

Labeled pairs
Triplets {A,P,N}s

Unlabeled pairs
Triplets {A,P,N}u

DML

inference

DML training

60k

10k

5%

95%
ρpairs%

100-ρpairs%

Dij

pdist

DEEM

inference

Belief functions
BBA on clusters, subsets and ignorance

Embeddings

Pairs of images (xi , xj)

θDML

Single image

Prior on pairs ρpairs

(similar or dissimilar)

Prior on labels ρlabels

(of single image)

DEEM

TrainingθDEEM

Figure 4: Schematic explaining how DEEM and DML are coupled and where prior knowl-
edge plays a role.

4. Experiments

In this section, three main aspects emerge regarding the application of
DEEM. The �rst part is exploratory, aiming to justify the relevance of the
method. Here, we observe the behaviour of the mass partition to extract use-
ful insights. Furthermore, exploiting masses on pairs � a distinctive feature
of the method � allows for a signi�cant performance improvement.

The second part focuses on the utilisation of the algorithm in an unsu-
pervised mode. Within this, we develop an optimisation approach for the
algorithm, relying on pre-existing methods to compute dissimilarities, and a
benchmark is proposed across various datasets.

Lastly, the third part presents the use of the algorithm in supervised
mode. In this �nal section, we address several ways to provide the algo-
rithm with side information and analyse the impact of the amount of prior
knowledge used.

16

Before delving into these three aspects, we begin with a con�guration
section to establish the necessary foundations for the discussion.

4.1. Experimental settings

Performance computation � To monitor the network's performance in real
time, the comparison between the predicted clusters and the actual classes
was computed at each iteration based on Adjusted Rand Index (ARI), Ac-
curacy (ACC), and Normalised Mutual Information (NMI) criteria. These
three criteria are de�ned in [0, 1], where 1 corresponds to the best achiev-
able performance. For improved readability, the performance metrics in the
following experiments are presented as [ACC/NMI/ARI]. Unless speci�ed in
some speci�c tests, training was stopped after 7,000 iterations. The model
retained corresponds to the one achieving the highest performance on the
evaluation set. The test set performance is then computed.

Main dataset � All experiments were conducted using the MNIST
dataset1. MNIST is a handwritten digit dataset of 60k training images and
10k testing images. Additionally, to perform a benchmark on other datasets,
we also tested our algorithm in Section 4.3.3 on USPS2, a digit image dataset,
and COIL-20 (processed)3, an image dataset of 20 classes of everyday-life ob-
jects. Table 2 summarises the characteristics of these datasets.

Table 2: Dataset characteristics.

MNIST USPS COIL-20
Type Digit images Digit images Object images

Number of classes 10 10 20
Image size 28x28 16x16 128x128

Size of testing 10k 2,007 -
Size of training 60k 7,291 -
Total images 70k 9,298 1,440

General con�guration � Our method was implemented in MATLAB
R2024a for all experiments, except for the test with the DML in Section 4.4.3

1Di�erent shu�es might exist, so we specify we used mnist_784 from fetch_openml,
found under https://www.openml.org/d/554.

2Available on https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
3Available on https://cave.cs.columbia.edu/repository/COIL-20.

17

https://www.openml.org/d/554
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://cave.cs.columbia.edu/repository/COIL-20

or when using ResNet18 [52] where a Python version was developed. A two-
layer convolutional network (CNN) was used as shown in Figure 5. For 10
classes (like MNIST), this con�guration results in a network with 57 out-
puts and 8.7k learnable parameters. DEEM also requires hyperparameters,
summarised in Table 3.

Input Convolution Convolution Maxpooling
ReLU ReLUBatch

Normalisation

Output
Batch
Normalisation

28x28 14x14x12 7x7x12 3x3x12 57

Figure 5: Neural network layers con�guration for the tests carried with DEEM (image
made thanks to https://alexlenail.me/NN-SVG).

Table 3: DEEM hyperparameters summary.

Minibatch size 128
Weight initialisation He

Optimiser Adam
Learning rate 0.01

Supervision coe�cients λ and ξ 0.4

Speci�c con�gurations � During the unsupervised usage of DEEM, we
used two methods for similarity calculation: t-SNE from MATLAB and
UMAP 0.5.5 from Python. Both methods were used with default setups
to avoid any supervision by selecting their best con�guration for a given
dataset. Default parameters are summarised in Appendix B, Table B.15 for
t-SNE and Table B.16 for UMAP.

Concerning DML, the CNN was composed of two convolutional layers:
the �rst one with 64 �lters and the second one with 128 �lters, both using
3 × 3 kernels with stride 1 and padding 1. Each convolutional layer was
followed by a ReLU activation and a max-pooling operation with a 2 × 2
kernel. The resulting feature maps are �attened and passed through two
fully connected layers, with 256 and 128 neurons, respectively. This con�gu-
ration enables the network to process input images and produce embeddings

18

in a 128-dimensional feature space, suitable for downstream tasks such as
clustering or classi�cation. This DML model was trained with ADAM , a
learning rate of 0.001, a margin α = 8, a minibatch size of 256 and stopped
after 20 epochs, where one epoch corresponds to pass all single images from
the training set.

4.2. Preliminary results

The advantage of DEEM method is that it generates masses from images.
In this section, we illustrate on MNIST dataset the interest of representing
uncertainty using belief functions.

For that, we �rst observed the evolution of the evidential partition con-
taining all mass vectors. Presented in video format4, from which Figure 6
is extracted, this evolution shows a random distribution of masses in the
�rst iteration of the network, converging towards an ordered assignment of
the classes. Here, each column of pixels in the �gure represents the mass
vector output by the network. The masses are ordered a posteriori by the
true classes for the sake of interpretation. We can observe that they con-
verge towards singletons. As a reminder, the organisation of the masses is
carried out similarly to Table 1. In the last iteration, we observe that class
5 (corresponding to digit 4) has not been assigned to a singleton but the
classi�cation remains e�ective using the plausibility contour function. It can
be explained by Equation (1) and observing that the mass is mainly dis-
tributed on subsets containing class 4, in particular ω04, ω14, ω34, ω46, ω47,
and ω48 (where ωkl = {ωk, ωl}). By observing the adjacent classes, we notice
a similar result, for example, for digit 6, the mass on ω26 is the largest, and
for digit 7, the mass is distributed on ω17 and ω67. Therefore, the network,
once trained, seems to hesitate between classes prone to doubt, such as 1
and 7. The complexity of the architecture (8.7k learnable parameters) can
make it sensitive to other parameters that we, as humans, do not necessarily
distinguish. Therefore, the doubt between 2 and 6, and between 6 and 7,
seems more di�cult to interpret.

Uncertainty management by belief functions in deep learning can boost
the network's performance [24, 49]. As an illustration, we used the same
algorithm architecture in two situations: �rst by considering pairs of classes,
and second without pairs. Two 10k MNIST datasets drawn randomly were

4https://drive.google.com/file/d/1UoEB4tMhQPdm2JCccV3BvYoRuGn6u7S3

19

https://drive.google.com/file/d/1UoEB4tMhQPdm2JCccV3BvYoRuGn6u7S3

Iteration 1 Iteration 220

Real classes

Real classesReal classes

Real classes

Iteration 665 Iteration 1.920

Figure 6: Evolution of masses subsets for the clustering of MNIST dataset (57 subsets and
1k images ordered in 10 classes).

tested for this purpose, with one case containing all images from three classes
and another case with 10 classes. The results reported in Table 4 show, in
a fully unsupervised setting, a clear improvement of the performance when
doubt between digits is considered.

Table 4: Performance with and without doubt (expressed by pairs) on digits. Examples
with 3 classes (digits 5, 6 & 8) and 10 classes from MNIST dataset.

3 classes 10 classes
with pairs w/o pairs with pairs w/o pairs

ACC 0.98 0.89 0.90 0.81
NMI 0.89 0.70 0.93 0.87
ARI 0.93 0.71 0.88 0.77

The objective of the algorithm is not to reproduce the dissimilarity matrix
identically. Minimising the cost function reduces the gap between con�ict and
distances, but it is still crucial that the network avoids over�tting and remains

20

able to e�ectively classify similar data with an incorrectly calculated distance.
To illustrate this point, we generated two distinct datasets and intentionally
introduce a percentage of errors in the dissimilarity matrix, which in this case
is directly determined by the labels. Two classes from the MNIST dataset
were used, namely the 1s and 6s, which exhibit notable dissimilarity. The
labels were subsequently altered for 1, 10, 100, and 500 points to create a
dissimilarity matrix with errors. This matrix was generated by imposing
random numbers close to zero for identical classes and numbers close to one
for di�erent classes. Figure 7 shows the two clusters with the alteration of
500 labels. The results of the study, summarised in Table 5, demonstrate
the network's ability to ignore the errors in the matrix and converge to an
error-free score.

Figure 7: t-SNE representation of clusters with 500 label modi�cations for perfect 1 and
6 digit clusters.

Table 5: Results in convergence for two classes, 1 and 6 digits, with di�erent rate of errors
in the dissimilarity matrix.

Number of a�ected labels 0 1 10 100 500
Corresponding ratio 0% 0.05% 0.5% 5% 25%

1st iteration to 0 errors 38 385 609 895 N/A
Final number of errors 0 0 0 0 1

4.3. Unsupervised case
As previously explained, our algorithm operates in both unsupervised

and supervised modes. In this section, we focus on the former. Particular

21

attention must be paid to the de�nition of dissimilarities, as they are crucial
for successful convergence. Poorly de�ned dissimilarities tend to destabilise
the training process, leading to suboptimal performance. While we have
demonstrated earlier that DEEM can mitigate errors in dissimilarities, this
capability diminishes as the complexity of the data (for example the image
content or the number of classes) increases. For this reason, we explore strate-
gies in this section to optimise the performance of unsupervised clustering
by carefully selecting the method for calculating dissimilarities.

4.3.1. Pairwise dissimilarity

On distances � To evaluate the e�ectiveness of distance calculation meth-
ods, we measure the overlap area A between the within-class (H1) and
between-class (H2) histograms:

A =

∑
min(H1, H2)∑

H1

.

As shown in Table 6, the overlap between the distances for dissimilar
classes and those for identical classes is signi�cant. This high overlap explains
the challenges that DEEM faces in achieving e�ective convergence. The
table also includes results after applying dimensionality reduction techniques.
These methods improve the spatial representation of the data, resulting in
better separation between clusters.

Table 6: Histogram overlapping measure for several distances.

Raw images UMAP t-SNE
Euclidean 92% 37% 62%

Squared Euclidean 92% 37% 62%
Cityblock 92% 39% 64%
Minkowski 92% 37% 62%
Chebychev 99% 37% 63%
Cosine 88% 92% 83%

Correlation 88% 100% 100%
Hamming 94% 100% 100%
Jaccard 100% 100% 100%
Spearman 87% 100% 100%

For comparison, Table 7 summarises the results of both the K-Means
and the NN-EVCLUS algorithms applied to the MNIST dataset. The third

22

part of the table concerns DEEM (using images as input and embeddings
for distances). A random batch of 5k images was selected5. The input data
was processed using several methods. The �rst one involves vectorising the
images before submitting them to the clustering algorithms. Other methods
apply transformations directly to the images, employing PCA, UMAP, and
t-SNE (Section 3.3.1) to generate a new representation with a limited number
of dimensions (2 or 3 in this study).

Table 7: Performance of K-means, NN-EVCLUS and DEEM in the unsupervised mode
using 5k images. For K-means and NN-EVCLUS, the inputs were feature vectors computed
using di�erent methods. For DEEM, embeddings from UMAP and t-SNE were used to
compute distances while handling images as inputs.

K-means NN-EVCLUS DEEM
ACC NMI ARI ACC NMI ARI ACC NMI ARI

Vectorised 0.47 0.49 0.31 0.47 0.43 0.30 - - -
PCA 0.50 0.50 0.29 0.48 0.42 0.30 - - -

UMAP 2D 0.82 0.85 0.75 0.40 0.63 0.35 0.73 0.79 0.65
UMAP 3D 0.81 0.85 0.75 0.48 0.73 0.41 0.70 0.78 0.63
t-SNE 2D 0.84 0.81 0.75 0.61 0.66 0.51 0.70 0.70 0.73
t-SNE 3D 0.85 0.82 0.75 0.57 0.68 0.51 0.81 0.78 0.71

The results highlight the challenges of processing MNIST images directly
in vectorised form, even after applying PCA. However, dimensionality reduc-
tion techniques like UMAP and t-SNE appear to facilitate the grouping of
similar data. Notably, the errors produced by the K-Means and NN-EVCLUS
clustering algorithms are more attributable to their �nal predictions than to
the grouping achieved by the reduction methods. For instance, both clus-
tering methods tend to split clusters into subgroups, resulting in erroneous
classi�cations. Two dimensions seem su�cient for the algorithms to achieve
their best results. While t-SNE delivers slightly better results than UMAP
with NN-EVCLUS, the overlap with t-SNE was twice as high as that obtained
with UMAP.

DEEM outperforms NN-EVCLUS in all cases, highlighting the advan-
tages of extending the approach to images. However, K-means achieves better
overall performance on this reduced dataset (5k images). This can be largely

5Available at https://github.com/emmanuelramasso/DEEM_Deep_Evidential_

Clustering_Images/blob/main/Matlab/data/MNIST_5k_data.mat.

23

https://github.com/emmanuelramasso/DEEM_Deep_Evidential_Clustering_Images/blob/main/Matlab/data/MNIST_5k_data.mat
https://github.com/emmanuelramasso/DEEM_Deep_Evidential_Clustering_Images/blob/main/Matlab/data/MNIST_5k_data.mat

attributed to the method used to compute pairwise distances. As previously
discussed, constructing the dissimilarity matrix based on these distances may
not be optimal, as overlap in the data tends to penalise DEEM. The next sec-
tion investigates alternative methods for constructing the dissimilarity matrix
to enhance its performance. We also explore the generalisation capabilities
of the methods.

On pre-clustering and generalisation capabilities � Trained neural net-
works possess adaptability properties that can surpass conventional cluster-
ing methods in certain scenarios. In our case, data reduced by UMAP and
t-SNE already exhibit signi�cant potential for e�ective labelling by conven-
tional algorithms [60]. Given the limitations of distance-based methods, we
propose using an initial unsupervised clustering step to derive a dissimilarity
matrix. Standard clustering algorithms such as K-Means, Gaussian Mix-
ture Models (GMM), and hierarchical clustering are applied to t-SNE and
UMAP dimensionality reductions. The in�uence of the size of the dataset
is studied considering 5k and 70k MNIST images. Table 8 summarises the
performances of each clustering method on the di�erent reductions.

The best clustering performance was achieved using hierarchical cluster-
ing on UMAP for the 5k image subset. However, this method demonstrates
poorer performance when applied to the largest dataset, highlighting its lim-
itations in scalability.

Table 8: Conventional clustering performances on dimensionality reduced MNIST with
UMAP and t-SNE for 5k and 70k images.

K-means GMM Hierarchical
ACC NMI ARI ACC NMI ARI ACC NMI ARI

UMAP
5k 0.82 0.85 0.78 0.83 0.86 0.78 0.97 0.93 0.94
70k 0.85 0.85 0.78 0.85 0.88 0.82 0.82 0.89 0.81

t-SNE
5k 0.84 0.81 0.75 0.77 0.66 0.75 0.86 0.82 0.78
70k 0.92 0.85 0.83 0.68 0.72 0.56 0.89 0.84 0.79

Using dissimilarities generated from labels provided by hierarchical clus-
tering on 5k images, DEEM achieves comparable performance to the orig-
inal clustering: [0.97/0.93/0.94]. When the trained model is applied to
the full dataset (70k MNIST images), DEEM generalises e�ectively, reach-
ing [0.96/0.89/0.91]. In contrast, the hierarchical clustering method ex-
hibits a signi�cant loss of performance on the largest dataset, achieving only
[0.82/0.89/0.81] despite being �trained� on the full dataset.

24

Furthermore, the generalisation from 5k to 70k images highlights a no-
table drop in performance for the hierarchical clustering method, as shown
in Table 9. In contrast, DEEM appears to leverage the prior information
generated by hierarchical clustering e�ciently. By building relevant features
through its CNN layers, DEEM demonstrates superior generalisation capa-
bilities.

Table 9: Generalisation on 70k MNIST images after training on 5k images.

ACC NMI ARI
K-means 0.65 0.63 0.48
GMM 0.49 0.53 0.36

Hierarchical - - -
DEEM 0.96 0.89 0.91

4.3.2. Performance of unsupervised methods

The methodology previously described is applied to the MNIST dataset
in this section. Table 10 summarises the obtained performances. In the
�rst lines, dissimilarities was computed from pairwise distances (pdist) us-
ing 5k randomly drawn images from MNIST leading to poor performance
([0.48/0.43/0.32]). The next three rows in the table highlight the best per-
formances of the K-Means, NN-EVCLUS, and DEEM methods when using
dissimilarities derived from t-SNE dimensionality reduction. Among them,
DEEM demonstrated the highest performance, reaching [0.70/0.70/0.73].

The subsequent tests involve pre-clustering after dimensionality reduc-
tion. Using hierarchical pre-clustering, DEEM achieved [0.97/0.93/0.94].
While DEEM does not surpass the performance of pre-clustering alone, it
remains highly e�ective in terms of generalisation as shown in the �nal rows
which illustrate the performance of DEEM on the full MNIST dataset, both
with and without generalisation. DEEM achieved [0.96/0.89/0.91] on the en-
tire 70k batch, outperforming other methods that showed signi�cant declines
in e�ectiveness for the full dataset.

25

T
a
b
le
1
0
:
R
es
u
lt
s
fo
r
d
i�
er
en
t
cl
u
st
er
in
g
m
et
h
o
d
s
ov
er

D
M
L
em

b
ed
d
in
g
o
n
M
N
IS
T
d
a
ta
se
t.

G
e
n
e
ra
li
sa
ti
o
n

T
ra
in

T
e
st

D
ij
ca
lc
u
la
ti
o
n

E
v
a
lu
a
te
d
a
lg
o
ri
th
m

A
C
C

N
M
I

A
R
I

N
o

5k
5k

D
is
ta
n
ce

D
E
E
M

0.
48

0.
43

0.
32

N
o

5k
5k

t-
S
N
E
�

D
is
ta
n
ce

K
-M

ea
n
s

0.
79

0.
79

0.
72

N
o

5k
5k

t-
S
N
E
�

D
is
ta
n
ce

N
N
-E
V
C
L
U
S

0.
61

0.
66

0.
51

N
o

5k
5k

t-
S
N
E
�

D
is
ta
n
ce

D
E
E
M

0.
70

0.
70

0.
73

N
o

5k
5k

t-
S
N
E
�

C
lu
st
er
in
g

K
-m

ea
n
s

0.
84

0.
81

0.
75

N
o

5k
5k

t-
S
N
E
�

C
lu
st
er
in
g

G
M
M

0.
77

0.
66

0.
75

N
o

5k
5k

t-
S
N
E
�

C
lu
st
er
in
g

H
ie
ra
rc
h
ic
al

0.
97

0.
93

0.
94

N
o

5k
5k

t-
S
N
E
�

C
lu
st
er
in
g
(H

ie
ra
rc
h
ic
al
)

D
E
E
M

0.
89

0.
82

0.
78

N
o

5k
5k

U
M
A
P
�

C
lu
st
er
in
g
(H

ie
ra
rc
h
ic
al
)

D
E
E
M

0.
97

0.
93

0.
94

N
o

70
k

70
k

t-
S
N
E
�

C
lu
st
er
in
g

K
-m

ea
n
s

0.
92

0.
85

0.
83

N
o

70
k

70
k

t-
S
N
E
�

C
lu
st
er
in
g

G
M
M

0.
68

0.
72

0.
56

N
o

70
k

70
k

t-
S
N
E
�

C
lu
st
er
in
g

H
ie
ra
rc
h
ic
al

0.
89

0.
84

0.
79

Y
es

5k
70
k

t-
S
N
E
�

C
lu
st
er
in
g

K
-m

ea
n
s

0.
65

0.
63

0.
48

Y
es

5k
70
k

t-
S
N
E
�

C
lu
st
er
in
g

G
M
M

0.
49

0.
53

0.
36

Y
es

5k
70
k

t-
S
N
E
�

C
lu
st
er
in
g
(H

ie
ra
rc
h
ic
al
)

D
E
E
M

0.
96

0.
89

0.
91

26

4.3.3. Benchmark

To evaluate the performance of our algorithm on di�erent datasets, we
applied clustering on USPS (a digit dataset) and COIL-20 (a collection of
everyday objects). Table 11 summarises the results of our method in com-
parison to other approaches reported in the literature for these datasets.

In both cases, DEEM demonstrates high performance. For the datasets
concerning digits, the algorithm's performance is constrained by a few classes
that are particularly challenging to classify. In the COIL-20 dataset, three
speci�c classes could be considered as subclasses since they correspond to car-
toy images that are visually similar to one another. This close resemblance
poses a signi�cant challenge for our algorithm, which remains an area for
future improvement.

Table 11: Benchmark comparison of DEEM with existing methods on image clustering
tasks using USPS and Coil-20 datasets.

MNIST USPS Coil-20
ACC NMI ACC NMI ACC NMI

DEC [31] 0.863 0.834 0.762 0.767 0.712 0.836
SCAE-KMS [61] 0.823 0.738 0.681 0.660 0.723 0.787
FCAE-KMS [62] 0.794 0.698 0.667 0.645 0.843 0.882

DBC [62] 0.964 0.917 0.743 0.724 0.793 0.895
DEEM 0.957 0.890 0.969 0.924 0.847 0.898

4.4. Supervised case

Incorporating side information about the true classes of the inputs intro-
duces an element of supervision into the training process. In this context, the
generalisation performance of the network is consistently evaluated using a
test dataset that remains unseen during training. To enhance generalisation,
it is crucial to carefully consider both the type of side information provided
and the way it is utilised during the training process.

This section on supervised learning is organised into four parts. First,
we compare four methods for leveraging prior knowledge. Next, we focus on
DML, a method designed to generate accurate embeddings for dissimilarity
computation. Then, we examine the impact of using varying percentages of
prior knowledge. Finally, we analyse the robustness of DML when confronted
with di�erent levels of prior knowledge.

27

4.4.1. Four supervision methods

We explore the application of supervision in our algorithm through var-
ious approaches to evaluate generalisability. Speci�cally, we present results
for four methods that make use of prior knowledge:

� by incorporating it into the loss function in a �conventional� manner
(Eq. (4));

� by embedding it in the dissimilarity matrix referred to as �Dij prior�;

� by leveraging ML (must-link) and CL (cannot-link) constraints within
the loss function (Eq. (5));

� or by applying DML beforehand for dissimilarity computation.

About conventional prior � Conventional prior knowledge can be inte-
grated as an additional term in the loss function, which compares the pre-
dicted class to the true class. When a di�erence occurs, the loss function
is penalised by this additional term. As expressed in Eq. (6), the learning
process is in�uenced by the coe�cient λ. If λ is set too low, training will
progress slowly and primarily depend on Ld rather than LLAB. Conversely,
if λ is set too high, it may lead to over�tting. The default value considered
in 4.1 results in [0.98/0.94/0.95].

On Perfect dissimilarities � In an ideal scenario, distances can be di-
rectly derived from the true class labels: a distance of 0 is assigned if two
images belong to the same class, and a distance of 1 if they belong to dif-
ferent classes. Supervised dissimilarities leverage this prior information by
incorporating it into Ld through δij, as shown in Eq. (3). This approach
introduces must-link and cannot-link constraints between pairs of images,
di�ering from traditional supervised learning where class labels are directly
utilised in a speci�c loss function (Llab, Eq. (4)).

To evaluate the robustness of DEEM with supervised dissimilarities, in-
creasing levels of randomness were introduced into the perfect distance ma-
trix. Figure 8 displays the ARI scores across 10 trials, where noise is pro-
gressively added to the dissimilarities derived from the true classes. The
dissimilarities stored in the matrix Dij shift from being perfect to a distri-
bution with increasing width, ∆Dij

.
Perfect distances, de�ned as 0 and 1 (left-hand side), show limited results

due to numerical issues arising from gradient calculations. Starting from the

28

Figure 8: ARI performance for dissimilarity variations.

7th level of noise, ARI scores begin to decline as cluster separability dimin-
ishes, driven by increasing overlap between the distributions of distances for
pairs of similar and dissimilar images. As shown in Figure 9, at the 7th noise
level, the overlap constitutes approximately one-third of the total distribu-
tion. Despite this, the ARI score remains relatively high (0.7), demonstrating
the algorithm's robustness in handling such noise.

Finally, the best result achieved by DEEM is [0.97/0.92/0.93], which is
slightly below the performance of the �rst method.

On ML and CL constraints � Instead of applying constraints in the dis-
similarity matrix, Antoine et al. [53] proposed to add an additional term in
the loss function, LC from Eq. (5). With 100% of constraints, DEEM reached
[0.59/0.76/0.62].

On DML � The �nal method for integrating prior knowledge into training
is DML. It learns to generate dissimilarities using labelled data. With DML,
DEEM achieves its best results: [0.994/0.980/0.986].

Overall comparison � In summary, Table 12 presents a comparison of
the fully supervised learning methods and their generalisation performances.
Among these, DML achieves the highest performance, followed by conven-
tional supervision and dissimilarities derived directly from labels. In contrast,
supervision based on must-link (ML) and cannot-link (CL) constraints shows
the weakest performance.

29

Figure 9: Distance histograms of MNIST classes with ∆Dij
= 0.6.

Table 12: Results for supervised clustering on MNIST

Train Test Method ACC NMI ARI
5k 60k Dij from labels 0.97 0.91 0.93
5k 60k Supervised Loss 0.98 0.94 0.95
5k 60k ML and CL 0.59 0.76 0.62
48k 12k DML � K-means 0.994 0.980 0.986

4.4.2. A focus on the DML method

DML was utilised to generate dissimilarities prior to clustering with
DEEM. By incorporating 50% of the prior knowledge from the 60k MNIST
training images, DML facilitated the generation of embeddings for any new
input. These embeddings enabled the computation of distances between im-
ages based on learned features, as shown in Figure 10. The �gure illustrates
the separation between the distributions of within-class and between-class
pairwise distances computed from the DML embeddings. From the initial
iteration (left-hand side) to the �nal iteration (right-hand side), the separa-
tion between the between-class and within-class distributions improved by a
factor of 10.

Table 13 (lines 1-2) highlights that K-means achieved excellent perfor-
mance on the DML-generated embeddings, demonstrating the e�ectiveness

30

(a) (b)

Figure 10: Histogram spreading between distances from same and di�erent clusters on
MNIST dataset: (a) 1st iteration and (b) 1,900th iteration of DML. Distributions were
normalised independently for better readability.

of DML in producing meaningful representations. Applying t-SNE for di-
mensionality reduction (from 128 dimensions) prior to K-means or DEEM
clustering (lines 2, 4 and 6) resulted in very close performances with a slight
decrease. These results underscore the strength of DML in creating high-
quality embeddings. Both DEEM and K-means delivered comparable per-
formance in various con�gurations, competitive with the state-of-the-art N2D
method [36].

Table 13: Results for supervised clustering on MNIST

Train Test Method Algo. ACC NMI ARI
48k 12k DML K-means 0.994 0.980 0.986
48k 12k DML � t-SNE K-means 0.993 0.980 0.985
48k 12k DML DEEM 0.992 0.975 0.982
48k 12k DML � t-SNE DEEM 0.985 0.961 0.967
48k 12k DML � K-means DEEM 0.994 0.980 0.986
48k 12k DML � t-SNE � K-means DEEM 0.993 0.980 0.985

4.4.3. Variation of the amount of prior information

One of the key advantages of our method is its ability to incorporate prior
knowledge into the learning process without relying on the complete set of
true class labels. In this section, we evaluate the performance of di�erent
con�gurations based on the amount of prior knowledge. Speci�cally, we
consider the �rst three cases from the previous section for incorporating

31

prior knowledge: �conventional� (Eq. (4)), dissimilarity matrix (referred to
as �Dij prior�), and leveraging ML and CL constraints (Eq. (5), referred to
as �Constraints�). The DML case is addressed in the next section.

For each con�guration, labelled images were randomly sampled
from the training set based on a probability value in the set
{0.005, 0.025, 0.05, 0.01, 0.1, 0.2, 0.3, . . . , 0.9}. The original training/testing
MNIST datasets were reversed to simulate limited data availability and train-
ing on a smaller subset of data. A total of 5k images were randomly drawn
from the original testing set (the same images as in previous tests) and used
for training, while the full training set of 60k images was utilised for perfor-
mance evaluation using ARI, NMI, and ACC.

Dissimilarities were computed from distances obtained after dimension-
ality reduction with t-SNE. Although t-SNE underperforms compared to
UMAP, it was deliberately chosen to establish a clear baseline, thereby high-
lighting the added value of incorporating prior knowledge. Notably, DML
was not used in this study.

The results, shown in Figure 11, indicate that conventional supervision
with the loss Llab consistently achieves the highest performance across all
three evaluation metrics, regardless of the amount of prior knowledge. For
the smallest amount of prior (0.005), the performance reached approximately
[0.719/0.651/0.576], while for the largest amount of prior (0.9), it improved
to [0.953/0.882/0.899]. Among the three methods compared, conventional
supervision outperforms the others, particularly when the proportion of la-
belled data exceeds 10%. This can be attributed to the fact that when a
single dissimilarity δij is supervised or constrained, conventional supervision
e�ectively supervises two images for the same amount of prior knowledge,
thereby doubling the weight of the loss.

However, the overall performance is lower compared to previous results
achieved with DML. For example, as shown in Table 12, with 50% prior
information, a performance drop of approximately 20% is observed.

One potential explanation for this discrepancy is that DEEM relies, in
this case, on a relatively simple CNN (Figure 5). When DML is used, it
leverages a second CNN, which better facilitates the separation of clusters.
To validate this hypothesis, the next study explores a signi�cantly more
complex network architecture, ResNet18.

32

Figure 11: Performances of DEEM for di�erent amount of prior on MNIST dataset using
three supervision modes referred as Conventional (use of labels in Llab), Dij prior (δij
modi�ed as 0 or 1 in Ld) or Constraints (use of ML and CL constraints in Lc). DEEM
was trained on 5k images and tested on 60k images, without DML.

4.4.4. On using deep networks with transfer learning

A ResNet18 model [52], consisting of approximately 11 million parame-
ters and pre-trained on the ImageNet database, was used as the backbone
for DEEM to explore the potential of deep transfer learning [49]. The same
hyperparameters as those used in previous experiments with the custom net-
work (initially consisting of approximately 8,700 parameters) were applied.
The training set (60k images) and testing set (10k images) remained consis-
tent with the original MNIST dataset.

Given the signi�cant time required for convergence, which varies with the
amount of prior knowledge, early stopping was implemented based on the
gradient norm of the model parameters. Speci�cally, training was halted
if the gradient norm fell below 0.05 for �ve consecutive iterations or if
the number of iterations exceeded 500k with a learning rate set to 0.0001.
Performance was evaluated based on the maximum and average ARI val-
ues on the test set (10k images) over the last 30 iterations. As in the
previous section, the amount of prior knowledge was varied across the set
{0.005, 0.025, 0.05, 0.01, 0.1, 0.2, 0.3, . . . , 0.9}.

Labels were randomly selected and used with DML to create true positive

33

and true negative pairs. For each minibatch, an anchor image was drawn. If
the image was labelled, a positive sample was selected from the same class,
while a negative sample was drawn from a di�erent class. For unlabelled
images, the positive sample was the same as the anchor, while the nega-
tive sample was selected randomly. These labels were preserved to ensure
consistent use of the same labelled images in DEEM.

In DEEM, these labels were employed in two distinct ways. The �rst ap-
proach, referred to as �constraints� used conventional supervision by directly
applying class labels. The second approach, termed �Dij prior� leveraged
Must-Link (ML) and Cannot-Link (CL) constraints to determine whether
two images belonged to the same or di�erent classes.

For comparison, K-means clustering was applied to the DML-generated
embeddings from the training data, with performance evaluated on the test
set to assess generalisation. Additionally, COP-K-means was used to inte-
grate pairwise constraints into K-means [63]. Our implementation diverged
slightly from the original paper: we �rst initialised the algorithm using K-
means++ without constraints. Then, during iterations, points that violated
the constraints were reassigned to the nearest cluster in accordance with the
standard K-means procedure.

Figure 12: Variation of performances of DEEM, K-means and COP-K-means for di�erent
amount of prior (with DML) on MNIST dataset.

34

Figure 12 illustrates the results for the �constraints� and �Dij prior�
con�gurations, as well as for K-means with and without constraints. As
expected, performance improved with an increasing proportion of labelled
data. Notably, the �Dij prior� con�guration was slightly better than the
�constraints� one when more than 10% of the training data was labelled
(corresponding to 6k images in this example).

This result di�ers from the test made with the simpler network where the
�constraints� con�guration was better. Pairwise constraints can be easier to
satisfy as they require only information about whether two images belong to
the same or di�erent classes, rather than relying on explicit class labels.

Table 14 presents the results obtained using ResNet18 with di�erent types
and amounts of prior knowledge. For comparison, we have also included some
results from previous sections that were achieved with the simpler CNN. This
table shows that complex con�gurations, including ResNet and DML, lead
to better generalisation with a large margin.

Table 14: Performance of transfer learning from ResNet18.

Arch. Prior qty DML Prior type ARI NMI ACC

Simple 5% No ML & CL 0.812 0.697 0.661
Simple 5% No Conventional 0.849 0.720 0.698

ResNet18 5% No ML & CL 0.692 0.820 0.734
ResNet18 5% No Conventional 0.722 0.842 0.762
ResNet18 5% Yes ML & CL 0.964 0.909 0.923
ResNet18 5% Yes Conventional 0.960 0.906 0.920

Simple 50% No ML & CL 0.592 0.757 0.694
Simple 50% No Conventional 0.932 0.847 0.857

ResNet18 50% No ML & CL 0.733 0.773 0.815
ResNet18 50% No Conventional 0.838 0.922 0.842
ResNet18 50% Yes ML & CL 0.987 0.963 0.972
ResNet18 50% Yes Conventional 0.985 0.958 0.967

Simple 90% No ML & CL 0.593 0.730 0.561
Simple 90% No Conventional 0.953 0.882 0.899

ResNet18 90% No ML & CL 0.772 0.783 0.868
ResNet18 90% No Conventional 0.868 0.938 0.867
ResNet18 90% Yes ML & CL 0.992 0.975 0.981
ResNet18 90% Yes Conventional 0.986 0.967 0.970

35

In conclusion, the results demonstrate that in scenarios with limited su-
pervision, DEEM is particularly e�ective and relevant using transfer learning
based on ResNet, DML and pairwise constraints.

5. Conclusion

DEEM is a novel approach to image clustering through the integration
of belief functions and convolutional neural networks. This combination en-
ables e�cient image processing and robust performance, particularly in the
presence of uncertainty. By encoding uncertainty through belief functions,
DEEM signi�cantly enhances clustering tasks, making it well-suited for han-
dling complex image data.

Our experiments, particularly on the MNIST dataset, demonstrate the
e�ectiveness of DEEM, even in unsupervised settings, due to its innova-
tive dissimilarity processing. The algorithm's �exibility to incorporate prior
knowledge makes it a powerful tool for both supervised and unsupervised
learning scenarios. Furthermore, the robustness of DEEM is evident in its
ability to mitigate errors in the dissimilarity matrix, highlighting the impor-
tance of this component in achieving optimal performance.

The incorporation of Distance Metric Learning (DML) further strength-
ens DEEM's capabilities, particularly when working with partially labelled
datasets. This feature is especially advantageous for real-world applications
where labelled data is often scarce. The algorithm's adaptability to integrate
various forms of prior knowledge, such as must-link and cannot-link con-
straints, underscores its versatility and potential for broader applications.

Looking ahead, DEEM holds promise for applications beyond image clus-
tering, such as semi-supervised learning for acoustic emission scalograms or
spectrograms. Future research could focus on re�ning the network architec-
ture to reduce reliance on dissimilarity matrices and exploring alternative
methods for incorporating soft supervision to enhance generalisation across
diverse datasets.

In conclusion, DEEM o�ers a robust and versatile solution for clustering
under uncertainty, particularly for image data. Its ability to handle large
datasets, manage uncertainty, and integrate prior knowledge positions it as a
valuable tool in domains where data labelling is limited or uncertain, paving
the way for new advancements in clustering and semi-supervised learning.

36

Acknowledgement

This work has been supported by the EIPHI Graduate school (contract
ANR-17-EURE-0002) and the Region Bourgogne-Franche-Comté, with the �-
nancial support of SAFRAN CERAMICS and Ministère des Armées � Agence
de l'innovation de défense (AID).

Datasets and code availability

Datasets and codes are available at https://github.com/

emmanuelramasso/DEEM_Deep_Evidential_Clustering_Images.

References

[1] C. X. Gao, D. Dwyer, Y. Zhu, C. L. Smith, L. Du, K. M. Filia, J. Bayer,
J. M. Menssink, T. Wang, C. Bergmeir, S. Wood, S. M. Cotton, An
overview of clustering methods with guidelines for application in mental
health research, Psychiatry Research 327 (2023) 115265. doi:10.1016/
j.psychres.2023.115265.

[2] A. Decelle, B. Seoane, L. Rosset, Unsupervised hierarchical clustering
using the learning dynamics of restricted boltzmann machines, Phys.
Rev. E 108 (2023) 014110. doi:10.1103/PhysRevE.108.014110.

[3] J. C. Bezdek, Pattern recognition with fuzzy objective function al-
gorithms, Springer Science & Business Media, 2013. doi:10.1007/

978-1-4757-0450-1.

[4] D. E. Gustafson, W. C. Kessel, Fuzzy clustering with a fuzzy covariance
matrix, in: 1978 IEEE Conference on Decision and Control including
the 17th Symposium on Adaptive Processes, 1978, pp. 761�766. doi:

10.1109/CDC.1978.268028.

[5] G. J. McLachlan, S. X. Lee, S. I. Rathnayake, Finite mixture models,
Annual review of statistics and its application 6 (1) (2019) 355�378.
doi:10.1146/annurev-statistics-031017-100325.

[6] R. Krishnapuram, J. M. Keller, The possibilistic c-means algorithm:
insights and recommendations, IEEE transactions on Fuzzy Systems
4 (3) (1996) 385�393.

37

https://github.com/emmanuelramasso/DEEM_Deep_Evidential_Clustering_Images
https://github.com/emmanuelramasso/DEEM_Deep_Evidential_Clustering_Images
https://doi.org/10.1016/j.psychres.2023.115265
https://doi.org/10.1016/j.psychres.2023.115265
https://doi.org/10.1103/PhysRevE.108.014110
https://doi.org/10.1007/978-1-4757-0450-1
https://doi.org/10.1007/978-1-4757-0450-1
https://doi.org/10.1109/CDC.1978.268028
https://doi.org/10.1109/CDC.1978.268028
https://doi.org/10.1146/annurev-statistics-031017-100325

[7] Y. Li, E. Scho�eld, M. Gönen, A tutorial on dirichlet process mixture
modeling, J. Math. Phsychol. 91 (2019) 128�144. doi:10.1016/j.jmp.
2019.04.004.

[8] A. L. Fred, A. K. Jain, Combining multiple clusterings using evidence
accumulation, IEEE Trans. Pattern Anal. Mach. Intell. 27 (6) (2005)
835�850. doi:10.1109/TPAMI.2005.113.

[9] E. Ramasso, V. Placet, M. L. Boubakar, Unsupervised consensus clus-
tering of acoustic emission time-series for robust damage sequence esti-
mation in composites, IEEE Transactions on Instrumentation and Mea-
surement 64 (12) (2015) 3297�3307. doi:10.1109/TIM.2015.2450354.

[10] J. R. Regatti, A. A. Deshmukh, E. Manavoglu, U. Dogan, Consensus
clustering with unsupervised representation learning, in: 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN), 2021, pp. 1�9.
doi:10.1109/IJCNN52387.2021.9533714.

[11] G. Shafer, A mathematical theory of evidence, Vol. 42, Princeton uni-
versity press, 1976. doi:10.2307/j.ctv10vm1qb.

[12] Z. Zhang, Y. Zhang, H. Tian, A. Martin, Z. Liu, W. Ding, A survey of
evidential clustering: De�nitions, methods, and applications, Informa-
tion Fusion (2024) 102736doi:https://doi.org/10.1016/j.inffus.
2024.102736.

[13] T. Den÷ux, O. Kanjanatarakul, Evidential clustering: A review, in:
V.-N. Huynh, M. Inuiguchi, B. Le, B. N. Le, T. Den÷ux (Eds.),
Integrated Uncertainty in Knowledge Modelling and Decision Mak-
ing, Springer International Publishing, Cham, 2016, pp. 24�35. doi:

10.1007/978-3-319-49046-5_3.

[14] M.-H. Masson, T. Den÷ux, ECM: an evidential version of the fuzzy c-
means algorithm, Pattern Recognition 41 (4) (2008) 1384�1397. doi:

10.1016/j.patcog.2007.08.014.

[15] P. Vannoorenberghe, P. Smets, Partially supervised learning by a credal
EM approach, in: Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty: 8th European Conference, ECSQARU 2005,
Barcelona, Spain, July 6-8, 2005. Proceedings 8, Springer, 2005, pp.
956�967. doi:10.1007/11518655_80.

38

https://doi.org/10.1016/j.jmp.2019.04.004
https://doi.org/10.1016/j.jmp.2019.04.004
https://doi.org/10.1109/TPAMI.2005.113
https://doi.org/10.1109/TIM.2015.2450354
https://doi.org/10.1109/IJCNN52387.2021.9533714
https://doi.org/10.2307/j.ctv10vm1qb
https://doi.org/https://doi.org/10.1016/j.inffus.2024.102736
https://doi.org/https://doi.org/10.1016/j.inffus.2024.102736
https://doi.org/10.1007/978-3-319-49046-5_3
https://doi.org/10.1007/978-3-319-49046-5_3
https://doi.org/10.1016/j.patcog.2007.08.014
https://doi.org/10.1016/j.patcog.2007.08.014
https://doi.org/10.1007/11518655_80

[16] L. Jiao, T. Den÷ux, Z.-G. Liu, Q. Pan, EGMM: an evidential version
of the gaussian mixture model for clustering, Applied Soft Computing
129 (2022) 109619. doi:10.1016/j.asoc.2022.109619.

[17] E. Ramasso, Inference and learning in evidential discrete latent markov
models, IEEE Transactions on Fuzzy Systems 25 (5) (2016) 1102�1114.
doi:10.1109/TFUZZ.2016.2598361.

[18] Z.-G. Su, T. Den÷ux, BPEC: belief-peaks evidential clustering, IEEE
Transactions on Fuzzy Systems 27 (1) (2019) 111�123. doi:10.1109/

TFUZZ.2018.2869125.

[19] T. Den÷ux, Calibrated model-based evidential clustering using boot-
strapping, Information Sciences 528 (2020) 17�45. doi:10.1016/j.ins.
2020.04.014.

[20] T. Den÷ux, evclust: An R Package for Evidential Clustering, Université
de technologie de Compiègne, available at https://cran.r-project.
org/web/packages/evclust/index.html (2023).

[21] T. Den÷ux, M.-H. Masson, EVCLUS: evidential clustering of proximity
data, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 34 (1) (2004) 95�109.

[22] V. Antoine, B. Quost, M.-H. Masson, T. Den÷ux, CEVCLUS: eviden-
tial clustering with instance-level constraints for relational data, Soft
Computing 18 (2014) 1321�1335.

[23] F. Li, S. Li, T. Den÷ux, k-CEVCLUS: Constrained evidential clustering
of large dissimilarity data, Knowledge-Based Systems 142 (2018) 29�44.
doi:10.1016/j.knosys.2017.11.023.

[24] T. Den÷ux, NN-EVCLUS: Neural network-based evidential clustering,
Information Sciences 572 (2021) 297�330. doi:10.1016/j.ins.2021.

05.011.

[25] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data
with neural networks, in: Proceedings of the 2006 IEEE Symposium on
Foundations of Computer Science (FOCS'06), IEEE, 2006, pp. 363�369.
doi:10.1126/science.1127647.

39

https://doi.org/10.1016/j.asoc.2022.109619
https://doi.org/10.1109/TFUZZ.2016.2598361
https://doi.org/10.1109/TFUZZ.2018.2869125
https://doi.org/10.1109/TFUZZ.2018.2869125
https://doi.org/10.1016/j.ins.2020.04.014
https://doi.org/10.1016/j.ins.2020.04.014
https://cran.r-project.org/web/packages/evclust/index.html
https://cran.r-project.org/web/packages/evclust/index.html
https://doi.org/10.1016/j.knosys.2017.11.023
https://doi.org/10.1016/j.ins.2021.05.011
https://doi.org/10.1016/j.ins.2021.05.011
https://doi.org/10.1126/science.1127647

[26] D. P. Kingma, M. Welling, Auto-encoding variational bayes, in: Interna-
tional Conference on Learning Representations (ICLR), Ban�, Canada,
2014. doi:10.48550/arXiv.1312.6114.

[27] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, A. Lerchner, beta-vae: Learning basic visual concepts with
a constrained variational framework, in: International Conference on
Learning Representations, 2022.

[28] D. P. Kingma, M. Welling, An introduction to variational autoencoders,
Foundations and Trends in Machine Learning 12 (4) (2019) 307�392.
doi:10.1561/2200000056.

[29] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, Signature
veri�cation using a "siamese" time delay neural network, Advances
in neural information processing systems 6 (1993). doi:10.1142/

S0218001493000339.

[30] F. Schro�, D. Kalenichenko, J. Philbin, Facenet: A uni�ed embedding
for face recognition and clustering, in: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
815�823. doi:10.48550/arXiv.1503.03832.

[31] J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for
clustering analysis, in: International conference on machine learning,
PMLR, 2016, pp. 478�487. doi:10.48550/arXiv.1511.06335.

[32] X. Guo, X. Liu, E. Zhu, J. Yin, Deep clustering with convolutional
autoencoders, in: Neural Information Processing: 24th International
Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017,
Proceedings, Part II 24, Springer, 2017, pp. 373�382. doi:10.1007/

978-3-319-70096-0_39.

[33] Y. Ren, J. Pu, Z. Yang, J. Xu, G. Li, X. Pu, S. Y. Philip, L. He,
Deep clustering: A comprehensive survey, IEEE Transactions on Neural
Networks and Learning Systems (2024) 1�21.

[34] L. Van der Maaten, G. Hinton, Visualizing data using t-sne., Journal of
machine learning research 9 (11) (2008).

40

https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1561/2200000056
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.48550/arXiv.1503.03832
https://doi.org/10.48550/arXiv.1511.06335
https://doi.org/10.1007/978-3-319-70096-0_39
https://doi.org/10.1007/978-3-319-70096-0_39

[35] L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold ap-
proximation and projection for dimension reduction, arXiv preprint
arXiv:1802.03426 (2018).

[36] R. McConville, R. Santos-Rodriguez, R. J. Piechocki, I. Craddock,
N2d:(not too) deep clustering via clustering the local manifold of an
autoencoded embedding, in: 2020 25th international conference on pat-
tern recognition (ICPR), IEEE, 2021, pp. 5145�5152. doi:10.1109/

ICPR48806.2021.9413131.

[37] X. Yang, C. Deng, F. Zheng, J. Yan, W. Liu, Deep spectral cluster-
ing using dual autoencoder network, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 4066�4075. doi:10.1109/CVPR.2019.00419.

[38] S. A�eldt, L. Labiod, M. Nadif, Spectral clustering via ensemble deep au-
toencoder learning (SC-EDAE), Pattern Recognition 108 (2020) 107522.
doi:10.1016/j.patcog.2020.107522.

[39] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for
contrastive learning of visual representations, in: Proceedings of the 37th
International Conference on Machine Learning, ICML'20, JMLR.org,
2020, pp. 1597�1607. doi:10.48550/arXiv.2002.05709.

[40] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond,
E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar,
et al., Bootstrap your own latent-a new approach to self-supervised
learning, Advances in neural information processing systems 33 (2020)
21271�21284. doi:10.48550/arXiv.2006.07733.

[41] L. Guiziou, E. Ramasso, S. Thibaud, S. Denneulin, Deep evidential
clustering of images, in: International Conference on Belief Functions,
Springer, 2024, pp. 3�12. doi:10.1007/978-3-031-67977-3_1.

[42] J. L. Suárez, S. García, F. Herrera, A tutorial on distance metric
learning: Mathematical foundations, algorithms, experimental anal-
ysis, prospects and challenges, Neurocomputing 425 (2021) 300�322.
doi:10.1016/j.neucom.2020.08.017.

41

https://doi.org/10.1109/ICPR48806.2021.9413131
https://doi.org/10.1109/ICPR48806.2021.9413131
https://doi.org/10.1109/CVPR.2019.00419
https://doi.org/10.1016/j.patcog.2020.107522
https://doi.org/10.48550/arXiv.2002.05709
https://doi.org/10.48550/arXiv.2006.07733
https://doi.org/10.1007/978-3-031-67977-3_1
https://doi.org/10.1016/j.neucom.2020.08.017

[43] K. Sentz, S. Ferson, Combination of evidence in dempster-shafer theory,
Tech. Rep. SAND2002-0835, 800792, Sandia National Lab. (SNL-NM &
SNL-CA) and US Department of Energy (2002). doi:10.2172/800792.

[44] P. Smets, R. Kennes, The transferable belief model, Arti�cial Intelli-
gence 66 (2) (1994) 191�234. doi:10.1016/0004-3702(94)90026-4.

[45] F. Pichon, Belief functions: canonical decompositions and combination
rules, Ph.D. thesis, University of Technology of Compiègne, Compiègne,
France (March 2009).

[46] A. Ayoun, P. Smets, Data association in multi-target detection using the
transferable belief model, International Journal of Intelligent Systems
16 (10) (2001) 1167�1182. doi:10.1002/int.1054.

[47] E. Ramasso, Contribution of belief functions to hidden markov mod-
els with an application to fault diagnosis, in: 2009 IEEE International
Workshop on Machine Learning for Signal Processing, IEEE, 2009, pp.
1�6. doi:10.1109/MLSP.2009.5306209.

[48] I. Borg, P. Groenen, I. Borg, P. Groenen, The four purposes of mul-
tidimensional scaling, Modern Multidimensional Scaling: Theory and
Applications (1997) 3�14.

[49] L. Jiao, F. Wang, Z.-G. Liu, Q. Pan, TDEC: evidential clustering based
on transfer learning and deep autoencoder, IEEE Trans. Fuzzy Syst.
32 (10) (2024) 5585�5597. doi:https://doi.org/10.1109/TFUZZ.

2024.3421564.

[50] T. Den÷ux, S. Sriboonchitta, O. Kanjanatarakul, Evidential clustering
of large dissimilarity data, Knowledge-Based Systems 106 (2016) 179�
195.

[51] M. Bartholomew-Biggs, S. Brown, B. Christianson, L. Dixon, Automatic
di�erentiation of algorithms, Journal of Computational and Applied
Mathematics 124 (1) (2000) 171�190. doi:10.1016/S0377-0427(00)

00422-2.

[52] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: Proceedings of the IEEE conference on computer vision and

42

https://doi.org/10.2172/800792
https://doi.org/10.1016/0004-3702(94)90026-4
https://doi.org/10.1002/int.1054
https://doi.org/10.1109/MLSP.2009.5306209
https://doi.org/https://doi.org/10.1109/TFUZZ.2024.3421564
https://doi.org/https://doi.org/10.1109/TFUZZ.2024.3421564
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1016/S0377-0427(00)00422-2

pattern recognition, 2016, pp. 770�778. doi:10.48550/arXiv.1512.

03385.

[53] V. Antoine, B. Quost, M.-H. Masson, T. Den÷ux, CECM: constrained
evidential c-means algorithm, Computational Statistics & Data Analysis
56 (4) (2012) 894�914. doi:10.1016/j.csda.2010.09.021.

[54] D. Kingma, J. Ba, Adam: A method for stochastic optimization, in: In-
ternational Conference on Learning Representations (ICLR), San Diega,
CA, USA, 2015. doi:10.48550/arXiv.1412.6980.

[55] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality
assessment: From error visibility to structural similarity, IEEE Trans-
actions on Image Processing 13 (4) (2004) 600�612. doi:10.1109/TIP.
2003.819861.

[56] D. G. Lowe, Object recognition from local scale-invariant features, in:
Proceedings of the seventh IEEE international conference on computer
vision, Vol. 2, Ieee, 1999, pp. 1150�1157.

[57] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features
(surf), Computer vision and image understanding 110 (3) (2008) 346�
359.

[58] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, Orb: An e�cient al-
ternative to sift or surf, in: 2011 International conference on computer
vision, Ieee, 2011, pp. 2564�2571.

[59] A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person
re-identi�cation, arXiv preprint arXiv:1703.07737 (2017).

[60] M. Allaoui, Considerably improving clustering algorithms using umap
dimensionality reduction technique: A comparative study., in: Image
and Signal Processing: 9th International Conference, ICISP, 2020, pp.
317�325. doi:10.1007/978-3-030-51935-3_34.

[61] J. Masci, U. Meier, D. Cire³an, J. Schmidhuber, Stacked convolutional
auto-encoders for hierarchical feature extraction, in: Arti�cial Neu-
ral Networks and Machine Learning�ICANN 2011: 21st International

43

https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1016/j.csda.2010.09.021
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1007/978-3-030-51935-3_34

Conference on Arti�cial Neural Networks, Espoo, Finland, June 14-
17, 2011, Proceedings, Part I 21, Springer, 2011, pp. 52�59. doi:

10.1007/978-3-642-21735-7_7.

[62] F. Li, H. Qiao, B. Zhang, Discriminatively boosted image clustering
with fully convolutional auto-encoders, Pattern Recognition 83 (2018)
161�173. doi:10.1016/j.patcog.2018.05.019.

[63] K. Wagsta�, C. Cardie, S. Rogers, S. Schrödl, et al., Constrained k-
means clustering with background knowledge, in: Icml, Vol. 1, 2001,
pp. 577�584.

44

https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1016/j.patcog.2018.05.019

Appendix A. Criteria

Appendix A.1. Adjusted rand index

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
where:

� nij is the number of elements in both cluster i and true class j,

� ai is the number of elements in cluster i,

� bj is the number of elements in true class j,

� n is the total number of elements, and

�

(
x
2

)
is the binomial coe�cient.

Appendix A.2. Accuracy

ACC =
1

n

n∑
i=1

1{yi = map(ci)}

where:

� n is the total number of data points,

� yi is the true label,

� ci is the predicted label,

� 1{·} is the indicator function, and

� map(ci) is the mapping of cluster ci to the true class yi.

45

Appendix A.3. Normalised mutual information

NMI(Y,C) =
2 · I(Y ;C)

H(Y) +H(C)

where:

� I(Y ;C) is the mutual information between the true labels Y and the
predicted clusters C,

� H(Y) and H(C) are the entropies of the true labels and clusters, re-
spectively.

The mutual information I(Y ;C) is given by:

I(Y ;C) =
k∑

i=1

l∑
j=1

p(yi, cj) log
p(yi, cj)

p(yi)p(cj)

Appendix B. Default parameters

Table B.15: Default parameters of t-SNE.

Algorithm barneshut
CacheSize 1,000
Distance euclidean

Exaggeration 4
NumPCAComponents 0

Perplexity 30
Standardize false
InitialY 10−4 ∗ randn(N,NumDimensions)

LearnRate 500
NumPrint 20

Theta � Barnes-Hut tradeo� parameter 0.5
Verbose 0

46

Table B.16: Default parameters of UMAP (1st part).

n_neighbors 15
n_components 2

metric euclidean
metric_kwds None
output_metric euclidean

output_metric_kwds None
n_epochs None

learning_rate 1
init spectral

min_dist 0.1
spread 1

low_memory True
n_jobs -1

set_op_mix_ratio 1
local_connectivity 1
repulsion_strength 1

negative_sample_rate 5
transform_queue_size 4

a None
b None

random_state None
angular_rp_forest False
target_n_neighbors -1

target_metric categorical
target_metric_kwds None

target_weight 0.5
transform_seed 42
transform_mode embedding

force_approximation_algorithm False
verbose False

tqdm_kwds None
unique False
densmap False

dens_lambda 2
dens_frac 0.3

47

Table B.17: Default parameters of UMAP (2nd part).

dens_var_shift 0.1
output_dens False

disconnection_distance None
precomputed_knn (None, None, None)

48

	Introduction
	NN-EVCLUS
	Theory of belief functions background
	Evidential clustering
	NN-EVCLUS for feature vector clustering

	DEEM for image clustering
	Advantages of DEEM
	DEEM algorithm
	How to generate relevant pairwise distances?
	Unsupervised approaches for determining dissimilarities
	Supervised approaches for determining dissimilarities

	Experiments
	Experimental settings
	Preliminary results
	Unsupervised case
	Pairwise dissimilarity
	Performance of unsupervised methods
	Benchmark

	Supervised case
	Four supervision methods
	A focus on the DML method
	Variation of the amount of prior information
	On using deep networks with transfer learning

	Conclusion
	Criteria
	Adjusted rand index
	Accuracy
	Normalised mutual information

	Default parameters

