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Abstract

This paper shows a finite-dimensional controller design for the boundary control of the heat equation on a 1D spatial
domain. The controller exponentially stabilizes the plant at the desired equilibrium profile. The controller is defined using
irreversible port-Hamiltonian systems formulation, and it is motivated by passivity-based control techniques developed for
port-Hamiltonian systems defined on 1D spatial domains. The boundary controller is designed to have an exponentially
stabilizing energy-shaping and entropy-assignment effect. It works with an actuation at one boundary and a reflective
boundary condition at the other. The controller can handle situations where measurements are available at only one or
both boundaries. The paper characterizes the existence of structural invariant functions to shape the closed-loop energy
and assign the required closed-loop entropy. The design approach is illustrated through numerical simulations.
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1. Introduction

Irreversible port-Hamiltonian systems (IPHS) formula-
tions have been proposed for the description of thermody-
namic systems in [1–4] as an extension of PHS [5–7] for
irreversible thermodynamic systems. In this formulation,
thermodynamic driving forces are described by locally de-
fined pseudo-brackets, which are used to modulate the ge-
ometric structure of the system to express not only the
first law (conservation of energy) but also the second law
of Thermodynamics (irreversible entropy creation). The
heat equation corresponds to a particular class of IPHS
in which only heat transport occurs. The control of the
heat equation has been widely studied in the literature.
The parabolic form of the one-dimensional (1D) heat equa-
tion is commonly used as a benchmark for control design
methods for distributed-parameter systems, such as the
ones based on null controllability [8], adaptive control [9],
flatness [10], backstepping [11] and non-negativity control
constraints [12], among others [13, 14]. In these works, the
state variable is commonly given as a deviation variable,
i.e., the difference between the temperature profile of the
process and the target equilibrium profile, designing the
control laws to guarantee the convergence to zero of the
system. When designing controllers for such systems, at
least one boundary condition is assumed to be zero or con-
stant throughout. This assumption influences the control
design process, requiring the system trajectories and equi-
librium profiles to meet these boundary conditions. On
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the other hand, many design methods [9, 11] rely on trans-
formations that allow the rewrite of the system dynamics
in a more suitable formulation to design the control laws.
The transformed system generally lacks physical interpre-
tation, requiring an inverse transformation for the physical
interpretation of both design and control parameters. In
[15] a boundary controller for the heat equation was de-
rived using the IPHS formulation and as Lyapunov func-
tion the availability function [16, 17], however the stability
proof of the controller relies on the explicit calculation of
the closed-loop trajectories.

This work focuses on designing a controller to stabilize
the heat equation on a 1D spatial domain. The controller
uses energy-shaping and entropy assignment techniques to
stabilize the desired equilibrium profile exponentially. The
system has actuation at one boundary and a reflective
boundary condition at the other boundary, and we em-
ploy the IPHS formulation to describe the system dynam-
ics. These techniques are motivated by the passivity-based
control methods developed for one-dimensional PHS [18–
20]. The existence of structural invariant functions is char-
acterized by shaping the closed-loop energy and assigning
the required closed-loop entropy. The proposed boundary
controller encompasses the cases in which measurements
are available at only one or both boundaries.

The paper is organized as follows. Section 2 presents
a brief recall on boundary controlled (BC)-IPHS and the
BC-IPHS formulation of the heat equation. Section 3 gives
the proposed boundary controller. Section 4 shows numer-
ical simulations, and Section 5 presents some final remarks
and comments on future work.
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2. Irreversible port-Hamiltonian formulation of
the heat equation

Boundary-controlled PHS (BC-PHS) were introduced in
[21] and generalized to dissipative PHS in [22, 23]. This
class of formulations, which has its roots in mechanical
(and electrical) engineering, arises naturally in the mod-
eling of multi-physical systems and has been proven to be
very useful for the study of well-posedness, stabilization,
control design, and spatial approximation [24]. A dissipa-
tive PHS defined on a 1D spatial domain ζ ∈ [0, L] is given
by

∂tx = (P0 + P1∂ζ) δxH

− (G0S0G
⊤
0 −G1∂ζS1G

⊤
1 ∂ζ)δxH,

u(t) = W̃B

[
δxH|L
δxH|0

]
, y(t) = W̃C

[
δxH|L
δxH|0

] (1)

with the extensive variables as state x =
[
x1 . . . xn

]⊤
,

P1 = P⊤
1 ∈ Rn×n, P0 = −P⊤

0 ∈ Rn×n, G0 = G⊤
0 ∈ Rn×m,

G1 ∈ Rn×m, S0 = S⊤
0 > 0 , and S1 = S⊤

1 > 0 ∈ Rm×m

with m ≤ n. We refer to δxH and δsH as the variational
derivatives of the total energy concerning x and s, respec-
tively, as defined in [5, 6]. In (1), the matrices P0 and P1

are related to the interconnection between energy-storing
elements, while matrices G0 and G1 to the interconnec-
tion between energy storing and energy dissipating ele-
ments. The matrices S0 and S1 contain the parameters
of the energy-dissipating phenomena, such as resistance or
damping coefficients. The matrices W̃B and W̃C are of
appropriate size and parametrized [22, 23] such that the
energy balance is

Ḣ =

∫ L

0

δxH
⊤ (G1∂ζS1G

⊤
1 ∂ζ −G0S0G

⊤
0

)
δxH dζ + y⊤u

≤ y⊤u

If Si = 0, then (1) is energy preserving or reversible. If
Si ̸= 0, the system is dissipative, meaning that (mechani-
cal or/and electrical) energy is being transformed into heat
by some dissipative phenomena, such as mechanical fric-
tion or the Joule effect.

Remark 1. Even if defined for dissipative electro-
mechanical systems, formulation (1) can be used to re-
present the heat equation. In this case, with only the ther-
mal domain, the entropy function is used in place of the
state variable x and P0 = P1 = G0 = 0.

IPHS on finite-dimensional domains were defined [1] as
an extension of PHS to represent not only the energy
balance but also the entropy balance, essential in ther-
modynamic systems. The extension of this framework
for infinite-dimensional systems defined on 1D spatial do-
mains was initially proposed in [2] for a class of diffusion
processes and generalized for a large class of thermody-
namic systems in [4].

2.1. Boundary controlled IPHS

The state variables of a BC-IPHS are given by n + 1
extensive variables composed of x and the entropy per unit
length s. According to [4], the total energy functional of
the system is defined as

H(t) =

∫ L

0

h(x(ζ, t), s(ζ, t))dζ (2)

where h(x, s) is the total energy per unit length (thermal,
electric, magnetic, mechanical, etc), such that, ∂sh = T
with T = T (ζ, t) denoting the temperature. The total
entropy functional is given by

S(t) =
∫ L

0

s(ζ, t)dζ. (3)

Unlike PHS, the structure matrices of IPHS depend ex-
plicitly on the total energy’s variational derivative (co-
energy variables). This allows us to guarantee that both
the first and second laws of Thermodynamics are satisfied
as a structural property. The dependence of the structure
matrices on the co-energy variables is characterized by a
set of nonlinear modulating functions that are defined by
the thermodynamic driving forces and the physical param-
eters of the irreversible thermodynamic phenomena that
are present in the system. The following locally defined
pseudo-brackets can express the thermodynamic driving
forces

{Z|G|W} =

[
δxZ
δsZ

]⊤ [
0 G

−G∗ 0

] [
δxW
δsW

]

{Z|W} =(δsZ)∂ζ (δsW)

for some smooth functionals Z and W, where G∗ is the
formal adjoint of the differential operator G.
Definition 1. [4] A BC-IPHS undergoing m irreversible
processes is defined by the PDE
[
∂tx
∂ts

]
=

[
P0 G0R0(x)

−R0(x)
⊤G⊤

0 0

] [
ex
es

]
+

[
P1∂ζ(·) ∂ζ (G1R1(x)·)

−R1(x)
⊤G⊤

1 ∂ζ(·) rs(x)∂ζ(·) + ∂ζ(rs(x)·)

] [
ex
es

]
(4)

where ex(ζ, t) = δxH and es(ζ, t) = δsH are the co-state
variables, R0(x),R1(x) ∈ Rm×1 and rs(x) ∈ R stand for
the vectors of modulating functions with

R0,i =γ0,i(x, ex, es){S|G0(:, i)|H},
R1,i =γ1,i(x, ex, es){S|G1(:, i)∂ζ |H}

and
rs = γs(x, ex, es){S|H}

with γk,i(x, ex, es), γs(x, ex, es) : R2n+1 → R, γk,i, γs ≥ 0,
k = {0, 1}. The boundary inputs and outputs are given by

u(t) = WB

[
ẽ|L
ẽ|0

]
and y(t) = WC

[
ẽ|L
ẽ|0

]
(5)
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where the boundary port variables are ẽ(ζ, t) =

[
ex

R(x)es

]

with R(x) =
[
1 R⊤

1 (x) rs(x)
]⊤ ∈ Rm+2, and WB

and WC are matrices of appropriate size (their precise
parametrization can be found in [4])such that the total en-
ergy balance

Ḣ = y⊤u (6)

and the total entropy balance

Ṡ =

∫ L

0

σsdζ + u⊤
s ys (7)

are satisfied, where us and ys are entropy conjugated in-
puts/outputs, respectively, and σs ≥ 0 is the total internal
entropy production [4].

Let us comment on the Definition 1. The matrices P0,
P1, G0, and G1 have the same physical interpretation as
for PHS. The main feature of (4) is the definition of the
vector of modulating functions R0 and R1. The elements
of these vectors are modulating functions defined by each
of the irreversible thermodynamic phenomena of the sys-
tem. For instance, if the entropy generated by an electric
current through a resistance is considered, then the corre-
sponding modulating function will be defined by the resis-
tance’s constitutive relation, characterized by the positive
function γ, and by the thermodynamic driving force, which
produces the entropy, which in this case is the electrical
current and which is precisely given by a pseudo-bracket
{S|G|H}, where G is the operator which characterizes how
the resistance is interconnected with the energy storing ele-
ments of the system. The input and output vectors (5) are
defined by the boundary values of the co-energy variables.
However, similar to dissipative BC-PHS [22], the mechani-
cal energy transformed into entropy at the boundaries has
to be taken into account, the reason why the boundary
port variables are completed with the vector R(x)es. It is
interesting to notice in the second structure matrix of (4)
the diagonal element rs(x)∂ζ + ∂ζ(rs(x)). This element
does not characterize entropy production due to the con-
version of mechanical energy into entropy but rather the
entropy produced by pure heat transport. In this case,
rs is defined by the function γs, which characterizes the
thermodynamic parameters of a constitutive relation like
Fourier’s law, and the temperature, which is precisely de-
fined by the pseudo-bracket {S|H}. This term models the
heat equation. For further details and examples of IPHS
on finite and infinite dimensional domains and the general
characterization of WB and WC , we refer the reader to
[1, 4]

2.2. BC-IPHS formulation of the heat equation

Consider the conservation law of the internal energy per
unit length u = u(ζ, t) defined on interval [0, L], as follows

∂tu = −∂ζq, ∀ζ ∈ [0, L] (8)

where q = q(ζ, t) denotes the heat flux. Using the Fourier’s
law q = −k∂ζT , where k is the heat conduction coefficient
of the medium and T = T (ζ, t) denotes the temperature,
and the calorimetric law du = cvdT , with cv the heat
capacity per unit length, we rewrite (8) as

cv∂tT = ∂ζ (k∂ζT ) , (9)

which corresponds to the standard form of the heat equa-
tion [5]. This formulation is useful for simulations since
it is well-known and easy to discretize when cv is time-
invariant [25]. However, from the first and second thermo-
dynamic laws perspective, the information must be derived
implicitly since (9) does not retain the structure of a con-
servation law. On the other hand, defining the entropy
flux qs = qs(ζ, t) as qs = q/T , and using Gibbs’ relation
du = Tds, the heat equation can be expressed through the
entropy balance, i.e.,

T∂ts =− ∂ζ (Tqs)

∂ts =− qs
T
∂ζT − ∂ζqs (10)

where −∂ζqs refers to the entropy diffusion through the

media, and −qs
T
∂ζT =

k

T 2
(∂ζT )

2 ≥ 0 describes the en-

tropy production per unit length due to the heat flux.
Moreover, considering the total energy and total entropy,

H =

∫ L

0

u dζ and S =

∫ L

0

s dζ,

respectively, we obtain that δsH = ∂su = T and δsS = 1.
Since the only irreversible process is due to the entropy
flux, there is only one thermodynamic driving force, which
is given by the pseudo-bracket {S|H} = δsS∂ζ(δsH) =

∂ζT . Then, defining rs = γs{S|H}, with γs =
k

T 2
> 0,

and es = δsH = T we obtain that qs = −rses and

−qs
T
∂ζT = γs{S|H}2. As a consequence, assuming a re-

flective boundary condition at ζ = 0 and a boundary con-
trol on the entropy flux at ζ = L, i.e.,

−qs|0 = rses|0 = 0, (11)

−qs|L = rses|L = u, (12)

the heat equation leads to the BC-IPHS of Definition 1

with P0 = P1 = G0 = G1 = 0 and ẽ =
[
es rses

]⊤
, i.e.,

∂ts = rs∂ζes + ∂ζ (rses)[
u
0

]
= WB

[
ẽ|L
ẽ|0

]
=

[
−qs|L
−qs|0

]
,

y = WC

[
ẽ|L
ẽ|0

]
=

[
T |L
−T |0

]
(13)

where WB =

[
0 1 0 0
0 0 0 1

]
and WC =

[
1 0 0 0
0 0 −1 0

]
.

The BC-IPHS (13) expresses explicitly the first and sec-
ond laws of Thermodynamics. The temperature T is the
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power-conjugated variable minus the entropy flux, −qs,
i.e., u represents the entropy exchange with the external
environment and the product [u 0]⊤y the power supplied
to the system. As a consequence, the total entropy and
total energy balance are

Ṡ =

∫ L

0

∂ts dζ =

∫ L

0

rs∂ζ(es) dζ + rses|L0

=

∫ L

0

γs{S|H}2︸ ︷︷ ︸
σs≥0

dζ + u (14)

and

Ḣ =

∫ L

0

es∂ts dζ =

∫ L

0

(esrs∂ζ (es) + es∂ζ (rses)) dζ

= (esrses)|L0 = −Tqs|L0 = y⊤
[
u
0

]
(15)

which shows that the BC-IPHS (13) is conservative and
satisfies the first and second laws of Thermodynamics.

On the other hand, considering an isotropic assump-
tion (k constant), the heat equation reaches the dynamic
equilibrium for linear temperature profiles [26]. In this
case in particular, we say that T is a solution of (13)
if T ∈ T where T := {f(ζ) ∈ H2([0, L],R)|∂ζf |0 = 0},
i.e., T ∗ is an equilibrium profile of (13) if T ∗ ∈ T∗ where
T∗ := {f(ζ) ∈ T|∂ζ (k∂ζf) = 0 in (0, L)}.

3. Boundary control by interconnection

Heat equation

Infinite-dimensional IPHS

Controller

Finite-dimensional IPHS

C : Invariant

y

ucyc

uu′

−

Figure 1: CbI of the heat equation

This section presents a boundary controller designed as
the interconnection of the BC-IPHS formulation of the
heat equation with a nonlinear finite-dimensional con-
troller. The design extends the control by interconnec-
tion (CbI) for BC-PHS [20] to BC-IPHS. The objective is
to characterize the conditions for the existence of closed-
loop invariant functions, which are then used to shape the
closed-loop energy function and assign the closed-loop en-
tropy. The control scheme is shown in Figure 1. Denoting
by xc ∈ R the controller state and by Hc(xc) ∈ R its
energy function, the nonlinear controller is given by

ẋc = 0ec +Gc(xc,uc)uc, yc = G⊤
c (xc,uc)ec, (16)

where ec = ∂xcHc. We consider the parametrization
Gc(xc,uc)uc to encompass various types of systems, such
as the heat equation [1, Sec. 2.4]. Figure 1 defines the
following interconnection rule between the heat equation
and the controller

uc = y,

[
u
0

]
= −yc +

[
u′

0

]
(17)

Denoting by C and B the boundary operators such that the
output and input in (13) can be expressed as y = Ces and[
u
0

]
= Bes, respectively, we obtain the coupled PDE-ODE

system that follows
[
∂ts
ẋc

]

︸ ︷︷ ︸
ẋcl

=

[
rs∂ζ(·) + ∂ζ(rs·) 0

Gc(xc,uc)C 0

]

︸ ︷︷ ︸
Jcl

[
es
ec

]

︸︷︷︸
ecl[

u′

0

]
=
[
B G⊤

c (xc,uc)
]

︸ ︷︷ ︸
WBcl

ecl

(18)

where ecl ∈ Ecl denote the co-states of the closed-loop
system, with Ecl = T×R the corresponding co-state space
and the inner product

〈
f1, f2

〉
Ecl

=

∫ L

0

f1
1 (ζ)f

2
1 (ζ)dζ + f1

2 f
2
2

for all f i = [f i
1(ζ) f i

2]
⊤ ∈ Ecl. The operator Jcl satisfies

〈
f1,Jclf

2
〉
Ecl

=
〈
−Jclf

1, f2
〉
Ecl

+ [Cf1
1 ]

⊤WBcl
f2 + [WBcl

f1]⊤Cf2
1 . (19)

Setting WBcl
f i = 0, ∀f i ∈ Ecl we obtain that〈

f1,Jclf
2
〉
Ecl

=
〈
−Jclf

1, f2
〉
Ecl

, i.e., Jcl is formally skew-

adjoint on the space Ecl.

Definition 2. [20, 27] Consider the boundary control sys-
tem (18) with u′ = 0. A function C : T × R → R is an
invariant of (18) if Ċ = 0 along the trajectories (18) for
any ecl.

Assumption 1. The function C(s, xc) is searched of the
particular form

C(s, xc) = Γxc +

∫ L

0

f(s(ζ))dζ = κ (20)

where κ is a constant and f(s) is a continuous function.

Proposition 1. Consider the BC system (18) with u′ = 0.
Then (20) is an invariant of (18) if

⟨Jclϵ, ecl⟩Ecl
=0 (21)

[
B G⊤

c (xc,uc)
]
ϵ =0 (22)

where

ϵ =

[
ϵs
ϵc

]
=

[
δsC
∂xc

C

]
=

[
∂sf(s)

Γ

]
(23)
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Proof. The time derivative of (20) is

Ċ = Γẋc +

∫ L

0

(∂sf(s)∂ts) dζ

Using (23), Ċ becomes along the trajectories of (18), with
WBcl

ecl = 0 since u′ = 0, as

Ċ = ⟨ϵ,Jclecl⟩Ecl

(19)
= −⟨Jclϵ, ecl⟩Ecl

+ [WBcl
ϵ]⊤Ces

Notice that C is an invariant of (18) if and only if Ċ = 0,
i.e., −⟨Jclϵ, ecl⟩Ecl

+ [WBcl
ϵ]⊤Ces = 0, which is true if

conditions (21) and (22) are satisfied.

Proposition 2. The function C satisfies Proposition 1 if
f(s) = αu(s) + c1 where c1 is a function that does not
depend on s. The state of the control system (16) is then
given by the state feedback

xc = −α

Γ

∫ L

0

u(s)dζ +
k̄

Γ
= −α

Γ
H(s) +

k̄

Γ
(24)

with k̄ =

(
k +

∫ L

0

c1dζ

)
and the controller energy func-

tion is

Hc =
Γ

α
xc + kc = −H(s) + k′ (25)

where k′ = k̄
α + kc, with kc a constant. Furthermore, the

energy function of the closed-loop system is constant and
equal to k′.

Proof. Considering u′ = 0 in (18), i.e., Bes = −G⊤
c ec,

from condition (21),

0 = ⟨Jclϵ, ecl⟩Ecl

=

∫ L

0

(rs∂ζϵs + ∂ζ(rsϵs)) esdζ + (GcCϵs) ec

=

∫ L

0

(rs∂ζϵs + ∂ζ(rsϵs)) esdζ − (Cϵs)⊤ Bes

=

∫ L

0

(rs∂ζϵs + ∂ζ(rsϵs)) esdζ −
∫ L

0

∂ζ (ϵs(rses)) dζ

=−
∫ L

0

(ϵs∂ζ (rses)− es∂ζ (rsϵs)) dζ

which is satisfied for all es if and only if ϵs∂ζ (rses) −
es∂ζ (rsϵs) = 0. The only nontrivial solution is given by

ϵs = ∂sf(s) = αes with ∂ζα = 0 (26)

Since es = δsH = ∂su(s) = T (ζ, t) implies ∂sf(s) =
α∂su(s) the function C satisfies Proposition 1 if f(s) =
αu(s) + c1 with c1 independent of s. Then from (20) the
state of the controller (16) is given by the feedback (24).
From condition (22) Bϵs = −G⊤

c (xc,uc)ϵc and by (26) it

is obtained that α

[
u
0

]
= −G⊤

c (xc,uc)Γ. The interconnec-

tion rule (17) becomes

−αyc = −G⊤
c (xc,uc)Γ, yc = G⊤

c (xc,uc)
Γ

α

and comparing terms with (16) we have that ec = ∂xcHc =
Γ

α
, implying that the energy of the controller is (25). The

energy of the closed-loop system is thus given by

Hcl = H+Hc =

∫ L

0

u(s)dζ +
Γ

α
xc = k′.

Which is constant.

Although the energy Hcl of the closed-loop system is
constant, the state of the controller provides a measure
of the internal energy of the heat equation. For instance,
setting α = −1, Γ = 1 and k̄ = 0 the state of the controller
is

xc(t) =

∫ L

0

u(ζ, t)dζ = H(t), xc(0) = H(0)

i.e., xc is a measure of the total energy of (13). Setting
α = −1, Γ = 1 and k̄ = −H(0),

xc(t) =

∫ L

0

(u(ζ, t)− u0) dζ = ∆H, xc(0) = 0

with ∆H = H(t) − H(0). In this case, xc measures the
energy supplied by the controller to the process. Setting
α = −1, Γ = H(0) and k̄ = −H(0) the controller state
characterizes the normalized total energy of (13), xc(t) =
H/H(0) if xc(0) = 1, and the normalized energy supplied
by the controller, xc(t) = ∆H/H0 if xc(0) = 0.
Notice that the conditions in Proposition 1 impose no

constraint on the matrix Gc(xc,uc). Hence, Gc is a degree
of freedom used to guarantee the convergence of the closed-
loop system to the desired equilibrium profile.

Proposition 3. The boundary controller (16) with

G⊤
c =

α

ΓT |L

[
g(xc,y)

0

]
(27)

where

g(xc,y) = ϕL(xc)(T − T ∗)|L + ϕ0(xc)(T − T ∗)|0

with ϕ0(xc) ≥ 0 and ϕL(xc) > ϕ0(xc)

(
L2ϕ0(xc)

2k
− 1

)
,

exponentially stabilizes (13) at the desired equilibrium pro-
file T ∗.

Proof. Consider the Lyapunov functional candidate

V(T, T ∗) =
∫ L

0

1

2
(T − T ∗)2 dζ. (28)

Its variational derivative is δsV = ∂sT (T−T ∗) = T/cv(T−
T ∗), where the fundamental property ∂sT = T/cv ≥ 0 is
derived from Gibbs’ and Maxwell relations [28]. Hence,

V̇ =

∫ L

0

δsV∂tsdζ =

∫ L

0

δsV (rs∂ζes + ∂ζ (rses)) dζ.
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Defining r̄s =
k

T 2
∂ζ(T − T ∗), using integration by

parts and the fact that

∫ L

0

∂ζ (∂sT r̄ses) (T − T ∗) dζ −
∫ L

0

∂sT (T−T ∗) (rs∂ζes + ∂ζ (rses)) dζ = 0, V̇ is rewritten

as

V̇ =

∫ L

0

∂ζ (∂sT (T − T ∗) r̄ses) dζ

−
∫ L

0

∂sT r̄ses∂ζ (T − T ∗) dζ

−
∫ L

0

∂ζ (∂sT r̄ses) (T − T ∗) dζ

+

∫ L

0

∂sT (T − T ∗) (rs∂ζes + ∂ζ (rses)) dζ

=
T

cv
(T − T ∗)r̄ses

∣∣∣∣
L

0

−
∫ L

0

k

cv
(∂ζ(T − T ∗))2 dζ

Since ∂ζT |0 = ∂ζT
∗|0 = ∂ζT

∗|L = 0, we get that
r̄ses|0 = 0 and u = −qs|L = r̄ses|L, then

V̇ =
T

cv
(T − T ∗)

∣∣∣∣
L

u− σ (29)

with σ =

∫ L

0

k

cv
(∂ζ(T − T ∗))2 dζ ≥ 0. Setting u = 0 as-

sures that V̇ is non-positive, however since σ only depends
on the temperature’s spatial gradient, it will vanish on
any profile which has the same spatial slope as the desired
equilibrium profile. To guarantee the convergence to the
desired equilibrium additional entropy is assigned to the
system through the controller. From the power preserving
interconnection (17) with u′ = 0, the controller term Gc

can be designed as

G⊤
c = −α

Γ

[
u
0

]
(30)

Choosing the control signal as the function

u(xc,y) = − 1

T |L
(ϕL(xc)(T − T ∗)|L + ϕ0(xc)(T − T ∗)|0)

(31)
with ϕL(xc) and ϕ0(xc) non-negative functions of the con-
troller state variable, we obtain

V̇ =−
∫ L

0

k

cv
(∂ζ(T − T ∗))2dζ − ϕL

cv
(T |L − T ∗|L)2

− ϕ0

cv
(T |L − T ∗|L) (T |0 − T ∗|0) . (32)

Using the inequality

(∫ L

0

w(ζ)dζ

)2

≤ L2

∫ L

0

w2(ζ)dζ

and completing squares we get

V̇ ≤ −
∫ L

0

k

2cv
(∂ζ(T − T ∗))2dζ − ϕL

cv
(T |L − T ∗|L)2

− ϕ0

cv
(T |L − T ∗|L) (T |0 − T ∗|0)

− k

2cvL2

(∫ L

0

(∂ζ(T − T ∗))dζ

)2

≤−
∫ L

0

k

2cv
(∂ζ(T − T ∗))2dζ − ϕL

cv
(T |L − T ∗|L)2

− ϕ0

cv
(T |L − T ∗|L) (T |0 − T ∗|0)

− k

2cvL2
((T |L − T ∗|L)− (T |0 − T ∗|0))2

Expanding the last term, regrouping, and completing
squares, we obtain that:

V̇ ≤ −
∫ L

0

k

2cv
(∂ζ(T − T ∗))2dζ

−
(
ϕL

cv
− ϕ0

cv

(
L2ϕ0

2k
− 1

))
(T |L − T ∗|L)2

− 1

cv

(√
L2

2k

(
ϕ0 −

k

L2

)
(T |L − T ∗|L)

+

√
k

2L2
(T |0 − T ∗|0)

)2

≤−
∫ L

0

k

2cv
(∂ζ(T − T ∗))2dζ

−
(
ϕL

cv
− ϕ0

cv

(
L2ϕ0

2k
− 1

))
(T |L − T ∗|L)2

Hence, if ϕ0 ≥ 0 and ϕL > ϕ0

(
L2ϕ0

2k
− 1

)
we obtain

that V̇ < 0 for all T ̸= T ∗ and V̇ = 0 when T = T ∗. The
exponential stability follows applying Poincaré’s inequality
as in [26].

The boundary controller defined by (16) and (27) can be
interpreted as an energy/entropy shaping controller. In-
deed, using the thermodynamic relation dT = T

cv
ds [28]

and a Taylor expansion, we obtain that 1
2 (T − T ∗)2 =

1
2

(
T∗

cv

)2
(s− s∗)2 +O

(
(s− s∗)3

)
, where s∗ is the equilib-

rium entropy profile at T ∗, and from (32) we observe that
the effect of the BC is to change i) the dynamic equilibrium
and ii) the shape of the closed-loop entropy function.

It is worth noting that the boundary condition (BC)
does not rely on any assumptions regarding the relation-
ship between entropy and temperature. Therefore, the BC
is independent of the function that maps entropy into tem-
perature. Additionally, it is essential to emphasize that
the proposed BC enables the system to reach the desired
equilibrium profile without any restrictions on the initial
and boundary conditions.
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Remark 2. The design of Gc is still valid when the mea-
surements of T |0 are not accessible by the controller. In
this case, it is sufficient to set ϕ0(xc) = 0, and then from
(32) it is obtained that the closed-loop system is exponen-
tially stable.

The following Corollary considers the case where the
reflective boundary condition at ζ = 0 is substituted by
a control signal, i.e., actuation at both spatial boundary
sides.

Corollary 1. Consider (13) fully actuated. The boundary
controller (16) with

G⊤
c =

α

Γ




−

km∗

T |L
−km∗

T |0


+

1

cv
Φ(xc)

[
T (T − T ∗)|L
−T (T − T ∗)|0

]


where Φ(xc) = Φ(xc)
⊤ > 0 and m∗ is the desired slope of

the target equilibrium profile, exponentially stabilizes (13)
at the desired equilibrium profile T ∗.

Table 1: Copper material and simulation parameters

Material parameter [29]

Specific heat 385 J/kg◦K
Thermal conductivity 398 W/m◦K
Density 8960 kg/m3

Simulation parameters

C0 273.15◦K cv 344.96 J/m◦K
L 0.1 m k 0.0398 Wm/◦K

4. Simulation results

The structure-preserving discretization of the irre-
versible port-Hamiltonian system is still an open problem.
As a consequence, for simulation purposes we use the dis-
cretization proposed in [7] for the Temperature formula-
tion of the heat equation, see (9), with the heat flux at
x = L as the boundary input. Then, the input of this
discretized system is equal to the controller outputs times
T |L, allowing us to implement the control laws designed in
this work. We consider a copper bar of length L = 0.1m
and a cross-sectional area of 10−4m2. Copper material
properties [29] and simulation parameters are summarized
in Table 1. We consider the following constitutive relation
for the temperature T (ζ, t) = C0e

s(ζ,t)/cv [30], where C0 is
a constant, and a constant initial temperature profile

T0 = T (ζ, 0) = 200ζ + 330 (◦K), ∀ζ ∈ [0, 0.1]

Similarly, the desired temperature equilibrium profile is
defined as

T ∗ = 325 (◦K), ζ ∈ [0, 0.1]

The boundary controller acts on the entropy flux at the
boundary ζ = L, i.e., u = −qs|L. To move T0 to T ∗ we
use the boundary controller described in Proposition 3.
Using the controller (16) with α = −1, Γ = H0 and k̄ = 0,
the controller state variable represents a measurement of
the normalized total energy if xc(0) = 1, i.e.,

xc =
1

H0

∫ L

0

u(ζ, t)dζ.

Assuming temperature measurements at both boundaries
we select

ϕL(xc) = 5xc and ϕ0(xc) = 10xc,

and get the following control law

u =− xc

T |L
(5(T − T ∗)|L + 10(T − T ∗)|0)

=− 5(T − T ∗)|L + 10(T − T ∗)|0
H0T |L

∫ L

0

u(ζ, t)dζ (33)
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time (sec)

V(T, T ∗)
∫ L

0
1
2 (s− s∗)2dζ

(a) ϕL = 5xc, ϕ0 = 10xc

0 20 40 60 80 100 120 140

0

5

10

15

time (sec)

V(T, T ∗)
∫ L

0
1
2 (s− s∗)2dζ

(b) ϕL = 5xc, ϕ0 = 0

Figure 2: Behavior of the Lyapunov function

Figure 2 shows the behavior of the Lyapunov func-
tion (28) (solid lines) and the entropy shaping functional∫ L

0

1

2
(s − s∗)dζ (dashed lines). Figure 2a is the result of

using the control law (33) obtaining an approximated set-
tling time of t = 40s. Figure 2b is obtained considering
temperature measurements only at the actuated bound-
ary, i.e., with ϕ0 = 0, resulting in an approximated set-
tling time of t = 80s. In both graphics, it is observed
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that the entropy functional and V have almost the same
shape. It is also observed that considering temperature
measurements only at the actuated boundary is sufficient
to guarantee exponential convergence to the target equi-
librium profile. On the other hand, when having mea-
surements from both boundaries, the convergence rate is
notably increased. In this example, the controller with all
the boundary measurements converges 2 times faster than
with measurements from only one boundary.

0 20 40 60 80 100 120 140

−0.4

−0.2

0

time (sec)

u
=

−
q s
| L

(J
/◦

K
)

φL = 5xc, φ0 = 0

φL = 5xc, φ0 = 10xc

Figure 3: Boundary entropy fluxes

Figure 3 shows the boundary entropy fluxes for the con-
troller with and without T |0. Note that when ϕ0 = 0,
the control action initially approaches 0 rapidly and then
slowly extracts entropy (heat) for an extended period of
time. On the other hand, when ϕ0 = 10xc, The entropy ex-
traction/injection is greater during the first 20s, and then
stabilizes at 0 quickly. This greater extraction of entropy
induces an undershoot in the trajectories of the tempera-
ture error T (ζ, t) − T ∗, as shown in Figure 4a, helping to
decrease the temperature error in the opposite boundary.
Figure 4b shows how with ϕ0 = 0 the temperature error at
the controlled boundary converges to 0 quickly. However,
the convergence at the opposite boundary is slower.

5. Conclusion

An exponentially stabilizing energy-shaping and
entropy-assignment boundary controller for the heat
equation defined on a 1D spatial domain with actuation
at one boundary and a reflective boundary condition
at the other boundary has been proposed. Using the
IPHS formulation and motivated by passivity-based
control techniques developed for PHS defined on 1D
spatial domains, a boundary controller that exponentially
stabilizes the plant at the desired equilibrium profile has
been developed. The existence of structural invariant
functions has been characterized in order to shape the
closed-loop energy and assign the required closed-loop
entropy. The proposed boundary controller encompasses
the cases in which measurements are available at only one
or at both boundaries. Numerical simulations have been
used to illustrate the design approach. Future work aims
to extend these control design techniques to a larger class
of IPHS.
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(a) ϕL = 5xc, ϕ0 = 10xc
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(b) ϕL = 5xc, ϕ0 = 0

Figure 4: Temperature error, T (ζ, t) − T ∗(ζ), through the trajecto-
ries.
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[12] J. Lohéac, E. Trélat, E. Zuazua, Nonnegative control of finite-
dimensional linear systems, Annales de l’Institut Henri Poincare
(C) Analyse Non Lineaire 38 (2) (2021) 301–346.

[13] P. Cannarsa, G. Da Prato, J. P. Zolesio, Dynamical shape con-
trol of the heat equation, Systems and Control Letters 12 (2)
(1989) 103–109.

[14] M. B. Cheng, V. Radisavljevic, W. C. Su, Sliding mode bound-
ary control of a parabolic PDE system with parameter vari-
ations and boundary uncertainties, Automatica 47 (2) (2011)
381–387.

[15] L. A. Mora, Y. Le Gorrec, H. Ramirez, Available energy-based
interconnection and entropy assignment (ABI-EA) boundary
control of the heat equation: an Irreversible Port Hamiltonian
approach, in: The 2022 American Control Conference (ACC),
Atlanta, Georgia, USA, 2022, pp. 2397–2402.

[16] A. A. Alonso, B. E. Ydstie, Process systems, passivity and the
second law of thermodynamics, Computers & Chemical Engi-
neering 20 (1996) S1119–S1124.

[17] B. Ydstie, Passivity based control via the second law, Comput-
ers & Chemical Engineering 26 (7-8) (2002) 1037–1048.

[18] Y. Le Gorrec, A. Macchelli, H. Ramirez, H. Zwart, Energy shap-
ing of boundary controlled linear port Hamiltonian systems,
IFAC Proceedings Volumes, 19th IFAC World Congress 47 (3)
(2014) 1580–1585.

[19] A. Macchelli, Y. L. Gorrec, H. Ramı́rez, H. Zwart, F. Califano,
Control Design for Linear Port-Hamiltonian Boundary Control
Systems: An Overview, in: G. Sklyar, A. Zuyev (Eds.), Stabi-
lization of Distributed Parameter Systems: Design Methods and
Applications, Vol. 2 of SEMA SIMAI Springer Series, Springer,
Cham, 2021, pp. 57–72.

[20] A. Macchelli, Y. Le Gorrec, H. Ramirez, H. Zwart, On the syn-
thesis of boundary control laws for distributed port-Hamiltonian
systems, IEEE Transactions on Automatic Control 62 (4) (2017)
1700–1713.

[21] Y. Le Gorrec, H. Zwart, B. Maschke, Dirac structures and
Boundary Control Systems associated with Skew-Symmetric
Differential Operators, SIAM Journal on Control and Optimiza-
tion 44 (5) (2005) 1864–1892.

[22] J. A. Villegas, Y. Le Gorrec, H. Zwart, B. Maschke, Boundary
control for a class of dissipative differential operators including
diffusion systems, Proceedings of the 17th International Sympo-
sium on Mathematical Theory of Networks and Systems (2006)
297–304.

[23] H. Zwart, Y. Le Gorrec, B. Maschke, Building systems from sim-
ple hyperbolic ones., Systems and control letters 23 (1) (2017)
1864–1892.

[24] R. Rashad, F. Califano, A. J. van der Schaft, S. Stramigioli,
Twenty years of distributed port-Hamiltonian systems: a liter-

ature review, IMA Journal of Mathematical Control and Infor-
mation 37 (4) (2020) 1400–1422.

[25] A. Serhani, G. Haine, D. Matignon, Anisotropic heterogeneous
n-D heat equation with boundary control and observation:
I. Modeling as port-Hamiltonian system, IFAC-PapersOnLine
52 (7) (2019) 51–56.

[26] M. Krstic, A. Smyshlyaev, Boundary Control of PDEs: A
Course on Backstepping Designs, Advances in Design and Con-
trol SIAM’s, Society for Industrial and Applied Mathematics,
USA, 2008.

[27] A. J. van der Schaft, L2-Gain and Passivity Techniques in Non-
linear Control, 2nd Edition, Springer-Verlag, New York, USA,
2000.

[28] D. Kondepudi, I. Prigogine, Modern Thermodynamics: From
Heat Engines to Dissipative Structures, John Wiley & Sons,
Chichester, England, 1998.

[29] W. Gale, T. Totemeier (Eds.), Smithells Metals Reference Book,
8th Edition, Butterworth-Heinemann, Burlington, USA, 2004.

[30] R. J. LeVeque, Finite Volume Methods for Hyperbolic Prob-
lems, Cambrige Texts in Applied Mathematics, Cambridge Uni-
versity Press, Cambridge, U.K., 2002.

9


	Introduction
	Irreversible port-Hamiltonian formulation of the heat equation
	Boundary controlled IPHS
	BC-IPHS formulation of the heat equation

	Boundary control by interconnection
	Simulation results
	Conclusion

