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Abstract

This paper shows how the interconnection of two controlled Irreversible port Hamiltonian Systems has to be state
and co-state modulated in order to ensure the closed-loop Irreversible port Hamiltonian structure, satisfying the first
and second laws of Thermodynamics. It proposes a precise parametrization of this modulation from the open-loop
systems structures in order to guarantee the consistency of the closed loop energy and entropy balance equations. The
results are illustrated by means of the examples of a heat-exchanger, a gas-piston system and a chemical reaction.
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1. Introduction

Irreversible port-Hamiltonian systems (IPHS) were
first introduced in Ramirez et al. (2013a,b) as an ex-
tension of port-Hamiltonian systems (PHS) (Maschke
and van der Schaft, 1992; Duindam et al., 2009) for ir-
reversible thermo-mechanical systems defined on finite
dimensional spaces and later extended to distributed pa-
rameter systems defined on one dimensional spatial do-
mains in (Ramirez et al., 2022; Ramirez and Le Gorrec,
2022). One of the main features of the PHS formalism is
its modularity, i.e., the capability of modeling complex
systems as the interconnection of simpler sub-systems
(van der Schaft, 2000; Duindam et al., 2009). This is
possible because the output of a PHS is power conju-
gated with its input defining a passive relation, hence
a power-preserving interconnection of two PHS results
again in a PHS. This feature has not only been ex-
ploited for modeling, but also for Passivity Based Con-
trol (PBC) (Ortega et al., 2001, 2002). When dealing
with the interconnection of thermodynamic or thermo-
mechanic systems (van der Schaft and Maschke, 2018),
the interconnected system has to preserve not only the
total energy, but also satisfy that the total internal en-
tropy creation is non-negative in order to fulfill the first
and second laws of Thermodynamics. This fundamental
property is in the core of the different system theoretic
formulations of thermodynamic systems which encode
the irreversible entropy production in their structure,
such as IPHS, pseudo-gradient systems (Favache et al.,

2011), metriplectic systems (sum of Hamiltonian and
gradient systems) with one or two generating functions
(Grmela and Öttinger, 1997; Grmela, 2002) and con-
trol Hamiltonian systems defined on contact manifolds
(Mrugala et al., 1991; Eberard et al., 2007; Favache
et al., 2010; Ramirez et al., 2013a) or their symplecti-
zation (van der Schaft and Maschke, 2018). A thermo-
dynamic formulation in which the second law is system-
atically encoded into the model by means of the inter-
connection of fundamental elements is found in nonlin-
early constrained Lagrangian systems (Gay-Balmaz and
Yoshimura, 2020, 2023) which steam from variational
principles.

In this work we extend and formalize the preliminary
results of (Ramirez and Le Gorrec, 2023) to show that
the power preserving interconnection of two thermody-
namic systems needs to be modulated such that the in-
terconnected system remains a thermodynamic system.
The modulating function depends on the interface, in-
put maps, the conjugated outputs and the temperature
of the systems. For the particular case of IPHS, the
modulating function is precisely formulated in terms of
a pseudo bracket defined by the total entropy and en-
ergy functions and the input maps of the subsystems.
Moreover, the pseudo bracket precisely defines the ther-
modynamic driving force of the interconnection. This
result reflects a well know property in Thermodynam-
ics that the entropy balance of an open thermodynamic
system depends on the entropy generated by the inter-
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face/mixing terms. This formalization is a key step in
the generalization of control/observer design techniques
for IPHS (Ramirez et al., 2016; Maschke et al., 2022;
Zenfari et al., 2023) and explains from a thermodynamic
system theoretic perspective the fact that preliminary re-
sults on control by interconnection of IPHS lead to mod-
ulated interconnections between the controller and the
plant (Villalobos et al., 2020; Le Gorrec et al., 2022).
It is interesting to notice that modulated interconnec-
tion can be found in PBC by interconnection approaches
which explicitly incorporate the dissipation of the plant
into the control design and stability analysis, such as for
instance energy shaping (Maschke et al., 2000) or con-
trol based on virtual energy tanks (Franken et al., 2011;
Ferraguti et al., 2015). In energy shaping the reduction
of the dynamics stems from the existence of invariant
functions (Casimirs) that relate the states of the con-
troller with those of the plant. However the applicability
of energy shapping is restricted by the systems natural
dissipation. This restriction has been overcome by ex-
plicitly incorporating information on the systems state
by means of state modulated power preserving intercon-
nections which allow to shape the closed-loop energy
function without the need for Casimir functions (Ortega
et al., 2001, 2002). In the approach based on virtual
tanks the energy dissipated by the system is stored by
the controller in order to later reemploy the system to
produce desired behaviors in a passive way. The ap-
proach has been further extended by using modulated
power preserving interconnections between the energy
tanks and the plant to achieve higher flexibility and ro-
bustness (Benzi et al., 2022).

The paper is organized as follows. Section 2 moti-
vates this work by commenting on the interconnection
of PHS. Section 3 gives the preliminaries on IPHS. Sec-
tion 4 presents the main results of this work, namely the
necessity of a state and co-state modulated interconnec-
tion to preserve the entropy production and its precise
definition for IPHS. This modulated interconnection is
entirely parametrized from the interconnected systems
structures and interconnection. Section 5 presents three
examples: the ideal heat-exchanger, the gas-piston sys-
tem and a chemical reaction. Finally in Section 6 the
conclusions of the paper are presented.

2. Interconnection of port-Hamiltonian systems

On the state space x ∈ Rn a PHS (Maschke and
van der Schaft, 1992; van der Schaft, 2000) is defined

as

ẋ = (J0 − D0)
∂H0

∂x
+ gu

y = g>
∂H0

∂x
,

(1)

where the function H0(x) : Rn → R represents the
energy stored in energy storing elements, J0(x) =

−J0(x) ∈ Rn×n is a state-dependent skew-symmetric ma-
trix, D0(x) = D>0 (x) ∈ Rn×n ≥ 0 is a state-dependent
positive definite matrix, g(x) ∈ Rm×n is the input matrix
and u(t), y(t) ∈ Rm are the input and the power con-
jugated output, respectively. The skew-symmetric ma-
trix J0 characterizes the coupling between energy stor-
ing elements and the matrix D0 characterizes the cou-
pling between energy storing and energy dissipating el-
ements. Furthermore, if J0 satisfies some integrabil-
ity conditions, namely the Jacobi identities (Libermann
and Marle, 1987), then it is the definition of a Poisson
bracket. The energy balance of (1) is

Ḣ0 = −
∂H0

∂x

>

D0
∂H0

∂x
+ y>u, (2)

implying that (1) passive if H0 is bounded from be-
low. It is well known (van der Schaft, 2000) that the
power preserving interconnection of two passive system
is again a passive system. Take for instance the negative
output feedback interconnection between two PHS of
state x1 and x2 [

u1
u2

]
= k

[
0 1
−1 0

] [
y1
y2

]
(3)

where k is a constant. The closed-loop energy is then the
sum of the stored energy in each system H0 = H01 + H02

and the total energy balance is

Ḣ0 = Ḣ01 + Ḣ02

= −
∂H01

∂x1

>

D01

∂H01

∂x1
−
∂H02

∂x2

>

D02

∂H02

∂x2
+ y>1 u1 + y>2 u2

= −
∂H0

∂x

>
[
D01 0
0 D02

]
∂H0

∂x
≤ 0

with x = [x1, x2]>. The closed-loop dynamics is given
by [

ẋ1
ẋ2

]
= (J0 − D0)

 ∂H01
∂x1
∂H02
∂x2

 +

[
g1 0
0 g2

] [
v1
v2

]
[
y1
y2

]
=

[
g>1 0
0 g>2

]  ∂H01
∂x1
∂H02
∂x2


(4)
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where the closed-loop interconnection and dissipation
matrices are

J0 =

[
J01 kg1g>2

kg2g>1 J02

]
, D0 =

[
D01 0
0 D02

]
and where v1 and v2 are a new set of inputs. The power-
preserving interconnection (3) leads to a closed-loop
PHS with the same passivity properties of the intercon-
nected systems. A practical interpretation of this result
is that if two mechanical systems are interconnected,
then the resulting system is again a mechanical system.

3. Irreversible port-Hamiltonian systems

Consider the PHS (1), if D0 = 0, then (1) is energy
preserving or reversible. On the other hand if D0 , 0
the system is dissipative meaning that energy is being
transformed into heat by some dissipative phenomena,
such as a electrical resistance or mechanical friction. In
this case the total energy of the system is the sum of
the energy stored in energy storing elements and some
thermal energy, which for simplicity we shall assume
can be split as

H(x, s) = H0(x) + U(s).

where s is the entropy of the system. From the firs law,
in the absence of exchange of energy with the surround-
ings of the system i.e. u = 0, the total energy has to be
conserved. This implies that

Ḣ = Ḣ0 + U̇ = 0

= −
∂H0

∂x

>

D0
∂H0

∂x
+
∂U
∂s

ṡ = 0

From Gibbs’ fundamental relation, the temperature is a
function of the entropy defined as T = ∂H

∂s (s) = ∂U
∂s , so

the internal entropy creation of the system is given by

ṡ =
1
T
∂H0

∂x

>

D0
∂H0

∂x
= σ ≥ 0

in accordance with the second law of Thermodynamics.
The resulting system is then[

ẋ
ṡ

]
=

 J0 −D0
∂H0
∂x

1
T

1
T
∂H0
∂x
>

D>0 0

 [ ∂H0
∂x
T

]
+

[
g
0

]
u,

y =
[
g 0

] [ ∂H0
∂x
∂H0
∂s

]
.

(5)

which corresponds to a quasi-Hamiltonian (Ramirez
et al., 2013a) since it resembles a PHS but its structure

matrix is a function of the gradient of the energy. In
this sense the symplectic structure of the PHS, given by
the Poisson tensor associated with the structure matrix
is destroyed.

IPHS are a particular class of quasi-Hamiltonian sys-
tems. The state variables of the IPHS are the n + 1
extensive variables1. The following partition of the
state x ∈ Rn+1 is considered: the first n variables by
x = [q1, . . . , qn]> ∈ Rn and the entropy coordinate by
s ∈ R. The thermodynamic properties of the system are
expressed by Gibbs’ equation (Callen, 1985), which in
its local form with pairs of specific energy-conjugated
variables (Duindam et al., 2009, Chapter 3) is

dH = Tds +

n∑
i=1

pidqi (6)

where T is the temperature, conjugated to the en-
tropy, and the variables pi denote the intensive vari-
ables, which are conjugated to the qi variables.
Gibbs’ equation is here understood in a general
context in order to account for coupled thermo-
electro/magnetic/mechanical systems. Gibbs’ equation
is equivalent to the existence of a total energy and en-
tropy function, H and s, respectively.

Definition 1. For any two functions Z and G and for
any matrix G we define the Poisson bracket as

{Z,G}J0
= {Z|G|G} =

[
∂Z
∂x
∂Z
∂s

] [
0 G

−G> 0

]
︸       ︷︷       ︸

J0

[
∂G
∂x
∂G
∂s

]

Definition 2. An IPHS undergoing j irreversible pro-
cesses is defined by

• a pair of functions: the total energy H : Rn+1 → R
and the total entropy s ∈ R,

• a pair of matrices J0 = −J>0 ∈ R
n×n and G ∈ Rn× j

with j ≤ n and the positive real-valued functions
γi (x, s) , i ∈ {1, ... j},

and the ODE[
ẋ
ṡ

]
=

[
J0 GR

−R>G> 0

] [
∂H
∂x
∂H
∂s

]
+ gu

y = g>
[
∂H
∂x
∂H
∂s

]
(7)

1A variable is qualified as extensive when it characterizes the ther-
modynamic state of the system and its total value is given by the sum
of its constituting parts.
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where u, y ∈ Rm are respectively the input and power
conjugated output, and g ∈ R(n+1)×m the input map. The
elements of the vector R ∈ R j×1 are defined as

Ri = γi {s|G(:, i)|H} (8)

where the notation G(:, i) indicates the i-th column of
the matrix G.

The total energy balance is Ḣ = y>u implying that
Ḣ = 0 if u = 0 expressing the first law of Thermo-
dynamics. The internal entropy balance is given by the
dynamic of the last coordinate with u = 0, which can be
decomposed using the definition of R as

ṡ = −R>G>
∂H
∂x

= −

j∑
i

(
RiG(:, i)>

∂H
∂x

)

=

j∑
i

γi {s|G(:, i)|H}2 =

j∑
i

σi = σ ≥ 0, (9)

in accordance with the second law of Thermodynamics.
Here σi ≥ 0 is the internal entropy production due to
the i-th irreversible thermodynamic process and σ is the
total internal entropy production. The reader is referred
to (Ramirez et al., 2022, 2013a,b) for more details and
examples of IPHS.

4. Interconnection of IPHS

Before giving our main result we shall comment on
the particularity of interconnecting two thermodynamic
systems analyzing Gibb’s fundamental relation (6).

4.1. The interconnection of thermodynamic systems
Assume for simplicity that a purely thermodynamic

reservoir (s1,T1) is being interconnected with a purely
mechanical system

(
x2,

∂H2
∂x2

)
through some dissipative

port and that the only source of entropy is the intercon-
nection itself. Gibb’s relation is then given by

Ḣ = T1 ṡ1 +

n∑
i=1

piq̇i

= T1 ṡ1 +
∂H2

∂x2

>

ẋ2

= y>1 u1 + y>2 u2

The power preserving interconnection (3) assures en-
ergy conservation since Ḣ = 0. Assuming uniform tem-
perature, i.e. T1 = T and s1 = s, the second law requires
that ṡ ≥ 0, or equivalently that

ṡ = −
1
T
∂H2

∂x2

>

ẋ2 = −
1
T

y>2 u2 ≥ 0 (10)

The interconnection law (3) does not guarantee that this
inequality holds.

Proposition 3. The power preserving interconnection
of two thermodynamic systems needs to be modulated
for the interconnected system to be a thermodynamic
system. Furthermore, the modulating function depends
on the the interface, input maps, the conjugated outputs
(intensive variables) and the temperature of the systems.

Proof. Consider the modulated power preserving inter-
connection [

u1
u2

]
= β

[
0 1
−1 0

] [
y1
y2

]
(11)

with β the modulating function. The entropy production
(10) becomes

ṡ = β
1
T

y>2 y1 ≥ 0

implying that the modulating function needs to be of the
form β = γy>2 y1, with γ a positive semidefinite function,
to satisfy the second law. Similarly, if two thermody-
namic reservoirs at different temperatures are intercon-
nected, then Gibb’s relation becomes

ṡ = ṡ1 + ṡ2 =
Ḣ1

T1
+

Ḣ2

T2
=

T2Ḣ1 + T1Ḣ2

T1T2

which requires that T2Ḣ1 + T1Ḣ2 ≥ 0. Since Ḣi = y>i ui,
and using (11) this condition becomes

β(T2 − T1)y>2 y1 ≥ 0

implying that β = γ(T2 − T1)y>2 y1.
Notice that the modulating function β is precisely de-

fined by the ports of the systems, the temperature and
the interface through the positive function γ.

4.2. Main result
Proposition 3 can be stated in a precise manner using

the IPHS formulation of two thermodynamic systems.

Proposition 4. Consider two IPHS, indexed by i = 1, 2,
defined as[

ẋi

ṡi

]
= Ji

 ∂Hi
∂xi
∂Hi
∂si

 + giui, yi = g>i

 ∂Hi
∂xi
∂Hi
∂si

 (12)

where

Ji =

[
J0i GiRi

−R>i G>i 0

]
with xi ∈ Rni , si ∈ R, ui ∈ R, J0i ∈ Rni×ni , gi ∈ R(ni+1).
Consider the state modulated interconnection[

u1
u2

]
= Ru

[
0 1
−1 0

] [
y1
y2

]
(13)
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where the modulating scalar function is defined as

Ru = γu{s|g1g>2 |H} (14)

and where s = s1+s2 and H = H1+H2 are, respectively,
the total entropy and the total energy. The interconnec-
tion (13) defines the IPHS

ẋ1
ṡ1
ẋ2
ṡ2

 = J


∂H
∂x1
∂H
∂s1
∂H
∂x2
∂H
∂s2

 +

[
g1 0
0 g2

] [
v1
v2

]

[
y1
y2

]
=

[
g>1 0
0 g>2

] 
∂H
∂x1
∂H
∂s1
∂H
∂x2
∂H
∂s2


(15)

where

J =

[
J1 Rug1g>2

−Rug2g>1 J2

]
and where v1 and v2 are a new set of inputs.

Corollary 5. The internal entropy production of (15) is
σ = σ1 +σ2 +σu ≥ 0, where σ1 and σ2 are respectively
the internal entropy production of system 1 and 2, and

σu = γu{s|g1g>2 |H}
2 ≥ 0

is the entropy produced by the interconnection of the
systems.

Proof. System (15) is directly obtained using the state
modulated interconnection (13). Assume for simplicity
and without loss of generality that v1 = v2 = 0. The
structure matrix of the interconnected system J is skew-
symmetric, hence Ḣ = 0 and conservation of the total
Hamiltonian function is obtained. On the other hand,
the time derivative of the total entropy function is, de-
fine z = [x>1 , s1, x>2 , s2]>,

ṡ = ṡ1 + ṡ2

=
∂s
∂z

>

ż =
∂s
∂z

>

J
∂H
∂z

=
∂s
∂z

> (
J′ + Ju

) ∂H
∂z

= {s,H}J′ + {s,H}Ju

where

J′ =

[
J1 0
0 J2

]
, and Ju =

[
0 Rug1g>2

−Rug2g>1 0

]
.

Developing the first bracket we obtain

{s,H}J′ =

[ ∂s
∂x1
∂s
∂s1

]>
J1

[ ∂H
∂x1
∂H
∂s1

]
+

[ ∂s
∂x2
∂s
∂s2

]>
J2

[ ∂H
∂x2
∂H
∂s2

]
= −R1

>G>1
∂H1

∂x1
+ −R2

>G>2
∂H2

∂x2

= σ1 + σ2 ≥ 0

Developing the second bracket we obtain

{s,H}Ju = Ru{s|g1g>2 |H} = γu{s|g1g>2 |H}
2 = σu ≥ 0

whereσu is the entropy produced by the interconnection
of the systems. Hence, the entropy balance is

ṡ = σ1 + σ2 + σu ≥ 0

in accordance with the second law.
Notice that if in Proposition 4 the IPHS systems (12)

reduce to PHS, i.e., T1 = T2 and ṡ1 = 0 and ṡ2 = 0, then
the modulated function of the interconnection can be set
to β = k and the power-preserving interconnection (3)
is obtained.

5. Examples

The interconnection law proposed in Propositions 3
and 4 are illustrated in this section by means of three ex-
amples, the heat-exchanger, the gas-piston system and a
chemical reaction.

5.1. The heat-exchanger

Consider two simple thermodynamic systems, in-
dexed by 1 and 2, which may interact only through a
conducting wall. Assuming that the two compartments
contain pure ideal gases and that they undergo no defor-
mation, and are closed, the temperatures may be mod-
eled as functions of the entropy (Couenne et al., 2006).
The IPHS formulation of each system is

ṡi = ui, yi = ∂Ui
∂si

= Ti

where s1 and s2 (resp. T1 and T2) are the entropies (resp.
the temperatures) and U1 and U2 the internal energies of
system 1 and 2. The inputs u1 and u2 correspond to the
entropy flow that the systems exchange and y1 and y2 are
the energy conjugated outputs. According to Fourier’s
law the entropy flows into each subsystem are driven by
its corresponding thermodynamic driving force (Kon-
depudi and Prigogine, 1998), which is the temperature
difference between the compartments u1 = λ

T1
(T2 − T1)

and u2 = λ
T2

(T1 − T2), where λ > 0 denotes Fourier’s
heat conduction coefficient of the heat conducting wall
between the two compartments. According to Proposi-
tion 3 the previous relation can be equivalently written
as [

u1
u2

]
= β

[
0 1
−1 0

] [
T1
T2

]
5



where β = λ
T1T2

(T2 − T1). The interconnected system is
then [

ṡ1
ṡ2

]
=

λ

T1T2
(T2 − T1)

[
0 1
−1 0

] [
T1
T2

]
[
y1
y2

]
=

[
T1
T2

] (16)

which is the IPHS model of the heat exchanger
(Ramirez et al., 2013a,b). Consider now Proposition
4. Defining the total internal energy and the total en-
tropy of the interconnected system as U = U1 + U2 and
s = s1 + s2, respectively, we obtain

{s|1|U} =
∂s
∂x

>
[

0 1
−1 0

]
∂U
∂x

=

[
1
1

]> [
0 1
−1 0

] [
T1
T2

]
= T2 − T1.

which is the driving force of the entropy flow between
the compartments. Consequently γ = λ

T1T2
and R = β.

Consider in a second instance that the inputs are the
heat flows rather than the entropy flows. The dynamical
model of the heat exchanger is then

ṡi =
1
Ti

ui, yi =
1
Ti

∂Ui
∂si

= 1

In this case the energy conjugated outputs are physically
meaningless. The heat flow between the compartments
are in this case u1 = λ(T2 − T1) and u2 = λ(T1 − T2),
which can be equivalently written as[

u1
u2

]
= β

[
0 1
−1 0

] [
1
1

]
with β = λ(T2 − T1) in accordance with Proposition 3.
From Proposition 4 we have that

{s|(T1T2)−1|U} =

[
1
1

]> 1
T1T2

[
0 1
−1 0

] [
T1
T2

]
=

1
T1
−

1
T2
.

which is the thermodynamic force that drives the heat
flow (Kondepudi and Prigogine, 1998). Consequently
γ = λT1T2 and R =

β
T1T2

.

5.2. The gas-piston system
Consider an ideal gas contained in a cylinder with no

exchange of matter enclosed by a moving piston which
is attached to a spring (Ramirez et al., 2013b). For sim-
plicity consider that the cylinder is not subject to exter-
nal forces and does not exchange heat with the environ-
ment. The system is characterized by the mechanical

properties of the piston and the thermodynamic prop-
erties of the gas. The dynamic equations of the mov-
ing piston are q̇ = v and ṗ = Fg − Fr − F, where q
is the relative position of the spring, p is the momen-
tum, v =

p
m is the velocity of the piston, F = Kq is the

force applied by the spring, Fg is the force applied on
the piston by the gas pressure and Fr represents the me-
chanical friction with m the mass of the piston and K
Hooke’s constant. The mechanical energy of the piston
is H0(q, p) = 1

2m p2 + 1
2 Kq2 and its PHS formulation[

q̇
ṗ

]
= J0

∂H0

∂x
+

[
gp1 gp2

] [up1

up2

]
[
yp1

yp2

]
=

[
g>p1

g>p2

]
∂H0

∂x
=

[
−v
v

]
with up1 = Fr, up2 = Fp, ∂H0

∂x =
[
Kq p

m

]>
=

[
F v

]>
,

J0 =

[
0 1
−1 0

]
, gp1 =

[
0 −1

]>
and gp2 =

[
0 1

]>
. No-

tice that for ease of presentation the input map has been
split into two vectors, one associated to the irreversible
phenomena and other to the reversible phenomena, re-
spectively gp1 and gp2 .

On the other hand the dynamic equations of the gas
in the piston are given by V̇ = qv and ṡ = σ, where V is
the volume and s is the entropy of the gas, qv is the gas
flow due to the displacement of gas by the moving pis-
ton and σ is the irreversible creation of entropy due to
the non-reversible transformation of mechanical friction
into heat when the piston moves. The internal energy of
the perfect gas, U(s,V), is a function of the entropy and
the volume. The intensive variables of the gas are the
temperature T = ∂U

∂s and the pressure −P = ∂U
∂V . Fur-

thermore, the temperature, the volume and the pressure
of the gas are related by the law of the ideal gases. The
IPHS formulation of the gas is[

V̇
ṡ

]
=

[
g1 g2

] [u1
u2

]
[
y1
y2

]
=

[
g>1
g>2

]
∂U
∂x

=

[
−P
T

]
with u1 = qv, u2 = σ, g1 =

[
1 0

]>
and g2 =

[
0 1

]>
.

The piston and the gas are interconnected through a
reversible and an irreversible relation. The reversible in-
terconnection relates the gas flow and the velocity of the
piston and the pressure of the gas with the force applied
on the piston. This interconnection can be formulated
as the power preserving interconnection (3),[

u1
up2

]
= A

[
0 −1
1 0

] [
y1
yp2

]
6



where A is the transversal area of the piston.
The irreversible interconnection relates the tempera-

ture of the gas with the mechanical friction force and
the entropy creation with the velocity of the piston. The
mechanical friction can be modeled as Fr = bv, and
consequently the entropy creation is σ = 1

T bv2, with
b > 0 the friction constant. The interconnection is for-
mulated according to Proposition 3 as[

up1

u2

]
= β

[
0 1
−1 0

] [
yp1

y2

]
with β = b

T v. Using these interconnections the gas-
piston system is formulated as the IPHS

q̇
ṗ
V̇
ṡ

 =


0 1 0 0
−1 0 A −R
0 −A 0 0
0 R 0 0




F
v

(−P)
T


The total energy of the system is the sum of the mechan-
ical energy and the internal energy

H = H0 + U =
1

2m
p2 +

1
2

Kq2 + U(s,V)

and from Proposition 4 we have

{
s

∣∣∣∣∣∣
[
0 0
0 −1

] ∣∣∣∣∣∣H
}

=


0
0
0
1


> 

0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0




F
v

(−P)
T

 = v

i.e., the velocity of the moving piston, which induces
the heating of the gas and corresponds to the thermo-
dynamic driving force of the interconnection. Conse-
quently γ = b

T and R = β.

5.3. A chemical reaction

Let us consider for simplicity a single reaction occur-
ring at a reactor with constant volume under adiabatic
conditions, i.e., there is no exchange of matter or heat
with the surroundings, with the following reversible
reaction scheme (Horn and Jackson, 1972; Feinberg,
1987)

m∑
i=1

ζiBi
r
−⇀↽−

m∑
i=1

ηiBi

with ζi, ηi being the constant stoichiometric coefficients
for species Bi in the reaction and r is the reaction veloc-
ity (Kondepudi and Prigogine, 1998). Before the reac-
tion takes place the total energy and entropy balance are

zero and the mole balance of each species can be written
as the IPHS

ṅ = gun, yn = g> ∂Un
∂n (17)

where n = [n1, . . . , nm]> with ni the number of moles of
the species i, g = ν = [ν̄1, . . . , ν̄m]> is the stoichiometric
vector whose elements are the signed stoichiometric co-
efficients of the chemical reaction ν̄i = ζi − ηi, Un is the
internal energy of the species, ∂Un

∂n = µ =
[
µ1, . . . , µm

]>
with µi the chemical potential of the species i, the input
un is the net conversion of the reactants to products, the
output yn = ν>µ =

∑m
i=1 ν̄iµi = −A is the negative of the

chemical affinity of the reaction and s the total entropy.
The entropy balance is given by the IPHS

ṡ = us ys =
∂Us
∂s , (18)

where us is entropy flow, Us the internal energy in the
reactor and ∂Us

∂s = T the temperature in the reactor. Be-
fore the species are mixed in the reactor there is no re-
action so un = 0 and us = 0. The moment the species
mix they are interconnected according to Proposition 4[

un

us

]
= R

[
0 1
−1 0

] [
yn

ys

]
.

Let us compute the modulating function R = γ{s|ν|U}
with respect to the total internal energy U = Un + Us.
The bracket is given by

{s|ν|U} =

[
0m×1

1

]> [
0m×m ν
ν> 0

] [
µ
T

]
= −

m∑
i=1

ν̄iµi = A

which corresponds to the affinity of reaction which is
the thermodynamic driving force of the chemical re-
action. Consequently, and according to De Donder’s
fundamental relation (Aris, 1989; Kondepudi and Pri-
gogine, 1998), γ = r

TA ≥ 0 and the inputs of each sub-
system are

un = Rys = r

us − Ryn = −
r
T
A = −

r
T

m∑
i=1

ν̄iµi = σ ≥ 0

respectively the reaction velocity and the entropy pro-
duction due to the chemical reaction σ. The closed-loop
system corresponds to the dynamic of the chemical re-
action and is given by

ṅ = rν ṡ = −
r
T

m∑
i=1

ν̄iµi (19)
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which can equivalently be written as the IPHS[
ṅ
ṡ

]
=

r
T

[
0m×m ν
ν> 0

] [
µ
T

]
(20)

where the structure matrix is a constant skew-symmetric
matrix modulated by the reaction velocity and the tem-
perature whose elements are the signed stoichiometric
coefficients of the chemical reaction.

Notice that interconnection procedure encompasses
the IPHS formulation of the continuous stirred tank re-
actor (CSTR) (Ramirez et al., 2013a, 2016) as well as
quasi Hamiltonian formulations of chemical reaction
networks and the CSTR (Hoang et al., 2011; Tefera
et al., 2022; van der Schaft, 2023).

6. Conclusion

This paper shows that the traditional power preserv-
ing interconnection of two irreversible port Hamiltonian
systems does not systematically lead to an irreversible
port Hamiltonian system. It is mainly due to the fact
that in case of irreversible Thermodynamic systems the
interface between two systems plays an important role
and has to be taken into account in the overall entropy
balance equation. To overcome this issue and preserve
the closed loop irreversible port Hamiltonian structure
during the interconnection, a precise parametrization of
a modulated interconnection is proposed. The state and
co-state modulated interconnection is entirely defined
from the original systems IPHS structure and from the
interconnection relations. The main perspective of this
work is the study of the impact of this modulation func-
tion on control design and how the well-known con-
trol by interconnection and energy shaping methods can
be generalized to IPHS formulations. This approach
should help in overcoming the traditional limitations as-
sociated with the dissipation obstacle. Another perspec-
tive is to compare the features of interconnected IPHS
in terms of system-theroretic properties for control with
the one of alternative approaches such as GENERIC (or
metriplectic) systems or port-Lagrange systems.
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