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Abstract 

In this paper, the structure and different axes for 

the realization of an efficient predictive tool have 

been defined, to improve durability, availability, 

reliability, performance, safety and operating 

costs of hydrogen-energy systems. The predictive 

tool based on predictive maintenance and 

predictive control is intended to be marketed 

economically. 

 

Introduction 

Hydrogen energy systems, i.e. Proton Exchange 

Membrane Hydrogen Fuel Cell (PEMFC) 

systems, Proton Exchange Membrane Water 

Electrolyser (PEMWE) systems or a 

hybridization of the two, are complex and 

multiphysical systems (electrical, 

electrochemical, thermal and fluidic) that require 

advanced maintenance and control resources to 

achieve durability, availability, reliability, 

performance, safety and operating costs 

competitive with conventional systems. In an 

industrial and commercial context, these 

maintenance and control systems will need to use 

measurements that are always available on a 

hydrogen-energy system. In addition, the 

algorithms used must be compatible with real 

time. To meet these requirements, a predictive 

tool appears to be a promising solution. The 

predictive tool comprises 2 components: 

predictive control and predictive maintenance of 

the Remaining Useful Life (RUL) of power 

components. Artificial intelligence approaches 

appear to be of great interest in achieving a high-

performance predictive tool. Indeed, the use of 

physical models for hydrogen-energy systems, 

being complex and multiphysical, is not feasible 

given that not all the physical principles 

governing their operation are yet fully 

understood. In the literature, several predictive 

control and RUL prediction methods for 

hydrogen-energy systems have been developed 

using artificial intelligence.  

 

In the case of predictive control, Dirkes et al. [1], 

have developed an integrated approach to 

prescriptively manage the lifetime and condition 

of PEMFCs. A PEMFC degradation model was 

used to estimate service life as a function of 

operating parameters. The parameters used were 

cathode inlet pressure, coolant inlet temperature, 

coolant temperature difference across the PEM, 

relative humidity at the cathode inlet and cathode 

stoichiometry. The authors report that this 

prescriptive approach has improved predictive 

maintenance, in particular by maximizing RUL 

using control parameter modification (predictive 

control). This approach considerably improves 

current maintenance of PEMFC systems, 

however, for industrial fuel cell systems, it is only 

rarely possible to obtain the relative humidity at 

the cathode inlet. It should also be noted that the 

condition of the PEMFC is assessed using the 

remaining film thickness by the open circuit 

voltage (OCV), and that the condition of the 

cathodic catalyst layer (CCL) is assessed using 

the electrochemical surface area (ECSA). These 

indicators cannot be used in industrial and 

commercial systems (real-time systems). In a 

later work from the same authors [2] the second 

part of the prescriptive PEMFC service life 

management method was presented. This hybrid 

approach to predict and improve the RUL of 

PEMFCs to meet sustainability requirements 
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provided very good results. However, as in the 

first article, health indicators and the control 

parameter (relative humidity at the cathode inlet) 

are not always available on real-time systems. 

From now on, methods for predicting RUL using 

artificial intelligence for hydrogen-energy 

systems will be discussed. In Gibey et al. [3], a 

prescriptive maintenance tool for hydrogen-

energy systems has been designed and defined 

according to 4 aspects, which are respectively, 

planning maintenance interventions only when 

strictly necessary (breakdown prediction and 

PEMFC stack voltage prediction for RUL 

estimation), predictive control, fault detection in 

different system components (objects, sensors 

and power components) and system architecture 

optimization. Several data-driven diagnostic and 

prognostic approaches to respectively estimate 

the state of a PEMFC and predict its RUL have 

been developed. Several data-driven diagnostic 

and prognostic approaches to respectively 

estimate the state of a PEMFC and predict its 

RUL have been developed, using always-

available measurements to take into consideration 

the constraints of a real-time system. It should be 

pointed out that prior data science steps have been 

introduced to smooth and reduce the number of 

redundant data, thus improving computation time 

during training and inference. The authors report 

very good diagnostic and prognostic results for 

prescriptive maintenance of hydrogen-energy 

systems. These prescriptive maintenance 

approaches seem to be very interesting. In this 

paper, similar approaches will be developed for 

predictive maintenance and predictive control of 

hydrogen-energy systems. In another work by the 

same authors [4], a data-driven approach to 

predicting the RUL of a low-temperature PEMFC 

(LT-PEMFC) has been developed. The authors 

report that this approach makes it possible to 

optimize preventive maintenance using predictive 

maintenance, and to predict the state of health of 

the system. To this end, the authors compared an 

LSTM and an ESN, both of which achieved very 

good prediction results with fast computation 

times. It should be pointed out that this approach 

appears to be very interesting for RUL prediction, 

as it uses measurements that are always available 

on real-time systems (PEMFC stack voltage). In 

Yue et al. [5], a multi-stage Echo State Network 

(ESN) for predicting the degradation of a PEMFC 

operating under dynamic load and in real time has 

been developed. A genetic algorithm is used to 

optimize a sliding window in order to recursively 

reformulate the input sequence. A non-linear 

regression model was used to extract a 

degradation indicator from voltage segmentation. 

This approach, validated under dynamic load, 

achieved very good results in terms of 

computation time and prediction performance. In 

addition, this approach uses measurements that 

are always available on real-time systems, in this 

case the voltage and temperature of the PEMFC. 

In Chanal et al. [6], a Bidirectional Multi-

Reservoir ESN (MR-BiESN), was developed to 

predict the voltage of a low-temperature PEMFC. 

The proposed architecture, using multiple 

reservoirs in parallel, has enabled to better 

capture the different dynamics present in a 

PEMFC system. This approach was also 

compared to a Bidirectional Long Short-Term 

Memory (BiLSTM), and it was shown that MR-

BiESN has 1200 times fewer parameters to 

optimize. This approach achieved very good 

prediction results while using a measurement that 

is always available on a real-time system, in this 

case the PEMFC stack voltage. Wang et al. [7] 

proposed a prediction of the voltage degradation 

of a PEMFC, using a BiLSTM with an attention 

mechanism (BiLSTM-AT). The proposed 

approach also has a sliding window on the RUL 

to provide better prediction results. The authors 

tested this method on two PEMFC from the IEEE 

PHM 2014 Data Challenge. Compared to the 

LSTM based on the attention mechanism, the 

BiLSTM-AT is found to be more accurate in 

predicting the RUL of PEMFC. The addition of 

the attention mechanism seems to be an 

interesting way of improving prediction 

performance. Hua et al. [8] have proposed to 

improve the classical ESN for PEMFC RUL 

prediction. They developed MIMO-ESN, which 

are ESN with multiple inputs and outputs. The 

MIMO-ESN can have 1, 2 or 3 inputs, which 

correspond to the stack parameters (descriptors), 

such as the stack voltage, the charge current, the 

stack temperature, the inlet gas pressure. The 

authors have shown that the accuracy of the 

prediction has been greatly improved by using 

multiple inputs. Moreover, it is indicated that the 

ESN with 2 inputs (water inlet temperature and 

stack voltage) obtained the best prediction results. 

From a PrM point of view, the use of many 

parameters will induce a considerable number of 

sensors, which have a significant cost and require 

regular maintenance. Therefore, the MIMO-ESN 

must be used with sensors that are not 

constraining in terms of maintenance and cost. In 

Prakash et al. [9], a model-based approach to 

degradation detection and RUL prediction for 



PEMWE has been developed. The model used is 

a Diagnostic Bond Graph (DBG), and the residual 

Analytical Redundancy Relations (ARRs) 

represent the residual evolution trend for RUL 

prediction. The residual signals corresponding to 

the fault indicators are evaluated by numerically 

evaluating the ARRs, which correspond to the 

various system sensors, namely cell current, 

anode and cathode pressures, stack temperature 

and mass flow from the stack to the 

oxygen/hydrogen separator. This residual-based 

approach has been shown to achieve good 

predictive accuracy. However, this method has 

not been tested on a real system, and has only 

been validated by simulation. Furthermore, the 

measurements used are always available on an 

industrial system, except for the mass flow rate, 

which can nevertheless be reconstructed using the 

fluid's volume flow rate and density.  Liu et al. 

[10] In the first phase, a machine learning 

algorithm based on an evolutionary algorithm and 

an adaptive neuro-fuzzy system is used to predict 

the long-term degradation trend. In the second 

phase, the remaining lifetime is estimated from 

the degradation data obtained, using a semi-

empirical PEMFC degradation model and an 

adaptive unscented Kalman filter. Finally, the 

proposed hybrid prognostic method is validated 

using experimental PEMFC aging data. Test 

results show that this method can accurately 

predict the long-term degradation trend and 

estimate the remaining lifetime of PEMFCs. The 

authors report improved prediction accuracy and 

faster convergence than other ensemble model-

based methods. The method proposed is 

interesting in that it provides good prediction 

results for both the short and long term. 

 

Following this literature review of the various 

methods for prognosticating the RUL of 

PEMFCs, a comparison between a BiESN and a 

BiLSTM on the same dataset will be proposed in 

this paper. The paper is constructed as follows. 

First, the predictive tool for hydrogen-energy 

systems will be defined and explained, then its 

two components will be examined, starting with 

predictive maintenance and ending with 

predictive control. 

 

Predictive tool for hydrogen-energy 

systems 

In this sub-section, the various aspects of 

developing a high-performance predictive tool for 

hydrogen-energy systems will be discussed. The 

idea is to improve hydrogen-energy systems in 

terms of performance, durability, reliability, 

availability, safety, and operating costs by 

predicting stack voltage in order to estimate the 

RUL and maximizing it by modifying control 

variables, thus greatly reducing costly 

breakdowns and carrying out maintenance work 

only when strictly necessary or at strategic times 

such as during machine shutdowns or periods of 

reduced activity. The predictive tool comprises 2 

components, which can be seen in figure (1), and 

which are respectively: 

• Predictive maintenance: This involves 

predicting the stack voltage (PEMFC or 

PEMWE) in order to estimate the remaining 

service life (RUL) of power components.  

• Predictive control: This component uses 

stack voltage prediction to estimate the RUL. 

In this case, the idea is to obtain the highest 

possible RUL for the system, while ensuring 

the necessary power output. To achieve this, 

the RUL will be used as an objective 

function, i.e. it will be estimated regularly, 

and if it is found to be falling, then a 

modification of the control variables will be 

made to maximize it. It should be noted that 

a threshold will be set to take account of 

natural aging and prediction errors. 

 

 

Predictive tool 

 

 

Fig. 1: Architecture of the predictive tool for 

hydrogen-energy systems.  

 

Predictive maintenance of 

hydrogen-energy systems 

In this sub-section, predictive maintenance of 

hydrogen-energy systems, which looks very 

interesting and promising, will be discussed. The 

idea is to predict the stack voltage in order to 

estimate the RUL of power components for 

maintenance interventions.  
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Fig. 2: Stack voltage prediction to estimate RUL 

for predictive maintenance of hydrogen-energy, 

inspired by [3]. 

 

Artificial intelligence (AI) algorithms are a good 

way of achieving this, as they enable high 

predictive accuracy with fast computation times 

for training and inference. The fast computation 

time during training means that the algorithm can 

be re-trained online when the trend changes, 

while the fast computation time during inference 

means that the algorithm can be re-calculated to 

ensure the quality of the prediction.   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: BiESN and BiLSTM results for PEMFC 

system stack voltage prediction. 

 

Nevertheless, prior data science steps have been 

carried out to filter, smooth and reduce the 

number of redundant data to improve 

computation time. Figure (2) shows the various 

stages in the process of predicting the stack 

voltage in order to estimate the RUL of power 

components (PEMFC or PEMWE), with the aim 

of planning and carrying out maintenance work 

only when strictly necessary, thus improving on 

conventional preventive maintenance, which 

follows a fixed schedule that generates high 

maintenance costs. The various steps involved in 

predictive maintenance of hydrogen-energy 

systems are as follows: 

• The data needed to estimate the RUL will be 

extracted, i.e. stack voltage and time. 

• The data will also be used for predictive 

maintenance. To achieve this, the data will be 

processed to reduce the number of redundant 

data to improve computation time, eliminate 

peaks at 0V corresponding to system 

shutdowns or passage through the OCV using 

a logic filter, and finally smooth the data to 

eliminate noise using the Savitzky-Golay 

filter. 

• A regular sliding window will be used to 

inject a sequence into a prediction algorithm, 

typically a Bidirectional Echo State Network 

(BiESN), whose size will be adjusted 

according to the size of the sequence used in 

this algorithm. 

• The stack voltage is then predicted over time 

using the prediction algorithm. 

• This prediction is then compared with the 

end-of-life threshold, noted “T_EoL” in 

figure (2). If the predicted voltage is greater 

than the EoL threshold, then no RUL will be 

estimated. On the other hand, if the predicted 
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voltage is below the EoL threshold, then a 

RUL will be estimated. It should be noted that 

RUL prediction must be carried out at least 

100 hours in advance, to enable operators to 

carry out the maintenance required to restore 

the system before it can no longer perform its 

mission. 

• In the case of a RUL estimated at least 100 

hours in advance, the maintenance schedule 

and the various actions to be implemented to 

repair the system will be transmitted to a 

Human Machine Interface (HMI) to inform 

the maintenance operators of the steps to be 

taken. 

• Predictive maintenance of hydrogen energy 

systems makes it possible to estimate the 

RUL of power components, so that 

maintenance work can be scheduled and 

carried out only when strictly necessary, 

thereby improving reliability, availability, 

performance, durability, safety and operating 

costs. To this end, the use of data-driven 

predictive algorithms appears to be one of the 

most promising solutions for complex and 

multi-physics hydrogen-energy systems. In 

this paper, a data-driven method has been 

developed by comparing two well-known 

prediction algorithms, in this case BiESN and 

BiLSTM. The dataset used comes from the 

IEEE PHM Data Challenge, in which a 500W 

low-temperature PEMFC operating at 70A 

current with +-5% current ripples was run for 

1055h. Only the stack voltage over time was 

used to estimate the RUL in order to suit the 

constraints of a real-time system, i.e. the use 

of always-available data on this type of 

system as well as fast computation time for 

the algorithms during prediction. The setting 

parameters of these algorithms are shown in 

Table (1) and their results in figure (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: BiESN and BiLSTM settings 

 
The result of the BiESN and BiLSTM predictions 

are very satisfactory, respecting the satisfied 

horizon evaluation metric, which corresponds to 

an error of +-3% between the actual validation 

data and the validation data estimated by the 

algorithm, in addition, the computation time is 

less than 1s (0.58s and 0.6s respectively), 

enabling predictions to be re-run very regularly. 

It's also worth noting that training times are very 

fast (20s and 32s respectively), enabling 

algorithms to be re-trained online. Furthermore, 

the voltage of the PEMFC stack was predicted 

164 hours in advance in order to plan 

maintenance interventions before the system can 

no longer fulfil its mission. On this dataset, no 

RUL has been estimated as the PEMFC stack 

voltage has not crossed the end-of-life threshold 

noted "EoL -10%" on figure (3). 

 

 

Predictive control of hydrogen-

energy systems 

In this sub-section, predictive control of 

hydrogen-energy systems to maximize the RUL 

of power components (PEMFC and PEMWE) by 

modifying control variables will be discussed. In 

the context of hydrogen-energy systems, which 

are complex, multiphysical and non-linear, 

predictive control seems to hold great promise. 

Figure (4) shows a hydrogen energy system, 

which may be a PEMFC or PEMWE system. 
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Fig. 4: Stack voltage prediction to estimate RUL 

for predictive control of hydrogen-energy 

systems, inspired by [3]. 

 

Data from the measurement sensors are 

transmitted to the control system to control the 

system. This data will also be used to estimate the 

RUL: 

• The data needed to estimate the RUL will be 

extracted, i.e. stack voltage and time. 

• The data will then be processed to reduce the 

number of redundant data to improve 

computation time, eliminate peaks at 0V 

corresponding to system shutdowns or 

passage through the VCO using a logic filter, 

and finally filter the data to eliminate noise 

using the Savitzky-Golay filter. 

• A regular sliding window will be used to 

inject a sequence into a prediction algorithm, 

typically a BiESN, whose size will be 

adjusted according to the size of the sequence 

used in this algorithm. 

• The stack voltage is then predicted over time 

using the prediction algorithm. 

• This prediction of stack voltage is used to 

estimate the RUL. In predictive control, stack 

voltage must be predicted until the end-of-life 

threshold is reached, so that RUL can be 

estimated at any time. 

• La RUL estimated at time t1, noted 𝑅𝑈𝐿𝑒𝑠𝑡_𝑡1 

in figure (2), will be compared with that 

estimated at time t2, noted 𝑅𝑈𝐿𝑒𝑠𝑡_𝑡2 in figure 

(2). If the RUL estimated at time t1 is lower 

than that estimated at time t2, then no changes 

are made to the control variables. 

• On the other hand, if the RUL estimated at 

time t1 is higher than that estimated at time 

t2, then the system has lost its service life. In 

this case, a prescription to modify the control 

variables will be transmitted in order to 

obtain the highest possible RUL while 

ensuring the necessary output power. It 

should also be noted that a threshold between 

the RUL estimated at time t1 and time t2 will 

be implemented, to represent performance 

losses due to natural aging and prediction 

errors. 
 

Ultimately, predictive control makes it possible to 

maximize the RUL of power components in 

hydrogen-energy systems by modifying control 

variables, thereby increasing the lifetime, 

availability and efficiency of these systems. 

 

Conclusion 

In this article, the both aspects of a high-

performance predictive tool have been defined 

and explained in order to improve durability, 

availability, reliability, performance, safety and 

operating costs of hydrogen-energy systems in an 

industrial framework. The first aspect is 

predictive maintenance, i.e. estimating the RUL 

in order to plan maintenance interventions when 

strictly necessary. The second component is 

predictive control of the system, which enables 

the control variables to be modified by comparing 

the RUL estimated at time t1 with the RUL 

estimated at time t2, while respecting the trade-

off between performance and sustainability in 

order to deliver the required power while 

maximizing the RUL. Methods in the literature 

for data-driven RUL prognostics of PEMFCs and 

PEMWEs have been presented, with a view to 

finding the most interesting ones, taking into 

account the different constraints induced by a 

real-time system. In addition, two well-known 

prediction algorithms, BiESN and BiLSTM, were 

compared on an identical dataset, in order to 

estimate the RUL at least 100h in advance to 

anticipate and schedule maintenance 

interventions. It was shown that both algorithms 

achieved very good prediction results, using 
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measurements always available on a real-time 

system (stack voltage and time). It should also be 

noted that preliminary filtering steps were 

implemented to greatly reduce the computation 

time, for training (20s and 32s respectively) to 

allow online re-training and for prediction (0.58s 

and 0.6s) to allow reiteration of the computation 

to ensure prediction quality. In future work, the 

prediction tool will be enhanced to consider faults 

detection and breakdowns prediction of system 

and subsystems. These various aspects will be 

carried out and validated experimentally for 

hydrogen-energy systems, i.e., for open-cathode 

and closed-cathode PEMFC systems, for wet-

cathode and dry-cathode PEMWE systems, and 

for hybrid systems comprising at least one 

PEMFC and one PEMWE. In addition, this 

predictive tool is destined to be marketed to 

producers and integrators of hydrogen-energy 

systems for stationary and transport applications. 
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