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Abstract

A triaxial accelerometer has been developed to measure and determine the
uncertainty associated with unknown vibrations disturbing a small force metrol-
ogy experiment. However, methodological shortcomings remain regarding the
calculation of uncertainty for dynamic measurements. Therefore, this paper pro-
poses an alternative framework to estimate the uncertainty of specific dynamic
quantities of interest with a nonlinear and uncertain measuring system. The
novelty of the proposed methodology lies in the use of an accurate and equiv-
alent representation of the physical system based on a linear model, combined
with an additive virtual input describing all the unknown unmodeled dynamics.
Measurement models are defined considering measurement biases, and uncer-
tainty is calculated using interval analysis tools. Such tools allow determining
the feasible values of the quantities of interest to be estimated. The innova-
tive aspects of the proposed approach are fully illustrated in simulation on the
triaxial accelerometer, comparing linear and nonlinear measurement models in
passive mode.
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1 Introduction
Nowadays, measurement of small forces is encountered in a large panel of scientific
applications, such as the design of micro-thruster for miniaturized spacecraft [1],
the characterization of the mechanical properties of micro-electromechanical systems
(MEMS) by nanoindentation [2] or the study with atomic force microscopes (AFMs)
of biological material like DNA [3]. The range of forces involved in these fields extends
from approximately one newton (N) to a few piconewton (pN). However, the mea-
suring instruments used do not benefit from an appropriate calibration procedure, as
there are no small force standards at these scales. Indeed, National Metrology In-
stitutes (NMIs) are not able to officially guarantee the traceability of measurements
below 0.1 N at the international level1, according to the database (KCDB) of their
mutual recognition agreement. Therefore, NMIs and research laboratories put a lot
of efforts in the development of reference standards [4, 5, 6], such as electrostatic
force balances [7, 8], and transfer artifacts [9, 10, 11] to tackle this issue and to give
credibility to the scientific activities concerned.

In this context, an electromagnetic microforce balance traceable to the Interna-
tional System of Units (SI) is being developed based on an existing force generator
[12], for potential use as a force reference standard. This device operates inside a
vacuum chamber placed on a table equipped with a vibration isolation system. Nev-
ertheless, seismic activity is not fully filtered resulting in unknown inertial forces that
disturb the dynamics of the microforce balance, which has a bandwidth of a few hertz.
Instead of considering them as an unknown random noise, this residual low-frequency
signal needs to be measured. Indeed, the magnitude of these inertial forces is sig-
nificant at this scale and can no longer be neglected when studying the dynamics
of the small force balance. On top of that, this vibratory regime is not necessarily
steady, and might present significant transients in practice if experimental conditions
are poorly controlled. A highly sensitive reference system is therefore required along-
side the force balance to provide an accurate estimate of the disturbing inertial forces
[13, 14], and measurement uncertainty. The internal mechanisms - such as mechan-
ical structure, signal conditioning, systematic and random error compensation - of
an accelerometer purchased directly on the market would not necessarily be known.
A laboratory trixial accelerometer, simple at first sight, has therefore been expressly
designed to meet the specifications imposed by the force balance. This development
motivated in-depth research into how the uncertainty of inertial force measurements
can be efficiently estimated with this device.

As regards uncertainty calculation, scientists generally refer to the official guide-
lines written in the Guide to the expression of Uncertainty in Measurement (GUM)
[15] and its supplements [16, 17, 18]. However, inconsistencies have been highlighted
by the scientific community. The committee in charge of this guide has recognized
that the Bayesian approach introduced in the supplements is more appropriate to cal-

1Taken from the official BIPM website : https://www.bipm.org/kcdb
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culate uncertainty than the frequentist approach initially used in the GUM. There-
fore, a complete revision is considered based on the Bayesian inference [19]. The
GUM also presents methodological shortcomings as regards uncertainty calculation
for time-dependent quantities measured with dynamical systems. Guidelines for such
dynamic measurements have been introduced in the latest supplement, but only linear
and time-invariant (LTI) measuring systems are considered. In this case, the response
of the system should be modeled in order to determine its input quantities based on
its transfer function in the frequency domain, or using a digital deconvolution filter
in the time domain. Uncertainty is then calculated using the Law of Propagation of
Uncertainty (LPU) or Monte Carlo methods. However, the generalization of this pro-
cedure to a large number of systems faces challenges that still need to be resolved to
further improve the metrology related to dynamic measurements [20]. A closer look
at different disciplines, where the case of dynamical systems is more common, such
as signal processing and automation, is suggested [21]. In Automation, state-space
representations are often used to describe dynamical systems as a function of state
variables. These variables correspond to specific quantities used to model the system
behavior in response to given inputs. Usually, observers are implemented to estimate
in real-time their evolution, based on the input-output signals of the system and a
model of it. Since the first linear observers designed by Kalman for stochastic systems
[22] and by Luenberger for deterministic systems [23], many developments have been
made to handle several classes of nonlinear dynamical systems [24, 25, 26, 27, 28].
Initially intended for robust control purposes, observer structures of interest for un-
certain systems have also emerged for estimating unmodeled dynamics and external
disturbances, which more generally refer to unknown inputs [29, 30, 31]. The cited
articles are not exhaustive and represent only a small part of the huge amount of
work carried out in this field.

The above-mentioned accelerometer consists of three separate single-axis accelerom-
eters oriented orthogonally in space. Each accelerometer corresponds actually to a
dynamical single-input single-output (SISO) system exposed to external disturbances,
including the unknown residual vibrations. Recently, an exact manner of representing
the true behavior of a specific class of dynamical SISO systems despite the presence
of multiple unknown inputs, has been developed [32]. All the unknown inputs are
lumped together on the control input channel of the system, in a quantity called
virtual input which is estimated by an Extended State Observer (ESO) [33]. This
concept of equivalent modeling is in line with existing approaches [34, 35] that seek
robust control laws for disturbed dynamical systems based on their input and output
signals, rather than on mathematical models. This paradigm provides an interesting
basis for estimating the unknown vibrations with the triaxial accelerometer. Indeed,
the exact behavior of the system would be accurately reproduced, and all unmod-
eled dynamics and external disturbances, such as residual vibrations to be estimated,
would be included in the virtual input. However, there is no connection between
the approach described in [32] and uncertainty calculation, which makes it of little
interest for metrological applications. This paper is therefore a proposal aimed at
filling this gap, and extending the scope of the equivalent representation concept to
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the metrology of nonlinear dynamical systems.

The article is structured as follows. Section 2 is devoted to presenting the the-
oretical framework of the proposed approach. Section 2.1 presents the theorem of
equivalent representation based on the notion of virtual input. On this basis, Section
2.2 develops the problem of virtual input shaping. The observation of the virtual input
and the determination of its proper uncertainty are developed in Section 2.3. Section
2.4 introduces the calculation of uncertainty intervals associated to the quantities of
interest using interval analysis. These four steps are illustrated by simulations on the
triaxial accelerometer in Section 3. The complete system is simulated in passive mode
with parametric uncertainties, in response to different excitation signals to compare
linear and nonlinear measurement models. The limitations and outlooks of this work
are presented in Section 4.

2 Presentation of the methodology
The methodology developed in this part is schematized in Fig. 1 and is summarized
to give an overview. The quantities of interest to be estimated are denoted by Q on
the left side of the figure. They are part of the external disturbances d that affect
the behavior of the nonlinear system (S) located in the red overlay. These quantities
of interest cannot be measured directly and must therefore be deduced from knowl-
edge of (S) using a linear model (M), but also from the remaining disturbances in
d. The effective input-output signals u and y of (S) may differ respectively from
the numerical values uc and ym due to potential imperfections in the actuation and
measurement chains, such as electronic noise or conversion error. The uncertainty
associated is therefore taken into account in the calculation by considering intervals
[uc] and [ym]. Similarly, uncertainty intervals can be introduced for uncertain param-
eters involved in the modeling of system (S). The disturbances remaining in d that
can be measured are called measurement biases, to be consistent with the vocabulary
of metrology, and are denoted by D. The interval [Dm] corresponds to measurements
with a given uncertainty of these experimental biases. Therefore, the model (M), the
quantities [uc], [ym], [Dm] and the uncertain parameters constitute the inputs for the
computation stages of the process in the green and yellow overlays. The following
sections describe each stage of this methodology in detail.

2.1 Step one: Equivalent representation of uncertain systems

The specific class of systems considered in [32] to introduce the equivalent state-space
representation is composed of time-varying nonlinear SISO systems, whose input-
output dynamics is described by Ordinary Differential Equations (ODEs) of order
n > 0, involving the n− 1 successive derivatives of the output y. However, this kind
of external representation does not take into account potential internal variables.
This is why the aforementioned approach is here extended to a more generic state-
space framework to deal with internal representation. Consider (S), a disturbed and
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Figure 1: Schematic illustration of the proposed methodology.

possibly time-varying nonlinear SISO system whose dynamics is fully described by
the following n-order state-space representation:

(S) :
{
Ẋ = f(X , u, d, t),

y = g(X , u, d, t)
(1)

with

• X ∈ Rn the system state vector;

• u ∈ R the controlled input of the system that is provided by the controller;

• d ∈ Rδ the multidimensional continuous disturbance inputs that affect the sys-
tem in any way;

• f and g the time-varying state evolution and output observation functions;

• y ∈ R the output of the system.

The existence of f , g, X , u, d, y, δ and n is assumed for the remainder of this study.
In this article, the true dynamics of (S) is therefore supposed to be accurately repre-
sented by the state-space representation (1).

Let (M) be an approximate model of (S) defined by the following linear state-
space representation:

(M) :

{
Ẋm = AXm +Bu,

ym = CXm

(2)

in which
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• Xm ∈ Rp is a state vector of order p > 0, with no constraint on the value of p,
made of fixed state components that are the modeled output ym and its p − 1
successive derivatives:

Xm =
[
ym ẏm . . . y

(p−1)
m

]T
∈ Rp; (3)

The subscripts m indicate that these time-varying quantities are modeled quan-
tities.

• A, B, C are respectively the state, input and output companion matrices of
(M) defined by p coefficients ai arbitrarily chosen, and a coefficient b ̸= 0 such
as:

A =


0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . .
0 0 0 . . . 0 1

−a0 . . . − ap−1

 , B =


0
0
...
0
b

 ,

C =
[
1 0 . . . 0

]
.

(4)

The pair (A,C) is observable.

On this basis, an equivalent representation of the input-output dynamic of (S) can
be obtained thanks to the following theorem.

Theorem 1 (Equivalent representation) For any given nonlinear system (S) de-
fined by Equation (1) with y(0), . . . , y(p−1)(0) as initial conditions on its output, and
for any given linear model (M) defined by (2) with Xm(0) =

[
y(0) . . . y(p−1)(0)

]T ,
it exists a virtual input I(t) such that the nonlinear input-output dynamics of the
couple (u(t), y(t)) can be equivalently represented by the following linear state-space
equations:

(S) ⇔
{
Ẋ = AX +B(u+ I),
y = CX

(5)

with A, B, C the state, input and output matrices of (M), and X ∈ Rp a state vector
having the following components:

X =
[
y ẏ . . . y(p−1)

]T ∈ Rp. (6)

This theorem is proved in A, which expresses how I is causally defined. This additive
input term is a mathematical construction that is homogeneous to the input control
u of the system (S) and induces the dynamic of its output y based on the structure
of (M). If the model (M) is perfectly accurate, the virtual input I will be null.
Otherwise, its absolute value will be modified so that (M) corresponds exactly to
the real output of (S), taking into account the effects of modeling errors and exter-
nal disturbances. Therefore, the virtual input I associated to (M) is a time-valued
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function which represents the discrepancy between the dynamics of the model (M)
and the system (S). This first modeling stage corresponds to the red overlay in Fig. 1.

To illustrate this, let X =
[
x1 x2 x3

]T ∈ R3 be the state vector of a nonlin-
ear system (S) whose output dynamic y is simulated in MATLAB Simulink by the
following equations:

(S) :


ẋ1 = −x1 − ex2 sin (x3)− x2

√
|u+ d|,

ẋ2 = −x2e
x1 − sinh (u+ d),

ẋ3 = −2 tanx1 + x2x3 + (u+ d)2,

y = x1x2x3.

(7)

with d an environmental phenomenon assumed to affect u under the form of an
additive sinusoidal disturbance defined by d = 0.1 exp−0.1t sin (0.2πt). The theoretical
input u of (S) is a sequence of two opposite step inputs occurring at 2s and 16s
respectively, as shown in Fig. 2. The linear model (M) is assumed to be a first order
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Figure 2: Comparison between theoretical input u and the effective input of (S)
considering d.

model whose state vector is Xm ∈ R. The following state-space representation defines
its behavior:

(M) :

{
Ẋm = −Xm + 0.8u,

ym = Xm.
(8)

As required by Theorem 1, the system (S) and the model (M) have the same initial
conditions on their output (y = ym = 0), and are both fed by the theoretical input
u. Fig. 3a illustrates the dynamics of y and ym. Since (M) is clearly different from
the nonlinear system (S) and does not take the external disturbance into account,
the discrepancy is large. Nevertheless, based on Theorem 1, the approximate model
(M) can be corrected to match (S) by adding the virtual input I plotted in Fig. 3b,
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Figure 3: (a) Comparison between nonlinear system (S) dynamics and outputs of the
identified and equivalent models. (b) Plot of the associated virtual input I.

to the step input u. The dashed curve in Fig. 3a represents the equivalent model of
the nonlinear system (S) given by the following state-space representation:

(S) ⇔
{
Ẋ = −X + 0.8(u+ I),
y = X

(9)

In this short example, the input u and the output y of (S) are directly available in the
Simulink model. The first derivative ẏ is computed using the analytical expression
ẋ1x2x3+x1ẋ2x3+x1x2ẋ3 determined from Equation (7). The theoretical virtual input
required to correct the behavior of (M) is deduced from Equation (9), which gives:

I =
1

0.8

[
ẋ1x2x3 + x1ẋ2x3 + x1x2ẋ3 + y − 0.8u

]
. (10)

The previous equation illustrates that the value of I is causally linked to the input-
output behavior of (S) given by u, y, its internal states x1, x2, x3 and their derivatives.

2.2 Step two: Virtual input shaping

As a reminder, the objective is to estimate the quantities in Q amongst all the distur-
bances d ∈ Rδ that affect the system (S). The uncertainty associated to this estimate
must also be determined. As the equation for the nonlinear dynamics of (S) is not
well known, its equivalent model is thus considered since both have the same input-
output behavior. The discrepancy between the behavior of the linear model (M) and
(S) corresponds to the virtual input I, which includes all dynamics not described by
(M). This means that the virtual input I must be shaped, or structured, in order to
distinguish the information of interest. All the quantities of interest which constitute
the relevant information to be estimated, are present in the vector Q:

Q(t) =
[
q1 . . . qλ

]T ∈ Rλ. (11)
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The disturbing phenomena present in d, that are different from Q and that can be
quantified by measurements, are called measurement biases and are inventoried in
the vector D:

D(t) =
[
d1 . . . dν

]T ∈ Rν . (12)

The dimension of the vectors Q and D necessarily satisfies λ+ ν ≤ δ. The quantities
gathered in these two vectors corresponds to physical phenomena that change the
dynamical behavior of (S). According to its definition (3), the model (M) does not
consider the input disturbances d. Thus, the dynamics associated with Q and D are
necessarily included in the virtual input I. A measurement model must be introduced
to describe the dynamics of the quantities of interest and the measurement biases in
I, so that they become an input additive to the physical input u of (M). The
modeled dynamics of the virtual input is described by introducing a shaping model
h : Rλ × Rν → R that verifies:

I(t) = h(Q(t), D(t)) + ε(t). (13)

Indeed, h is an incomplete representation of the physics whereas I corresponds to
the actual discrepancy between the dynamics of the model (M) and the system (S).
This means that h is an approximation of I and that according to the theorem of
equivalent representation, a Residual Shaping Error (RSE) noted ε remains. Thus,
the better the consistency of the shaping model h used, the smaller the absolute value
of the RSE. This step corresponds to the blue overlay in Fig. 1.

2.3 Step three: Estimation of the virtual input

In Fig. 1, the uncertain nonlinear system (S) and its equivalent representation (5)
are both represented in the red overlay. According to the principle of equivalent rep-
resentation, the quantities that can be used to estimate the virtual input I with an
observer are the matrices of the linear model (M), and the input-output signals u
and y of the system (S). Since the model (M) is chosen, its matrices A, B and C
are known and thus certain. However, the signals u and y are unknown, so only the
available values uc and ym can be used. Consequently, the uncertainty associated
with the estimate of the virtual input solely comes from the values of uc and ym when
they are not strictly equal to u and y. Indeed, these differences represent a source of
uncertainty which is due to drift phenomena, electronic noise or D/A and A/D con-
version errors, and which will then deteriorate the estimation of I. If this uncertainty
is assumed to be unknown-but-bounded, intervals [uc] and [ym] in which the actual
values of u and y are expected, can be defined. Otherwise, random variables and
probability density functions can be introduced to account for the uncertainty associ-
ated with uc and ym if a probabilistic approach is appropriate. Whatever approach is
chosen, calibrated instruments must be used to determine the uncertainty of the ob-
server inputs, in order to guarantee the metrological traceability of the experiment.
The methodology proposed here refers to existing observation techniques, without
presenting any innovation in this field. Therefore, any linear observer able to provide
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an interval [Î] that verifies I ∈ [Î] on the basis of [uc], [ym] and a linear model sim-
ilar to (M), is a potential candidate. This first calculation stage corresponds to the
green overlay in Fig. 1. In the literature, interval observers [36], set-valued observers
[37], and set membership estimators [38] are classical approaches potentially usable if
uncertainty is assumed to be unknown-but-bounded. Otherwise, when uncertainties
are represented by probabilistic distributions, a Bayesian statistical inference can be
used inside the observer to propagate each uncertainty onto the system state that
must include the virtual input as a state component [39].

2.4 Step four: Uncertainty propagation

The proposed approach aims to define intervals for the quantities of interest q1, . . . , qλ
present in Q, based on the shaping model h, an estimated interval [Î] and the measure-
ment biases gathered in D. The biases can be measured directly on the experimental
device with a metrological quality that enables an uncertainty interval [Dm] to be
defined. Table 1 summarizes the notations introduced for this methodology and the
corresponding meanings. Using (13), the objective is represented conceptually by
finding estimated intervals [Q̂] based on [Î] and [Dm] such that h([Q̂], [Dm]) ≡ [Î].
This second calculation stage is represented by the yellow overlay in Fig. 1. The RSE
ε is necessarily neglected for calculation purposes, as it is unknown in practice. This
problem is similar to an inverse problem, extended in the following to the framework
of interval analysis where efficient solving tools are available.

Quantity Signification

Q Multidimensional vector gathering the quantities of interest

[Q̂]
Symbolic notation representing the uncertainty

associated with the estimated quantities of interest Q̂

D Multidimensional vector gathering the known measurement biases

[Dm] Uncertainty associated with the measured value Dm of D

[uc] Uncertainty associated with the known numerical command uc

[ym] Uncertainty associated with the measured output ym

[Î] Uncertainty associated with the estimated virtual input Î

ε Unknown residual shaping error (RSE) of the virtual input I

Table 1: Summary of the notations used in the proposed methodology.
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2.4.1 Interval analysis : useful concepts

This section provides some basic elements of interval analysis useful for the under-
standing of this article. More information can be found for instance in [40, 41]. An
interval [x] is a closed and connected subset of R:

[x] = [x, x] = {x ∈ R | x ≤ x ≤ x}. (14)

The real numbers x and x are respectively the lower and upper bounds of [x]. The
width w of an interval [x] is defined by w([x]) = x − x. The set of real intervals is
denoted by IR. An interval vector of IRn, also called a box, is the Cartesian product
of n intervals of IR:

[x] = [x1, x1]× . . .× [xn, xn] = [x1]× . . .× [xn]. (15)

As for intervals, the lower and upper bounds of a box can be defined as x = (x1, . . . , xn)
T

and x = (x1, . . . , xn)
T . The width w([x]) of a [x] box is equal to the width of its widest

component. Arithmetic operations ◦ ∈ {+,−, . , /} between real numbers have been
extended to intervals:

[x] ◦ [y] = {x ◦ y | x ∈ [x], y ∈ [y]}. (16)

Their specific calculation is done according to the form given in [40].

Let f, be a function from Rp to Rq. The image set of f can be enclosed by a box in
a guaranteed way. Therefore, the set-valued function [f] : IRp → IRq is an inclusion
function of f if it ensures:

∀ [x] ∈ IRp, f([x]) ⊂ [f]([x]). (17)

It is important to note f is a vector-valued function whose domain is Rp, but when
applied to intervals, f([x]) refers to the image of [x] by f in a set sense. According
to the previous definition, a given function f can have several inclusion functions. If
the expression of f is explicitly known, replacing all occurrences of the input variables
by their corresponding intervals, and all elementary operators and functions by their
interval extensions, is an easy, but not necessarily optimal, way to find an inclusion
function. The resulting interval function is said to be the natural inclusion function
of f.

2.4.2 Set inversion problem

To determine [Q̂], the proposed method propagates the uncertainty associated to Î,
computed at each discrete k-th time instant through the shaping model h. An interval
is assigned to each component of D, which takes into account at least the noise of the
sensors used to estimate them. The bias vector D is therefore replaced by the box
[dm

k ]:
[dm

k ] = [dm1,k]× . . .× [dmν,k] ∈ IRν (18)
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which includes the feasible values of the measurement biases. If the physical param-
eters involved in the shaping model h are uncertain, intervals can also be introduced
and assigned to them. From a set-membership viewpoint, this inversion problem con-
sists in characterizing in a guaranteed way, the solution set Sk defined for a given
[dm

k ] by:
Sk =

{
Q ∈ Rλ | ∃ d ∈ [dm

k ], h(Q,d) ∈ [Îk]}. (19)

If unfeasible values of the quantities present in Q are known, additional relations
can be introduced to remove them when solving the set inversion problem. The rth

relation of a set of ρ relations can be defined by a function πr : Rλ → R associated
to an interval [cr]k in which the relation is valid. The computation of πr takes a
candidate Q as an input and must satisfy the following condition:

πr(Q) ∈ [cr]k. (20)

Adding relations may sometimes help when finding a box with non-infinite bounds
is impossible due to the dimension of Q and the expression of the shaping model
h. Other shaping models involving these quantities of interest are also suitable for
supplementing Equation (19). The application example in the next part illustrates
this point using virtual inputs provided by complementary systems. Therefore, the
previous solution set Sk can be turned into

Sk =

{
Q ∈ Rλ

∣∣∣∣∣ ∃ d ∈ [dm
k ], h(Q,d) ∈ [Îk],

πr(Q) ∈ [cr]k, ∀r ∈ [1, ρ].

}
. (21)

The estimation process aims at finding a box [qk] ∈ IRλ that gathers an uncertainty
interval for each quantity of interest such that

Sk ⊂ [qk], with [qk] = [q1,k]× . . .× [qλ,k]. (22)

Depending on the physical nature of the quantities to be estimated, several potentially
complex shaping models may be introduced. Robust algorithms able to solve such an
inverse problem have been developed using the framework of interval analysis. These
algorithms are suitable for a large class of problem involving complex shaping models
with serious nonlinearities. The Set Inverter Via Interval Analysis algorithm (SIVIA)
[42] is an iterative bisection process based on subpavings that determines an accurate
and guaranteed representation of the solution set, as long as an inclusion function
is provided. An improved version of the SIVIA algorithm, called SIVIAP, has been
developed by introducing constraint propagation on intervals [43]. This improved
version is used in the following application example to compute the box [qk], which
regroups the uncertainty associated with the unknown accelerations to be estimated.

2.5 Procedure summary

This section summarizes the procedure to be followed to correctly implement the
proposed methodology for calculating uncertainty.
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1. Define the input u and the output y of the dynamical system (S) to be studied;

2. Determine the three p-order matrices A, B and C of a linear model (M) whose
input is u;

3. Write the equivalent representation of (S) based on u, y, (M) and a virtual
input I as in Equation (5);

4. Gather the quantities of interest to be estimated in a vector Q, and the known
measurement biases in a vector D ;

5. Find a shaping model h as a function of Q and D that models the dynamics of
the virtual input I;

6. Write the shaping expression of the virtual input I introducing the RSE ε, as
in Equation (13);

7. Characterize the uncertainty [uc] and [ym] respectively related to the signals u
and y, considering the known command uc of (S), and the measured value ym

of its output;

8. Implement a linear observer able to provide an estimated interval [Î] on the
basis of (M), [uc] and [ym];

9. Determine the uncertainty [Dm] associated with the measured value Dm of D;

10. Extend the shaping model h to the framework of interval analysis, considering
the box [dm

k ] for [Dm], and intervals for the uncertain parameters involved;

11. Solve the set inversion problem defined by the Equation (21), whose solution
corresponds to the uncertainty [Q̂] associated with the estimated quantities of
interest Q̂.

3 Application example: Estimation of unknown ac-
celerations

In this second part, the methodology for the estimation of specific unknown inputs
is applied on the triaxial accelerometer dedicated to the microforce balance under
development. This accelerometer actually consists of three similar coupled uniaxial
accelerometers, arranged to operate in each direction of space (see Fig. 4a). For
this reason, the following case study mainly focuses on the x-axis. The sensitive part
of x-accelerometer is a micromachined piece of aluminum with two 300µm-diameter
rods, which has in its center a 1mm-high and 1mm-diameter cylindrical magnet.
This magnetic pendulum is maintained in contact upwards with the frame thanks to
a permanent magnet, which prevents it from falling (see Fig. 4b). Like a swing, the
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Figure 4: (a) Global view of the complete triaxial accelerometer. (b) Picture of a
pendulum attracted by a permanent magnet.

pendulum oscillates when the frame is moving under the effect of disturbing vibra-
tions. According to the method described in Part 2, the x-accelerometer is considered
as a nonlinear uncertain system (Sx) disturbed by several unknown inputs, including
residual ground vibrations. The orientation of the pendulum is measured using a
displacement interferometer and corresponds to the output of (Sx). Then, Helmholtz
coils are placed around the pendulum to generate an electromagnetic torque able to
change its orientation. In this way, open-loop characterization tests can be carried
out, and closed-loop control can also be considered. The current ix flowing through
the coils is chosen as the control input of (Sx). Although only open-loop studies are
presented here, the pendulum modeling includes the control input so that it can be
referenced in future closed-loop works. The aim of this application example is to
illustrate each step of the methodology using MATLAB Simulink R2020b. Numerical
simulations are developed as they make possible the study of the RSEs, and also en-
able estimated quantities to be compared with the corresponding simulated unknown
inputs that are not accessible in practice.

3.1 Simulation of the disturbed x-accelerometer

Before moving on to the first step of the methodology, the mechanical modeling used
to simulate the x-accelerometer is presented. As shown in Fig. 5, the x-accelerometer
is placed in a non-inertial frame Rt = (Ot, x⃗t, y⃗t, z⃗t) linked to the vibration isolation
table. The tabletop normal vector is collinear with z⃗t. The system is continuously
disturbed by accelerations defined in Rt by a⃗ie = [ẍα, ÿα, z̈α]

T . These accelerations
are the consequences of the unknown displacements u⃗d = (xd, yd, zd)Rt of the tabletop
with respect to the inertial frame Rg = (Og, x⃗g, y⃗g, z⃗g), linked to the laboratory. The
tabletop freely rotates in space, due to pneumatic active damping, but the angular
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Figure 5: Schematic of the pendulum used to define the mechanical equations of its
dynamics. The value of αx is set to zero on the drawing.

velocities are low, so the effects are supposed negligible compared to the other dy-
namics. Rotational inertial effects are therefore neglected, and fictitious forces F⃗ie,
only due to straight accelerations, are introduced to describe the dynamics of the
pendulum. However, these tabletop rotations, considered static, still modify the tilt
of the pendulum as the direction of gravity is fixed. Since the current setup is only
instrumented for pitch and roll measurement, two angles, αx and αy, are introduced
to describe the tilts around y⃗t and x⃗t respectively. The weight W⃗ of the pendulum
and F⃗ie can be expressed as follows:

W⃗ = −mg

 − sin(αy)
cos(αy) sin(αx)
cos(αy) cos(αx)


Rt

, F⃗ie = −m

ẍα

ÿα
z̈α


Rt

(23)

with m the mass of the pendulum. As the pendulum is an oscillating system, external
forces are represented by torques. Teq is assumed to be the equivalent magnetic torque
created by the carrier magnet, Tair the resistance torque induced by air friction, and
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Telec the electromagnetic torque induced by the actuation system:

Teq =
[
M⃗(F⃗mag) + Tmag

]
y⃗t = −Kx

mθxy⃗t, (24)

Tair = −Kx
v θ̇xy⃗t, (25)

Telec = −Kx
b i

xy⃗t (26)

in which Kx
m is the equivalent proportional gain, which describes the magnetic be-

havior of the pendulum immersed in the permanent magnetic field around its pseudo-
equilibrium position, Kx

v the air friction coefficient which is non-null outside the vac-
uum chamber, and Kx

b the actuation gain related to the Helmholtz coil arrangement.
The resulting torque balance is stated in Rt as follows:

Jθ̈x =−Kx
b i

x −Kx
v θ̇x −Kx

mθx

−mglG
[
cos(θx) sin(αy) + sin(θx) cos(αx) cos(αy)

]
+mlG

[
ẍα cos(θx)− z̈α sin(θx)

]
.

(27)

As the system is observed through a displacement sensor, a change of variable from
θx to x has to be implemented to correctly describe the dynamics captured:

x = −l tan (θx), (28)

By expressing the analytical first and second derivatives of θx in terms of x using the
Equation (28), the nonlinear torque balance (27) can be turned into:

ẍ =
l(1 + (x

l
)2)

J

[
mglG

[
c(θx)s(αy) + s(θx)c(αy)c(αx)

]
−mlG

[
ẍαc(θx)− z̈αs(θx)

]
+Kx

mθx −Kx
v

ẋ

l(1 + (x
l
)2)

+Kx
b i

x

]
+

2ẋ2x

l2(1 + (x
l
)2)

, in which θx = atan
(
− x

l

)
,

(29)
with J the momentum of inertia of the pendulum, lG the position of its center of
gravity and l the position of the laser sport on the pendulum. Similar modeling is
carried out for the other axes. Although not detailed here, the nonlinear equations
obtained are used to simulate the complete triaxial accelerometer. The unknown
disturbing accelerations a⃗ie to be estimated, and the tilt angles α⃗ are modeled by
band-limited white noise with noise power set respectively to 1× 10−7 m2/s4/Hz and
2×10−9 rad2/Hz in order to reproduce simulation conditions close to the experimental
ones. Two cascaded first-order low-pass filters with a cutoff frequency of fc = 2 Hz
are added to simulate the filtering behavior of the vibration isolation system of the
table. The variance R of the interferometer measurement noise is set to 6.25× 10−20

m2. The parameters involved in (29) are either identified on the actual experimental
device, measured, or taken from CAD designs in order to obtain reliable simulation
results that are close to the physics of the experiment. Table 2 makes an inventory
of the values of the parameters used for the simulation. The open-loop output of the
disturbed x-accelerometer is shown in Fig. 6.
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Parameter Numerical value

g 9.807 m/s2

m 9.136× 10−6 kg
J 1.427× 10−10 kg.m2

lG 3.831× 10−3 m
l 4.2× 10−3 m

Kx
m 7.540× 10−6 N.m

Kx
v 1.340× 10−10 kg.m2.s-1

Kx
b 1.729× 10−6 N.m/A

Ky
m 7.537× 10−6 N.m

Ky
v 6.496× 10−11 kg.m2.s-1

Ky
b 1.668× 10−6 N.m/A

Kz
m 7.333× 10−6 N.m

Kz
v 5.270× 10−11 kg.m2.s-1

Kz
b 1.684× 10−6 N.m/A

Table 2: Numerical values of the parameters used to simulate the response of the
complete accelerometer.
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Figure 6: Simulation of the open-loop displacement of the x-pendulum excited by a⃗ie
and α⃗.

3.2 Step one: Equivalent representation

The first step of the method consists in determining a linear model that approximates
the dynamical behavior of the system studied. To achieve this, the x-pendulum dy-
namics is identified on the real experiment by studying its zero-input response for
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small displacements around its pseudo-equilibrium position. The captured displace-
ment is consistent with a linear second-order response. Afterward, the static gain
between the current injected into the coils and the displacement of the pendulum is
determined by considering different steady state positions given for various constant
input commands, which leads to the following linear transfer function:

Hx(s) =
x(s)

ix(s)
=

bx

s2 + ax1s+ ax0
=

50.881

s2 + 0.974s+ 55244
. (30)

An equivalent representation can thus be determined on the basis of a fairly consistent
linear model (Mx). In line with the theorem of equivalent representation invoked in
2.1, the true dynamics of the disturbed x-accelerometer is accurately described by
the following state-space representation:

(Sx) ⇔

 Ẋ =

[
0 1

−55244 −0.974

]
X +

[
0

50.881

]
(ix + Ix),

x =
[
1 0

]
X

(31)

in which X =
[
x ẋ

]T ∈ R2 is the state vector, and Ix the virtual input homoge-
neous to an electric current. The same procedure is repeated on y and z axes to
determine the identified models (My) and (Mz), which give the following equivalent
representations:

(Sy) ⇔

 Ẏ =

[
0 1

−55222 −0.455

]
Y +

[
0

49.104

]
(iy + Iy),

y =
[
1 0

]
Y,

(Sz) ⇔

 Ż =

[
0 1

−51385 −0.369

]
Z +

[
0

49.567

]
(iz + Iz),

z =
[
1 0

]
Z.

(32)

3.3 Step two: Virtual input shaping

Regarding the x-accelerometer, all dynamics not described by the identified model
(Mx) lie in the virtual input Ix. A model must therefore be defined to structure
the information contained in Ix. The shaping of the virtual input must enable the
estimation of the unknown accelerations of interest, taking into account known mea-
surement biases. In this example, the accelerations a⃗ie = [ẍα, ÿα, z̈α]

T of the table
plate have to be estimated, i.e. Q = a⃗ie. However, when the plate is rotating with
αx or αy different from zero, each part of the setup is tilted. As the direction of
gravity does not change, the pendulum moves under the effect of its own weight.
A displacement is measured and could be mistakenly considered as a consequence
of a⃗ie. Therefore, the angles αx and αy are gathered in a vector α⃗ as measurement
biases, i.e. D = α⃗. As written in Section 2.2, shaping the virtual input consists in
representing as best as possible its content under the form of a dynamical shaping
model. The mechanical modeling of the accelerometer presented previously is used in
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this third step to construct relatively consistent analytical expressions describing the
dynamics of the virtual input. According to Equation (29), the nonlinear dynamics
of the x-accelerometer is equivalent to:

ẍ = ∆x
NL(X,Q,D, ix), (33)

with ∆x
NL(X,Q,D, ix) a nonlinear function defined by:

∆x
NL(X,Q,D, ix) =

2ẋ2x

l2(1 + (x
l
)2)

− l(1 + (x
l
)2)

J

[
mlG

(
ẍαc(θx)− z̈αs(θx)

− g
[
c(θx)s(αy) + s(θx)c(αy)c(αx)

])
−Kx

mθx −Kx
b i

x

]
− Kx

v

J
ẋ.

(34)
In practice, the actual disturbing inertial forces and table tilt angles acting on the
triaxial accelerometer are small and generate rather linear oscillations. Consequently,
the small displacement assumption (x ≪ l) and the small-angle approximation are
introduced to first simplify the nonlinear function ∆x

NL, which leads to:

ẍ = ∆x
L(X,Q,D, ix), (35)

with ∆x
L(X,Q,D, ix) a linearized function defined by:

∆x
L(X,Q,D, ix) =

lKx
b

J
ix − l

mlG
J

(
ẍα + z̈α

x

l
− gαy

)
− Kx

v

J
ẋ− mglG +Kx

m

J
x. (36)

The strategy to shape the virtual input emphasizes the distinction to be made between
the certain model (Mx) implemented to determine the equivalent representation,
and the shaping model that will be used to propagate uncertainty. Therefore, the
numerical values taken from Equation (30), are introduced artificially on both side of
Equation (35) to bring out the model (Mx):

ẍ+ ax1 ẋ+ ax0x = bxix +∆x
L(X,Q,D, ix) + ax1 ẋ+ ax0x− bxix. (37)

The shaping model has to make the virtual input Ix additive to ix, like in the equiva-
lent state-space representation (31). Therefore, the shaping model proposed, denoted
by hx

L, is defined as:

hx
L(Q,D) =

1

bx

[
∆x

L(X,Q,D, ix) + ax1 ẋ+ ax0x− bxix

]
. (38)

The exact pendulum dynamics is equivalently reproduced by adding hx
L and the as-

sociated RSE εxL on the control input ix of the identified model (30):

ẍ+ 0.974ẋ+ 55244x = 50.881
[
ix + hx

L(Q,D) + εxL
]
. (39)

The RSE is homogeneous to an electric current that compensates for all modeling
errors and represents all remaining unknown dynamics. The whole process is repeated
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for the other axes and leads to the following virtual input shapes for the virtual inputs
Ix, Iy and Iz defined by Equations (31) and (32):

Ix =
1

bx

[
∆x

L(X,Q,D, ix) + ax1 ẏ + ax0x− bxix

]
+ εxL,

Iy =
1

by

[
∆y

L(Y,Q,D, iy) + ay1ẏ + ay0y − byiy

]
+ εyL,

Iz =
1

bz

[
∆z

L(Z,Q,D, iz) + az1ż + az0z − bziz

]
+ εzL,

(40)

with Y =
[
y ẏ

]T , Z =
[
z ż

]T and εyL, ε
z
L the RSEs associated respectively with the

shaping models of y and z-measurement axes based on:

∆y
L(Y,Q,D, iy) =

lKy
b

J
iy − l

mlG
J

(
ÿα + z̈α

y

l
+ gαx

)
− Ky

v

J
ẏ − mglG +Ky

m

J
y,

∆z
L(Z,Q,D, iz) =

lKz
b

J
iz − l

mlG
J

(
z̈α + ẍα

z

l
+ g(1− z

l
αy)

)
− Kz

v

J
ż − Kz

m

J
z.

(41)

The linear shaping models corresponding to hx
L, h

y
L and hz

L will then be used for un-
certainty propagation.

The virtual input shaping is carried out using the mechanical modeling of the
system, and thus only reflects an a priori state of knowledge, which is not perfect and
may evolve in the future. The pendulum moment of inertia J and the length lG of its
center of gravity are supposed to be misidentified. Their value is assumed to be wrong
to within 1% and are replaced by J = 1.413 × 10−10 kg.m2 and lG = 3.869 × 10−3

m in the three shaping models defined above, which will increase the value of the
RSEs. The quantities present in Q and D are simulated and can therefore be used to
plot the output of the shaping model hx

L versus the theoretical value of Ix for small
displacements with zero input current, corresponding to the accelerometer passive
operating mode (see Fig. 7a). The shaping model is therefore consistent, but there
remains a small difference between them corresponding to the RSE εxL related to hx

L,
illustrated in Fig. 7b. Such figures can only be plotted in simulation, as this is the
only case where the theoretical value of the virtual input can be determined causally.

The nonlinear function ∆x
NL could have been used instead of ∆x

L to shape the
virtual input. However, its linearized form is illustrated first in this article as it
enables faster calculation of uncertainty, and no difference would have been observed
for the small displacements considered, which do not exceed 0.1 µm. In Section
3.6, the accelerometer response is simulated with large excitation signals, in order to
compare the consistency of the virtual input shaping based on the nonlinear function
∆NL, and thus to highlight the suitability of this approach for dynamical systems
described by a nonlinear model.
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Figure 7: (a) Comparison of the shaping model hx
L output and the theoretical virtual

input value for small displacements with no input current. (b) Plot of the RSE εxL
associated to hx

L.

22



3.4 Step three: Estimation of the virtual input

The identified model (Mx) does not perfectly describe the behavior of the x-accelerometer
(Sx) as it does not take into account nonlinearities, unknown accelerations a⃗ie and
tilt angles α⃗. An equivalent model has been determined to solve this problem by
introducing the virtual input Ix. In this application, a discrete time-varying linear
Kalman Filter is used to observe the dynamics of Ix based on (Mx). Amokrane et
al. already adapted it in [32] for this purpose by turning it into an Extended State
Linear Kalman Filter (ES-LKF) of order 1 which belongs to the family of extended
state observers (ESO) [33]. Nevertheless, only the uncertainty on the output was
taken into account. A higher order (HO) version of the ES-LKF, that takes into
account both input and output uncertainties, is considered here to be consistent with
the proposed methodology. The extended state vector gathers the former states of
the identified model (Mx) along with the virtual input Ix and its first derivative:

Xe =
[
x ẋ Ix İx

]T ∈ R4. (42)

At time tk, an estimated state vector X̂e
k and the associated variance-covariance ma-

trix of the observation error P̂k are returned after each prediction-update step of
the Kalman filter. The third component of X̂e

k corresponds to the estimation of the
virtual input, denoted by Îx

k . According to the definition of the covariance matrix,
the third diagonal component of P̂k thus gives the variance σ2

k of the observation
error associated to Îx

k . According to the design of the HOES-LKF presented in B,
this observation error and the associated variance depend on input and output signal
uncertainties modeled by standard deviations, the sampling rate used and the power
spectral density wPSD of the white Gaussian noise used to model the second derivative
of the virtual input Ix as an unpredictable signal. In the simulation, the parameter
wPSD is set to 4× 10−5 A2/Hz. Although the input current uncertainty can be taken
into account in a general case, it is set to zero since only the passive operating mode
of the accelerometer is presented in this work. From there, the uncertainty interval
associated to the estimate Îx

k is defined at time tk by taking the 3σ rule:[
Îx
k

]
≜

[
Îx
k − 3σk, Îx

k + 3σk

]
. (43)

This may not hold in some rare cases discussed in Section 4.2. The theoretical value
of Ix and its estimate Îx are both plotted in Fig. 8 with the associated 3σ bounds.
Compared with the ES-LKF presented in [32], the HOES-LKF allows the virtual
input to be estimated with less delay, but this comes at the cost of increased noise.
Consequently, other observer structures can also be tested to find a better compromise
for estimating the virtual input and its associated uncertainty. A HOES-LKF is
implemented for each axis of the accelerometer, using the corresponding models (Mx),
(My) and (Mz).

3.5 Step four: Uncertainty propagation

As previously mentioned, an implementation of the SIVIAP algorithm is used for
the uncertainty propagation step. The next section introduces additional concepts of
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Figure 8: Plot of the theoretical virtual input Ix, its estimated value Îx and the 3σ
bounds.

interval analysis and explains how the algorithm works.

3.5.1 Interval analysis : supplements

(a) Inclusion tests: an inclusion test is a boolean test applied to all elements of a
box [x] ∈ IRn to determine whether they satisfy a given property. A property
of particular interest to the SIVIAP algorithm is the inclusion of a box [x] in
another set X. The inclusion test [tX] associated to tX(x) = (x ∈ X) determines
whether the elements of [x] are all included in X ([tX]([x]) = 1), i.e. [x] ⊂ X,
whether none of them are ([tX]([x]) = 0), i.e. [x]∩X = ∅, or whether only some
of them are.

(b) Contractor: a contractor C is an operator able to reduce, or contract, a box
by removing parts that do not satisfy a given constraint [44]. A constraint
is an expression of the form γ(x) ∈ [β] in which γ is a function from Rm to
Rn, and [β] a box of IRn. The set associated with this constraint corresponds
to the solution set C = {x ∈ Rm | γ(x) ∈ [β]}. Therefore, the contraction
of a given box [x] ∈ IRm under this constraint returns a box C([x]) ⊂ [x]
that satisfies C([x]) ∩ C = [x] ∩ C. Finding such a box amounts to satisfying a
constraint satisfaction problem (CSP). In the following SIVIAP implementation,
the forward-backward contractor is used and tends to improve the algorithm
efficiency. This contractor is based on the decomposition of a constraint into a
sequence of primitive constraints to be evaluated forward and backward. For
details of how it works, see [45].
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(c) SIVIAP algorithm: this branch-and-bound algorithm is useful to estimate the
solution set of an inverse problem without removing any solution from the search
space. The solution set S ⊂ Rm of an inverse problem is defined by:

S =
{
x ∈ [x]0 | ξ(x) ∈ [β]

}
= ξ−1([β]) ∩ [x]0, (44)

with [x]0 ∈ IRm the a priori initial search set, ξ a function from Rm to Rn,
and [β] ∈ IRn a known box. The recursive approach of SIVIAP uses bisections
and the inclusion test [t[β]] associated to t[β](x) = (ξ(x) ∈ [β]), to provide a
guaranteed enclosure of the solution set as follows:

S ⊂ S ⊂ S, (45)

with S and S respectively the inner and outer enclosures of S. Let [x] be
a box included in [x]0 and [ξ] an inclusion function of ξ. If [ξ]([x]) ⊂ [β],
[x] is said to be feasible and is assigned to S. If [ξ]([x]) ∩ [β] = ∅, [x] is
unfeasible and is thus deleted. Otherwise, no conclusion can be drawn and [x]
is said to be undetermined. In this case, [x] is bisected into two sub-boxes
according to its largest width. The process is repeated recursively until the
width of the generated sub-boxes reaches a user-specified precision threshold.
At the end, the remaining undetermined boxes combined with S constitute S.
At each iteration, a contractor associated with the ξ function is applied before
proceeding with the inclusion tests. Adding this CSP improves the performance
of the SIVIAP algorithm, since it reduces the number of bisections required
to reach the precision threshold. The principle of the SIVIAP algorithm is
summarized by the following procedure:

Algorithm: SIVIAP([x]0, C, [t[β]], η)
Input: [x]0, C, [t[β]], η
Output: S, S
L = {[x]0}; S = ∅; S = ∅; % initialization
while L ≠ ∅ do

Remove an element [x] from L;
[x] = C([x]);
if [t[β]]([x]) = 1 then

S = S ∪ [x];
S = S ∪ [x];

else if [t[β]]([x]) = 0 then
Delete [x];

else if w([x]) ≤ η then
S = S ∪ [x];

else
Bisect [x] into [x]1, [x]2 and store them in L;
SIVIAP([x]1, C, [t[β]], η);
SIVIAP([x]2, C, [t[β]], η);

end
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3.5.2 Uncertainty propagation

Given the terms in Equation (40), the intervals [Îx], [Îy], [Îz] estimated by the
HOES-LKFs are introduced instead of their theoretical value Ix, Iy and Iz. The
displacements x, y, z are replaced respectively by the intervals [x], [y], [z] following
the 3σ rule, which gives for instance [x] = [x−3

√
R, x+3

√
R] for the x-accelerometer,

R being the noise variance of the interferometer. In the same manner, uncertainty
intervals are determined for the measurements αm

x and αm
y of the table tilts, with

Rα = 10−10 rad2 the noise variance of the measuring instrument used. The mass
of the pendulum has been measured to an accuracy of 0.1 mg, so an interval [m] is
introduced for calculating the uncertainty. The position l of the laser spot pointing
at the pendulum is also replaced by an interval [l] as it is not perfectly accurate
in practice. Intervals centered around the erroneous value of parameters J and lG
are also introduced. The changes made to the values initially used to simulate the
accelerometer are summarized in Table 3.

Parameter Interval value

J (kg.m2) [1.403× 10−10, 1.423× 10−10]
lG (m) [3.849× 10−3, 3.889× 10−3]
m (kg) [9.036× 10−6, 9.236× 10−6]
l (m) [4.18× 10−3, 4.22× 10−3]

Table 3: Summary of the uncertain parameters and their numerical values used for
propagating uncertainty.

At k-th time instant, the box [dm
k ] ∈ IR2 gathering the table tilt measurements,

and the initial search space [q]0 = [ˆ̈xα,k]0 × [ˆ̈yα,k]0 × [ˆ̈zα,k]0 ∈ IR3 for the unknown
boxes to be computed are defined as follows:

[dm
k ] = [αm

x,k]× [αm
y,k] and [q]0 = [−1, 1]× [−1, 1]× [−1, 1]. (46)

The initial box [q]0 is large enough for this application case not to remove a single
solution. Based on the virtual input shaping done in the previous section, the solution
set Sk is given by:

Sk =

Q ∈ [q]0

∣∣∣∣∣∣∣ ∃ d ∈ [dm
k ],

hx
L(Q,d) ∈ [Îx

k ]

hy
L(Q,d) ∈ [Îy

k ]

hz
L(Q,d) ∈ [Îz

k ]

 , (47)

The RSEs are disregarded to allow the uncertainty propagation, as they represent
unknown dynamics in practice. An incorporated Python script calls the SIVIAP
algorithm to estimate the bounds of Sk using the interval analysis library PyIbex
[46]. The parametric natural inclusion functions of the shaping models are used
for the inclusion tests, and each model is associated with a given forward-backward
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contractor. The procedure is repeated at each iteration k, with a precision threshold
set at 1× 10−3 m/s2. At the end, the box [qk] is defined as the interval hull of S, i.e.
the smallest box that brackets S.

3.5.3 Simulation results

Although [qk] is entirely determined by the uncertainty propagation script, the follow-
ing analysis focuses only on the first interval component [ˆ̈xα]. The estimated bounds
of [ˆ̈xα] in open-loop (ix = iy = iz = 0) are shown in Fig. 9 and correctly surrounds
the theoretical acceleration ẍa plotted in blue. This result was to be expected since
in Section 3.3, the amplitude of the RSE εxL is small compared to Ix. This qualitative
link between the magnitude of the RSE and the consistency of the computed intervals
is valid given that reliable estimated extended state vectors X̂e, Ŷ e, Ẑe and measure-
ments αm

x , αm
y of the experimental biases are provided for the set inversion. Note that

if the intervals introduced for uncertain parameters do not include the values used
in the simulation, the computed intervals [ˆ̈xα] may sometimes not correctly surround
the theoretical acceleration ẍα.
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Figure 9: Illustration of the estimated interval [ˆ̈xα] and the theoretical acceleration
ẍα.

3.6 Nonlinear shaping model for large oscillations

The previous simulation gave consistent estimates using linear shaping models be-
cause small accelerations ẍα, ÿα and z̈α were used. The following case study is thus
deliberately carried out with large excitation signals in order to illustrate the effective-
ness of the nonlinear shaping models, compared to its linearized form under degraded
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experimental conditions. The same four-step approach has been adopted, with only
the required adjustments presented below. The noise power of the unknown disturb-
ing accelerations a⃗ie and tilt angles α⃗ are increased respectively to 1× 102 m2/s4/Hz
and 2 × 10−1 rad2/Hz in order to generate sufficiently large displacements (see Fig.
10a). In the HOES-LKF, the power spectral density wPSD that models the virtual
input is set to 1×106 A2/Hz. This value had to be increased significantly to correctly
observe the virtual input because the pendulum is simulated with relatively large
displacements, while the displacement sensor noise still has a low variance R. The
theoretical virtual input Ix, its estimate Îx and the 3σ bounds are shown in Fig. 10b.

The SIVIAP algorithm starting boxes are set to [−100, 100]×[−100, 100]×[−100, 100]
and the precision threshold is tuned to 8×10−1 m/s2. In the case of large oscillations,
the small displacement and small angle assumptions no longer apply, so the virtual
input shapes (40) are not sufficiently consistent. More complex shaping models are
therefore proposed by considering the nonlinear function ∆x

NL given by equation (34),
and its equivalents ∆y

NL and ∆z
NL defined below for the y and z-accelerometers. Re-

garding the x-accelerometer, the shaping model hx
NL is defined as follows:

hx
NL(Q,D) =

1

bx

[
∆x

NL(X,Q,D, ix) + ax1 ẋ+ ax0x− bxix

]
. (48)

Fig. 11a compares the theoretical output of the shaping models hx
L and hx

NL to the
virtual input Ix. The related RSEs εxL and εxNL are plotted in Fig. 11b. These two fig-
ures show that differences are observed when considering larger excitation signals. As
expected, the nonlinear shaping model is more consistent with the theoretical virtual
input in this case. However, it is not perfectly accurate since uncertain parameters
are still taken into account. The nonlinear shaping is repeated for other axes and
leads to the following virtual input shapes:

Ix =
1

bx

[
∆x

NL(X,Q,D, ix) + ax1 ẋ+ ax0x− bxix

]
+ εxNL

Iy =
1

by

[
∆y

NL(Y,Q,D, iy) + ay1ẏ + ay0y − byiy

]
+ εyNL,

Iz =
1

bz

[
∆z

NL(Z,Q,D, iz) + az1ż + az0z − bziz

]
+ εzNL

(49)

in which:

∆y
NL(Y,Q,D, iy) =

2ẏ2y

l2(1 + (y
l
)2)

− l(1 + (y
l
)2)

J

[
mlG

(
ÿαc(θy) + z̈αs(θy) (50)

+ g
[
c(θy)c(αy)s(αx) + s(θy)c(αy)c(αx)

])
+Ky

mθy −Ky
b i

y

]
− Ky

v

J
ẏ,
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Figure 10: (a) Simulation of the open-loop displacement of the x-pendulum excited
by large accelerations and tilt angles. (b) Plot of the virtual input Ix, its estimated
value Îx and the 3σ bounds.
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Figure 11: (a) Comparison of the shaping model hx
L and hx

NL outputs and the theo-
retical virtual input value. (b) Plot of the associated RSEs εxL and εxNL.
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∆z
NL(Z,Q,D, iz) =

2ż2z

l2(1 + ( z
l
)2)

− l(1 + ( z
l
)2)

J

[
mlG

(
z̈αc(θz) + ẍαs(θz) (51)

− g
[
1− c(θz)c(αy)c(αx) + s(θz)s(αy)

])
+Kz

mθz −Kz
b i

z

]
− Kz

v

J
ż.

with θy = atan(y/l) and θz = atan(z/l). These virtual input shapes handle the
nonlinearities that may arise with strong excitation signals, resulting in reliable es-
timated bounds for the unknown accelerations of interest, as illustrated in Fig. 12.
Note that the width of the estimated intervals [ˆ̈xα] is smaller compared to those in the
previous study because the noise variance R of the interferometer is unchanged while
large displacements are simulated. This second scenario highlights the suitability of
this methodology for nonlinear systems associated to a nonlinear modeling. In this
case, the proposed methodology makes it easy to define a nonlinear shaping model for
the virtual input associated with the linear model used to determine the equivalent
representation of the system under study. Indeed, the SIVIAP algorithm can handle
complex shaping models, as natural inclusion functions can be easily defined. As a
result, the range of expressions that can be used to shape a virtual input is wide, and
can therefore include serious nonlinearities.
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Figure 12: Comparison of the estimated interval [ˆ̈xα] and the theoretical acceleration
ẍα according to the shaping model used.

4 Limitations and outlooks
As with any uncertainty calculation method, the consistency of the computed intervals
cannot be guaranteed for dynamic unknown inputs. With regard to the proposed
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methodology, this section presents the reasons that can lead to intervals that do not
correctly surround the quantities of interest. Ideas for solving or preventing this
problem are introduced, and computation optimization is discussed.

4.1 Study of the RSE

The unknown RSE represents the differences between the computed output of the
shaping model considered and the theoretical value of the virtual input. When solving
the set inverse problem (21) in the last step of the methodology, the RSE must
be set to zero which may lead to estimation errors. Indeed, its value depends on
the consistency of the shaping models used to calculate uncertainty, but also on
the reliability of the estimated extended state vector and bias measurements, which
cannot be guaranteed in practice, and may result in a non-zero RSE. Moreover, if
a significant physical phenomenon has been overlooked in the shaping of the virtual
input, or is incorrectly measured, the computed boxes [qk] may be incompatible
with the unknown quantities of interest. To illustrate this, another look is taken at
the previous example with small displacements without considering table tilt angles
when determining hx

L, h
y
L and hz

L. The dynamics linked to these angles are therefore
necessarily included in the RSEs (see Fig. 13a), which induces an estimation error
when setting them to zero to calculate uncertainty. Indeed, the estimated bounds of
[ˆ̈xα] plotted in Fig. 13b do not correctly surround ẍα. In future works, a particular
attention will be paid to the study of potential RSEs by examining more closely
the spectral content of the input-output signals of the system (S). The idea is to
monitor the amplitude of these signals over frequency ranges that are incompatible a
priori with those of the quantities of interest and measurement biases. If activity is
measured, this means that physical phenomena not taken into account by the shaping
models are disturbing the system and will then be contained in the associated RSEs.
Fault detection-like approaches are envisaged, with the aim of declaring indicators
able to validate or not the computed intervals.

4.2 Observer bandwidth

As previously explained, an observer must be implemented in order to estimate the
virtual input. However, discrete observers are limited in bandwidth which depends
on the observer tuning. A disturbance that is too abrupt will generate a virtual input
that is too fast to be estimated correctly. As a result, the assumption that Ix

k ∈ [Îx
k ]

would no longer be valid. Fig. 14 shows the open-loop estimation of the theoretical
virtual input when the system is mechanically perturbed by a step input. In this
case, the observer cannot follow the fast dynamics of the virtual input during a short
period of 25 ms at the time of the step. If the use of a observer is becoming more
widespread for metrological applications, its bandwdidth must therefore be carefully
adjusted. Otherwise, the calculation of uncertainty must be interrupted during the
period when the observer cannot estimate the virtual input properly, or the above-
mentioned indicators must invalidate the calculated boxes [qk]. Starting points to
achieve this could be the study of observer dynamics in simulation to determine

32



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1
·10−4

Time (s)

R
SE

εx L
(A

)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−6

−4

−2

0

2

4

6

·10−3

Time (s)

A
cc

el
er

at
io

n
(m

.s
−
2
)

Real acceleration ẍα
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Figure 13: (a) Plot of the estimated interval [ˆ̈xα] and the theoretical acceleration ẍα

considering tilt angles. (b) Illustration of the associated RSE.
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Figure 14: Illustration of the observation issue of the virtual input due to a discrete
limited bandwidth.

criteria on the estimated dynamics of the virtual input, the study of the magnitude of
closed-loop control command required to counter disturbances with a large transient
or the deviation from the displacement reference.

4.3 Computation optimization

The SIVIAP algorithm is implemented in this article to compute the boxes [qk] that
estimate the quantities of interest. However, when the dimensions of the problem
become too large, or the precision threshold too refined, such a branch-and-bound
algorithm may require a large amount of computing power. A precise representation
of the solution set is not essential to determine uncertainty, since only the smallest
box that contains S is returned. Several SIVIAP iterations can be avoided by using,
for example, an algorithm that directly computes the interval hull of the solution
set [43]. Then, the shaping model takes as a parameter, the box [dm

k ] that lumps
the measurement biases. Also, intervals are introduced into the SIVIAP algorithm
to account for uncertain parameters. In this case, the natural inclusion function of
the shaping model is said to be parametric and uncertain, and corresponds to a thick
inclusion function. The current implementation of the SIVIAP algorithm handles
this particular case but the computation can be optimized since it creates penumbra.
The penumbra corresponds to regions of the solution set where indeterminate boxes
accumulate until the precision threshold is reached. Not all elements in these boxes
satisfy the membership tests due to the presence of uncertain variables and parameters
in the inclusion function. The theory of thick sets is presented in [47] and may be
an interesting perspective to consider in order to reduce the computation time. In
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particular, the thick set inversion problem is tackled in [48] using thick separators
[49].

5 Conclusion
In this article, a new methodology for computing the uncertainties of specific unknown
inputs disturbing a nonlinear system has been presented. This method relies on the
equivalent representation of a given class of disturbed nonlinear SISO system (S).
The principle of equivalent representation is based on a linear model (M) associated
with an additive virtual input I. By construction, this additive term gathers all the
disturbing unknown inputs and corresponds therefore to the discrepancy the dynamics
of (M) compared to (S), which is then estimated by an observer. To distinguish the
dynamics of the quantities of interest from the measurement biases, a shaping model
describing the dynamics of the virtual input is required. The resulting virtual input
shape is finally used to define a set inversion problem, that leads to uncertainty in-
tervals for the unknown quantities to be estimated using interval analysis. The whole
approach has been successfully implemented step-by-step in simulation on an uncer-
tain passive accelerometer disturbed by unknown residual vibrations. Prospects have
been stated and ongoing works related to the promising impact of closed-loop con-
trol will be developed in the future. The development of an alternative methodology
for calculating the uncertainty budget of dynamical systems, based on the concept
of equivalent representation, is therefore worth considering. A comparative analy-
sis should be carried out in the future to compare its efficiency with other existing
approaches when specific unknown inputs have to be estimated with uncertain and
disturbed nonlinear dynamical systems. This methodology will be applied to the real
experimental setup, and constitutes a key element of the future calculation chain to
be implemented on the electromagnetic force balance. The long-term objective is to
calibrate the entire experimental setup in relation with NMIs, to guarantee the trace-
ability and reliability of small force measurements and thus to offer new perspectives
for small force metrology.

A Theorem of equivalent representation : Proof
Consider (S), the uncertain disturbed and time-varying SISO nonlinear system in-
troduced in Section 2.1, whose dynamics is described by the following state-space
representation:

(S) :
{
Ẋ = f(X , u, d, t),

y = g(X , u, d, t)
(52)

in which X ∈ Rn is the state vector, u ∈ R is the output of the controller, d ∈ Rδ

represents unknown disturbances, f and g are respectively the time-varying evolution
and observation functions of (S).
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Since it is only known that f and g exist, the proof relies exclusively on the
knowledge of u and y, the output of (S). An identified, or a priori known linear
model (M) must be chosen to observe the dynamic of y. As in Section 2.1, the model
(M) has an imposed structure described by:

(M) :

{
Ẋm = AXm +Bu,

ym = CXm

(53)

with Xm ∈ Rp, p > 0 and A, B, C given by (3) and (4). In this case, the output ym
of (M) is described by an Ordinary Differential Equation of order p > 0:

y(p)m +

p−1∑
i=0

aiy
(i)
m = bu. (54)

Remark 1 The choice of p depends on the application. The physical laws that may
be used to find an appropriate model often dictate the order of the model. In other
cases, when no information or existing model exists, the order p must be consistent
with the application. For example, if the purpose is to control the acceleration of a
system that has a displacement output, the identified model must be at least of order
p ≥ 2.

As the two outputs y and ym have a priori different evolutions in over time, it
is necessary to establish a formal link between them to describe precisely the real
dynamics of (S) thanks to (M). Therefore, their differences are introduced through
w:

w ≜ y − ym. (55)

The assumption that the term w defined in the previous equation is continuous
and differentiable is made. The derivatives of ym in (54) can thus be computed and
replaced:

y(p) − w(p) +

p−1∑
i=0

ai(y
(i) − w(i)) = bu. (56)

Equation (56) can be ordered as follows:

y(p) +

p−1∑
i=0

aiy
(i) = bu+ w(p) +

p−1∑
i=0

aiw
(i). (57)

An additional input I, homogeneous to u, can thus be introduced as a function
of w and its derivatives:

bI ≜ w(p) +

p−1∑
i=0

aiw
(i). (58)

The latter expression has no physical meaning but rather is a mathematical construc-
tion that gathers the dynamical differences, observed through the identified model,

36



between the outputs y and ym. This additional term, called virtual input can be
written in (57):

y(p) +

p−1∑
i=0

aiy
(i) = bu+ bI. (59)

Therefore, the accurate dynamic of y and its p successive derivatives is consistently
reproduced by the LTI model (M), thanks to I. To conclude this first appendix, the
following state vector X is introduced:

X =
[
y ẏ . . . y(p−1)

]T ∈ Rp. (60)

The latter equivalent model (59) can therefore be stated under the form of a state-
space representation: {

Ẋ = AX +B(u+ I),
y = CX

(61)

in which A ∈ Rp×p, B ∈ Rp×1, C ∈ R1×p are the following perfectly known state,
input and output matrices:

A =


0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . .
0 0 0 . . . 0 1
−a0 . . . − ap−1

 , B =


0
0
...
0
b

 ,

C =
[
1 0 . . . 0

]
.

(62)

B Synthesis of the discrete HOES-LKF
This appendix presents the design of the Higher Order Extended State Linear Kalman
Filter (HOES-LKF) used in the application example. The starting point of the fol-
lowing development is the equivalent representation (31) of the nonlinear system (S)
in which X =

[
x ẋ

]T , and where the numerical values have been replaced with ax0 ,
ax1 and bx : 

Ẋ =

[
0 1

−ax0 −ax1

]
X +

[
0

bx

]
(ix + Ix),

x =
[
1 0

]
X.

(63)

Based on the typical implementation of ESO, the unknown input, i.e. the virtual
input Ix in this case, is added to the state vector along with its first derivative to
form a higher order extended state observer. The state vector Xe ∈ R4 is thus defined
as:

Xe =
[
x ẋ Ix İx

]T (64)
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and leads to the following associated extended state-space representation:{
Ẋe = AXe + Bix +MÏx,

x = CXe
(65)

where

A =


0 1 0 0

−ax0 −ax1 bx 0
0 0 0 1
0 0 0 0

 ,B =


0
bx

0
0

 ,M =


0
0
0
1

 ,

C =
[
1 0 0 0

]
.

(66)

On the one hand, the behavior of the virtual input is assumed to be unknown,
which results in totally unpredictable dynamics. On the other hand, the noise present
on the input of the system must be taken into account in the uncertainty calculation
associated to the extended state estimation. White Gaussian stochastic processes ω
and ωi with zero mean and infinite variance are used to represent the unpredictable
behavior of Ïx and to model the noise added on the input current ix:{

Ïx = ω,

ix = ix,c + ωi.
(67)

The current ix,c is the deterministic value of the input current given to the controlled
current generator. Each scalar stochastic process noise ω and ωi is respectively char-
acterized by its constant power spectral density wPSD ∈ R and wPSDi ∈ R. The
stochastic modeling of (63) that now includes both the virtual input dynamics and
the current noise model is:{

Ẋe = AXe + Bix,c + Bωi +Mω,

x = CXe.
(68)

The two scalar stochastic processes are then gathered in Ω ∈ R2:{
Ẋe = AXe + Bix,c + δΩ,

x = CXe.
(69)

with
δ =

[
B M

]
∈ R4×2, Ω =

[
ωi ω

]T
. (70)

To implement a discrete LKF, a discretization of (69) is done using a Zero-Order
Hold (ZOH) on the input at a period Ts. With yxk the discretized output of the filter
provided with a sensor corrupted by the discrete-time band-limited white Gaussian
noise vk with zero mean and variance R ∈ R, the discrete stochastic evolution of Xe

k

and the output measurement evolution are represented by:{
Xe

k+1 = FXe
k + Gix,ck + Ωk,

xk = CXe
k + vk,

F = eATs , G =

∫ Ts

0

eAtBdt
(71)
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in which Ωk is a band-limited white Gaussian process noise with a zero-mean and a
covariance matrix Q given by:

Q = E
[
Ωk ΩT

k

]
=

∫ Ts

0

eAtδWδT eA
T tdt,

where : W =

[
wPSDi 0
0 wPSD

]
.

(72)

As (71) is a linear Gaussian stochastic process, its state Xe
k can be observed with a

LKF. Defining an initial estimated extended state X̂e
0 and an initial covariance matrix

P0, the prediction and update steps of the HOES-LKF are given by the classical
discrete time-varying linear Kalman filter equations:

X̂e
k|k−1 = FX̂e

k−1 + Gix,ck−1,

Pk|k−1 = FPk−1FT +Q,

Kk = Pk|k−1CT (CPk|k−1CT +R)−1,

X̂e
k = X̂e

k|k−1 +Kk(x
m
k − CX̂e

k|k−1),

Pk = (I4 −KkC)Pk|k−1

(73)

with xmk corresponding to the actual output measurement at time tk. The estimated
virtual input Ix is the third component of Xe

k and its associated uncertainty can thus
be deduced from the third diagonal component of the covariance matrix Pk.
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