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Abstract Modular robots consist of multiple individual robotic modules that are
connected to form various configurations. They are also equipped with locomotion
capabilities so they can move to change their interconnections and self-reconfigure
into different configurations. In this paper, we propose a distributed algorithm for
configuration recognition designed for large-scale 2D lattice-based modular robots.
The algorithm consists of searching the set of borders to be then transmitted to the
modules in order to enable them to collectively discover an efficient global represen-
tation of their current configuration. To assess the performance of the proposed algo-
rithm, we conducted simulations on three different configurations and compared it
to a box-based approach. The results highlight significant reductions in communica-
tion complexity across all configurations. Additionally, our algorithm demonstrated
improved memory efficiency in two out of three configurations.

1 Introduction

Self-reconfigurable modular robots are composed of multiple autonomous modules
that can physically attach, detach, and rearrange themselves to change the global
shape of the set in order to transform into different objects or to adapt to various
tasks or environments. These robots offer high versatility and scalability, allowing
them to change their shape and function based on the requirements of specific ap-
plications, such as exploration, rescue missions, and assembly tasks.

One potential application of self-reconfigurable modular robots is programmable
matter [4]. Modular robot-based programmable matter envisions materials built as
an assembly of thousands of micro-scale robotic modules. By leveraging the mod-
ularity and self-reconfigurability of these modules, programmable matter offers a
new level of flexibility, enabling the creation of smart, responsive materials that
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Fig. 1: A programmable matter system based on self-reconfigurable modular robots
transforms from a mug shape (a) to a plate shape (c) passing through an intermediate
configuration (b).

can reshape themselves to meet specific needs, whether for industrial, medical, or
exploratory purposes. Objects built with programmable matter can possess compu-
tation at the core of the object itself, allowing the object to not only change its shape
but also to perform computations and make decisions autonomously. Fig. 1 shows
an example of an object made by tiny spherical module reconfiguring itself from a
mug shaped configuration to a plate shaped configuration.

However, for these robots to operate effectively in a self-organizing manner, they
must be able to recognize and understand their current configuration. Configuration
recognition is essential for tasks like self-reconfiguration, fault tolerance, and global
coordination. Configuration recognition consists of giving every individual module
the awareness about the arrangement of the modules in the whole configuration. A
module should be able to efficiently localize itself and determine whether another
module, not directly connected to it, is present at a given position or not. This al-
low the modules to make informed decisions and collaborate efficiently with one
another. For instance, during distributed self-reconfiguration planning, being aware
of the current configuration allows a local calculation of the difference between the
current and goal configurations which facilitates planning.

This paper presents a distributed algorithm for large-scale, 2D lattice-based mod-
ular robots to recognize their current configuration. Our approach enables modules
to collaboratively determine their configuration by detecting and sharing border in-
formation. Once borders are identified and stored, modules can employ the even-odd
ray casting method [8] to verify the presence of modules at specific positions. The
algorithm involves a message-passing border traversal process to establish an effi-
cient representation, which is then shared with all modules.

The paper is organized as follows: Section 2 reviews related work. Section 3
details the distributed border search algorithm, including system assumptions and
complexity analysis. Section 4 presents a simulation-based evaluation and compar-
ison with a box-based representation algorithm. Finally, Section 5 concludes the
paper and outlines future work.
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2 Related Work

Matching and mapping a given configuration to a library of known configurations,
has been studied in [2, 9, 7]. A common approach involves a discovery phase where
the current configuration is represented as a connectivity graph. Nodes in this graph
correspond to individual modules, and edges represent connections between them.
This graph is then matched against a known configuration to identify corresponding
modules.

Butler et al. [5] address the matching problem using a distributed goal recognition
algorithm that determines whether a configuration matches a target shape without
requiring full discovery. Similarly, Baca et al. [2] present a distributed real-time
algorithm for configuration discovery, enabling modules to detect each other and
construct a connectivity graph using wireless infrared communication.

However, connectivity graphs face scalability issues as their size increases pro-
portionally to the number of modules. This becomes particularly problematic in
high-density programmable matter systems composed of a large number of mi-
croscale robots. Lattice-based modular robots can alleviate these challenges by ex-
ploiting geometric information to construct more compact shape representations.

In [10, 6] the authors propose transforming a CAD model into overlapping
”bricks” to simplify the process for modules to determine their positions relative to
the goal configuration, facilitating self-reconfiguration. Meanwhile,[12] introduces
the use of Constructive Solid Geometry (CSG) trees. This model, derived from the
field of image synthesis, represents shapes using a hierarchical tree structure: leaves
contain basic geometric primitives, and internal nodes define geometric transforma-
tions and combination operations (e.g., union, intersection, or difference), with the
root representing the final shape. These methods rely on a centralized computation
to encode the goal shape and transmit it to the modules for self-reconfiguration.

In [3] a distributed 3D shape recognition algorithm for lattice-based modular
robots is proposed. It consists of finding a set of overlapping boxes that cover the
whole configuration through message-passing between directly attached modules.
While this method provides an effective representation of the current shape, its
memory requirements grow for configurations with many irregular border features.
Each stair-like corner along the boundary requires an additional box, resulting in
an increase in memory usage which can become prohibitive in resource-constrained
modules.

In this paper, we propose a distributed algorithm designed for large-scale 2D
lattice-based modular robots. Our approach enables modules to collectively discover
the overall shape of their configuration represented as a set of borders. The goal is
to reduce memory usage relative to the boxes approach [3] in the case of irregular
configurations by allowing non-straight segments in the border representations.
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3 Algorithm Description

Our robots are placed in a square 2D grid, so each cell has 4 neighbors connected
by its border. Since we’re considering 4 connections, modules are part of the border
if they have at least one empty direct neighbor cell. Two types of border can appear:
external borders and internal borders, which indicate a hole in the configuration.

In this section, we describe the distributed algorithm for determining the set of
borders in a given configuration. After the borders are identified, their represen-
tation can be compressed and stored in each module’s memory. This data allows
each module to locally verify whether a given position is part of the current con-
figuration. The verification is performed using the ray-casting algorithm [8], which
counts how many times a ray, originating from the given position and extending in a
predetermined direction, intersects with the borders. A position outside the config-
uration will result in an even number of ray-border intersections. A position inside
the configuration will result in an odd number of intersections.

In the next sections, a distributed algorithm is described to search for borders.
The system assumptions are given in section 3.1. The algorithm description consist-
ing of messages tracing each border to determine an efficient border representation
is provided in section 3.2. A complexity analysis in terms of time and communica-
tion is provided in section 3.3.

3.1 System assumptions

In this work, it is assumed that the modular robot system has the following proper-
ties:

• Modules are positioned on the cells of a regular 2D square lattice, where each
module has local knowledge of its coordinates and orientation.

• Communication is restricted to neighbor-to-neighbor message-passing. A mod-
ule can send messages to its adjacent neighbors via one of its connectors, and the
receiving module can identify the direction of the sender.

• Each module’s perspective is limited to its immediate neighborhood, with com-
putations performed locally based solely on information obtained through message-
passing within the neighborhood.

• Each module is aware of its direct connections, specifically identifying which of
its borders are connected to neighboring modules and which are not.

• The configuration is assumed to remain fixed and fully connected throughout the
process. No modules are added or removed during the algorithm’s execution.
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Algorithm 1: Borders search

input : P // Module’s position
directions←{FRONT,RIGHT,BACK,LEFT} // Possible movement

directions
dirInit // Key-value pairs where keys corresponds to

received direction and values to initiators positions
output: border // The border’s information. A set of corners’

coordinates.

1 Function isInitiator():
2 return empty(x,y−1)∧ (empty(x−1,y)∨¬empty(x+1,y−1)))

3 Function getNextDir(prevDir ∈ directions):
4 k← (prevDir+3) mod 4
5 for i ∈ [0,3] do
6 Q← P+nextPositionInDir(P,k) // Q gets the position of the

neighbor in direction k
7 if (¬empty(Q)) then
8 return k
9 k← (k+1) mod 4

10 Initialization:
11 if isInitiator() then
12 nextDir← getNextDir(FRONT )
13 send BORDER SEARCH MSG(nextDir,border∪P,P) to nextDir

14 Msg Handler BORDER SEARCH MSG(prevDir, border , initiatorPos):
15 if (P = initiatorPos) then

// border found
16 return
17 if (prevDir ∈ dirInit ∧dirInit[prevDir]< initiatorPos) then
18 return // already received a message from prevDir
19 nextDir← getNextDir(prevDir)
20 if (nextDir ̸= prevDir∧ isOnBorder()) then
21 if (|border|> 2) then
22 alt← altitude to the hypotenuse of the triangle formed by P, border[|border|−1]

and border[|border|−2]
23 if (collinear(P,border[|border|−2],border[|border|−3])∧alt <

√
2) then

24 border← border \{border[|border|−1],border[|border|−2]}
// Is a corner

25 border← border∪P
26 dirInit[prevDir]← initiatorPos
27 send BORDER SEARCH MSG(nextDir, border, initiatorPos) to nextDir

3.2 Borders Definition

Algorithm 1 describes a distributed algorithm to search for borders. The algorithm
is initiated by modules satisfying the following condition (cf. Algorithm 1 l. 1-2):

initiator(x,y) = empty(x,y−1)∧ [empty(x−1,y)∨¬empty(x+1,y−1)] (1)
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Fig. 2: An example of initiators and two paths following borders. Initiators are
shown in yellow. The red and blue arrows shows the only two completed paths
starting and ending at the red and blue initiators.

This condition ensures that all borders internal and external will have at least one
initiator. All initiators will initiate a message (BORDER SEARCH MSG) that will
follow the border (cf. Algorithm 1 lines 11-13). Fig. 2 (left) shows all initiators
modules in yellow. The following of the border is done according to the getNextDir
functions that returns the next direction to follow (cf. Algorithm 1 lines 3-9). Each
module records the initiator’s position for every received direction to track ongoing
border searches and to allow participation in multiple borders.

The message will proceed along its path if the receiving module has not yet
received the message from the sender’s direction, or if the initiator’s position is
smaller than the previously recorded initiator position. A position (x1,y1) is defined
as less than another position (x2,y2) if and only if the eq.2 is verified.

(x1,y1)< (x2,y2) ⇐⇒ [(x1 < x2)∨ ((x1 = x2) ∧ (y1 < y2))] (2)

This ordering prioritizes the x−coordinates and uses the y-coordinates as a tiebreaker
when x-coordinates are equal. This guarantees that only the initiator with the min-
imum position receives the message after a complete traversal of the border. Con-
sequently, this marks the termination of the border-following process, ensuring that
all border information is collected by that module (cf. Algorithm 1 lines 15-18). The
initiator can then broadcast the border representation to all the system.

The border information is expressed by the sequence of corners coordinates, each
encoded in two bytes, as shown in Algorithm 1 lines 20-24. These corners are found
through the message-passing border traversal. At each change in message direction,
the position Pm of module m is added to the border if the following conditions are
satisfied (cf. Algorithm 1 line 22):

1. Pm and the two positions before the last added one Pm−2 and Pm−3 are not
collinear.
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Fig. 3: An example of a border found using Algorithm 1. The green cells represent
modules whose coordinates are border’s corners. The border segments are shown in
red. The two Segments formed by modules 1,5 and 14 and 22, 15 and 6 satisfies the
collinearity conditions. Note that a segment is not formed between 9,2,3 and 1 since
one more corner is required.

2. There should be no empty cell between the occupied cells in a non-straight border
segment. This condition holds if an empty cell cannot fit in the right triangle
formed by Pm, Pm−1 and Pm−2. It can be verified by checking that the length of the
altitude to the hypotenuse is less than

√
2. The altitude can be calculated using

the formula a×b
c where a and b are the triangle’s legs, and c is the hypotenuse

length.

A border example found by the described algorithm can be seen in Fig. 3.

3.3 Complexity analysis

The number of messages needed to follow and identify the borders is O(ib), where
i represents the number of initiators, and b denotes the number of modules on the
borders. Additionally, O(n) messages will be required to broadcast the borders rep-
resentations to all the modules in the configuration. Since both i and n are bounded
by n, the communication complexity can be expressed as O(n2).

As for the time complexity, since the messages for each of the borders searches
are sent in parallel, the time complexity of finding the borders representation is O(n)
where n is the largest possible border length. In order to broadcast the representation
to all modules, O(d) time where d is the diameter of the configuration is required.
Since d ≤ n, the overall time complexity can be expressed as O(n).
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4 Evaluation

Fig. 4: Blinky Blocks

We implemented the algorithm in VisibleSim [11], a discrete-event simulator de-
signed for distributed modular robotic systems, with support for Blinky Blocks [1].
The Blinky Blocks system comprises centimeter-scale blocks connected via magnets
in a square cubic lattice configuration, as illustrated in Fig. 4. Each block is a cube
approximately 40 mm in size, equipped with processing, storage, and communica-
tion capabilities. Communication between Blinky Blocks is facilitated through serial
links with directly connected neighbors, using packets with a payload size of 227 B.

(a) Diamond (b) One hole (c) Multiple holes

Fig. 5: The three configurations captured from VisibleSim. Green modules represent
corners and the red modules are the terminal borders initiators.

We have done the comparison on three different configurations shown in Fig. 5
with different characteristics:

1. Diamond: A diamond-shaped configuration composed of 133 modules, featuring
stair-like borders on all sides.
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2. Single hole: An 82-module configuration with a single hole that is not aligned
with the axes. The external borders of this configuration exhibit some irregulari-
ties.

3. Multiple Holes: A larger configuration comprising 337 modules. It has a regular
external border that is aligned with the axes and multiple internal holes of various
sizes and shapes.

(a) Diamond (b) One hole (c) Multiple holes

Fig. 6: The three configurations captured from VisibleSim showing the found boxes
in different colors.

Next, we compare our border-search algorithm with the axis-aligned overlapping
boxes algorithm presented in [3]. This algorithm involves:

1. Projecting messages backward to determine the length of each segment.
2. Expanding segments as much as possible in the appropriate directions to form

maximal rectangles.
3. Stacking rectangles vertically to create overlapping 3D boxes, provided the bot-

tom rectangle can fit within the one above it. For a more in-depth explanation,
please refer to the original paper.

Fig. 6 shows the boxes found on the tested configurations. Each box can be encoded
in 4 bytes to store the coordinates of two diagonally opposite corners.

Fig. 7 compares both methods in terms of communication, time and memory
needed to store the representation. A comparison of the two methods in Fig. 7a re-
veals that the border method requires significantly fewer messages than the boxes
method to determine the configuration representation. This is because the border
method only exchanges messages along the borders, while the boxes method re-
quires message exchange across the entire configuration to find boxes dimensions.

However, as shown in Fig. 7b, the border method is more time-consuming. This
is due to the sequential nature of border tracing, where messages propagate sequen-
tially from an initiator until they return to the same initiator. In contrast, the boxes
method uses parallel messages, enabling the simultaneous identification and expan-
sion of segments to determine box dimensions. The difference is particularly pro-
nounced in diamond configurations due to the stair-like borders, which increase the
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Fig. 7: A comparison between the border and the boxes for configuration recogni-
tion. (a) compares the number of exchanged messages, (b) compares the time for the
algorithm execution and (c) compares the memory needed for the representation.

distance messages must travel as modules can only communicate with directly at-
tached neighbors.

As for the memory needed to store the configuration representation, it can be
seen in Fig. 7c that the border method is more memory efficient in the diamond
and single border configurations. However, the box method is more memory effi-
cient for the multiple holes configuration. The reason is that a single box, encoded
using 4 bytes, can effectively cover a region between two borders. Conversely, the
border-based method might requires multiple corner points to represent the seg-
ments of these borders, resulting in increased memory usage. For example, the left-
most blue box in Fig. 6c encompasses 6 border corners requiring 12 bytes, as seen
in Fig. 5c. Therefore, in configurations with fewer aligned holes, the border method
demonstrates better memory efficiency. However, for configurations with numerous
aligned holes where boxes can cover regions connected to multiple borders, the box
method exhibits better efficiency.

5 Conclusion

This paper presents a distributed algorithm for 2D lattice-based modular robots to
efficiently recognize their current configuration. The algorithm enables modules to
collaboratively determine a compact representation of the configuration, allowing
them to locate themselves and verify the presence of distant modules at any cells
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positions. By identifying internal and external borders, modules can collectively
construct a global configuration representation.

The algorithm is evaluated in simulation on Blinky Blocks modules and compared
with another algorithm that builds a representation based on overlapping boxes. The
results indicate significant improvements in communication complexity for the three
tested configuration and memory usage for two out of three tested configurations.
Nevertheless, the box-based method presents faster execution times due to its use of
a higher degree of message concurrency.

Future research directions include extending the border-based representation al-
gorithm to 3D configurations and conducting a thorough comparative analysis with
the box-based approach. For instance, new methods combining the border-based and
boxes-based representations can be explored to find boxes that are not necessarily
aligned with the axes or even polyhedrons. Additionally, considering the dynamic
nature of self-reconfigurable modular robots, where modules can change positions
and consequently alter the configuration, it is essential to develop dynamic config-
uration recognition algorithms capable of maintaining real-time representations of
the configuration during self-reconfiguration processes.
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