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Abstract: This paper investigates the distributed time-varying (TV) resource management 1

problem (RMP) for microgrids (MGs) within a multi-agent system (MAS) framework. A 2

novel fixed-time (FXT) distributed optimization algorithm is proposed, capable of operat- 3

ing over switching communication graphs and handling both local inequality and global 4

equality constraints. By incorporating a time-decaying penalty function, the algorithm 5

achieves FXT consensus of marginal costs and ensures asymptotic convergence to the TV 6

optimal solution of the original RMP. Unlike prior methods with centralized coordination, 7

the proposed algorithm is fully distributed, scalable, and privacy-preserving, making it 8

suitable for real-time deployment in dynamic MG environments. Rigorous theoretical anal- 9

ysis establishes FXT convergence under both identical and nonidentical Hessian conditions. 10

Simulations on the IEEE 14-bus system validate the algorithm’s superior performance in 11

convergence speed, plug-and-play adaptability, and robustness to switching topologies. 12

Keywords: Distributed time-varying optimization; Multi-agent systems; Optimal resource 13

management; Fixed-time; Switching graphs 14

1. Introduction 15

MGs have emerged as a pivotal component of modern energy systems, facilitating 16

enhanced energy efficiency and the integration of renewable energy sources[1]. An MG 17

typically consists of distributed generators (DGs), energy storage systems (ESSs), loads, 18

and control devices, and is capable of operating either autonomously or in coordination 19

with the main grid, thus enhancing system flexibility and reliability. 20

Effective resource management within MGs remains a critical challenge, especially 21

in dynamically balancing energy supply and demand while minimizing operational costs. 22

In this context, MASs have gained increasing attention for MG control and optimization, 23

owing to their inherent advantages in distributed decision-making, scalability, and fault 24

tolerance. MASs enable autonomous agents to collaborate and solve complex optimization 25

tasks in a fully distributed manner[2,3]. Moreover, the TV nature of MGs, characterized 26

by intermittent renewable generation and fluctuating load demand—requires advanced 27

optimization algorithms that can efficiently adapt to dynamic environments. In partic- 28

ular, ensuring fast consensus and convergence under varying operating conditions and 29

communication topologies remains an open problem. 30

Recent efforts have focused on distributed optimization strategies for resource schedul- 31

ing in MGs [4–8]. For example, a fully distributed consensus-based control strategy is 32

proposed for solving optimal RMP in an island MG [4]. In [7], to boost the convergence 33

speed, Li et al. presented a distributed and parallel optimization method for RMP of MGs. 34
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This method can improve the convergence speed of the algorithm without sacrificing opti- 35

mal accuracy. The aforementioned methodologies [4–8] achieve distributed optimization 36

asymptotically, i.e., convergence is guaranteed only as time approaches infinity. However, 37

in many practical applications, faster convergence is crucial, which motivates the develop- 38

ment of finite-time (FT) or FXT distributed optimization algorithms [3,9–13]. Despite recent 39

advances, most existing FT and FXT distributed optimization methods still have limitations. 40

They often assume time-invariant cost functions[3,9–13], making them less suitable for 41

dynamic environments with renewable fluctuations and varying loads. Moreover, global 42

constraints like supply-demand balance are typically ignored or managed semi-centrally, 43

which limits scalability and real-time application. 44

Nevertheless, most of the aforementioned works focus on static optimization problems, 45

where objectives remain constant over time. In contrast, many real-world applications 46

exhibit TV characteristics, with dynamically evolving objectives and constraints. This has 47

motivated research on distributed TV optimization in areas such as resource allocation [14], 48

visual tracking [15], robotic navigation [16], and transportation systems [17–20]. Several 49

recent studies have proposed distributed algorithms for general TV optimization [21– 50

25]. For example, an edge-based protocol was developed in [22], while [23] introduced 51

a prediction-correction scheme for TV economic dispatch, and [25] designed gradient- 52

based trackers for quadratic problems. However, these works are typically limited to 53

fixed communication graphs and general problem formulations, without addressing the 54

specific structure and constraints of RMPs in MGs. In power systems, the need for real-time 55

monitoring and response increases communication demands and risks of link failures, 56

requiring flexible and adaptive communication models. Switching graphs, which better 57

reflect these dynamic conditions, have recently drawn growing interest [26–28]. Yet few 58

approaches jointly consider TV objectives, global constraints, and switching topologies in 59

distributed RMPs. This motivates the present work. 60

Moreover, while FT algorithms can accelerate convergence, their settling time often 61

depends on the initial state. In contrast, FXT algorithms ensure convergence within a uni- 62

form time bound, independent of initial conditions, offering more predictable performance. 63

Distributed optimization problems have been extensively investigated under a range of con- 64

ditions [3,9–13,21–29], including FT/FXT convergence, switching communication graphs, 65

and both static and TV cost functions and loads. However, to the best of our knowledge, 66

few existing studies address the distributed FXT optimization of TV RMPs for MGs within 67

a MAS framework, particularly under switching communication topologies. Addressing 68

this challenge is essential for enhancing the efficiency, adaptability, and sustainability of 69

energy systems in dynamic environments [30,31]. 70

Motivated by these insights, this paper aims to develop a distributed FXT optimization 71

algorithm to solve the TV RMP for MGs over switching communication graphs. 72

The main contributions of this paper are summarized as follows: 73

1) A distributed FXT optimization algorithm is proposed to solve penalized TV RMPs, 74

guaranteeing fixed-time convergence to a tunable neighborhood of the original optimal 75

solution, and asymptotic convergence to the exact optimum. Theoretical guarantees are 76

established under both identical and non-identical Hessian conditions. compared with 77

[3,9–13,21–25], the proposed algorithm exhibits improved efficiency and enhanced practical 78

applicability; 79

2) Unlike prior studies that primarily consider either equality or inequality constraints 80

separately [21–27], the proposed algorithm is designed to handle TV RMPs in MGs with 81

both local inequality and global equality constraints, enabling effective adaptation to 82

dynamic resource and constraint variations [30,31]; 83
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3) To ensure robust performance in dynamic environments, the algorithm is designed 84

to operate over switching communication topologies, thereby enhancing the resilience and 85

adaptability of MASs under intermittent communication conditions. 86

In this work, we aim to solve a TV RMP for MGs, which features both local inequal- 87

ity constraints and a global power balance constraint. To this end, we develop a fully 88

distributed control strategy that enables a network of MG agents—each with local TV 89

objectives and constraints—to collaboratively solve a RMP over a dynamically switching 90

communication network. The proposed algorithm is rooted in a FXT consensus-based 91

optimization framework, where agent updates its decision variables based solely on local 92

computations and information exchanged with its neighbors. The FXT protocol guarantees 93

that all agents achieve consensus on marginal costs and converge to the globally optimal 94

power allocation of the TV penalized RMP within a fixed time, regardless of initial condi- 95

tions. To handle inequality constraints, a time-decaying penalty function is employed to 96

incorporate them into the optimization objective, ensuring that the original constrained 97

problem is approximated asymptotically. In parallel, the global equality constraint is im- 98

plicitly enforced by designing the dynamics to preserve the total power invariant, provided 99

that the initial condition satisfies the constraint. This avoids the need for explicit projection 100

or Lagrangian-based enforcement, thereby reducing control complexity. 101

Overall, the method efficiently carries out the distributed optimization process, al- 102

lowing agents to pursue local objectives, gradually satisfy inequality constraints, achieve 103

consensus, and maintain global power balance within a fixed time, even under switching 104

networks. The resulting approach is scalable, resilient to communication variations, and 105

suitable for real-time implementation in dynamic and decentralized MG environments. 106

The rest of this paper is structured as follows. Section II gives the preliminaries. The 107

formation of the TV RMP is provided in Section III. Section IV gives the main results. 108

Simulation examples are given in Section V to illustrate the effectiveness of the proposed 109

control strategy. Conclusion is drawn in Section VI. 110

2. Preliminaries 111

2.1. MAS framework 112

As illustrated in Fig. 1, the MG under consideration is structured within a MAS frame- 113

work, comprising a utility grid, conventional dispatchable generators (CDGs), renewable 114

generators (RGs), battery energy storage systems (BESS), and a variety of loads (residential, 115

commercial, industrial, and flexible loads). The utility grid connects to the MG via a point of 116

common coupling (PCC), which monitors power exchange and determines the operational 117

mode of the MG. Each MG component is managed by an autonomous agent capable of 118

local control and inter-agent communication, enabling coordinated decision-making across 119

the network. 120

Figure 1. Topology of the MAS-based MG.

As shown in Fig. 2, the MAS adopts a two-level control architecture. The upper level 121

consists of a communication network, where each agent exchanges information only with 122
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its neighbors to implement the distributed optimization strategy. The lower level comprises 123

physical devices, where control commands are executed to regulate power generation or 124

consumption in accordance with reference signals received from the upper level. Power is 125

exchanged through physical electrical connections among devices.

Agent 1

Device 1

Control 1

Agent 2

Device 2

Control 2

Agent 3

Device 3

Control 3

Agent 4

Device 4

Control 4

Agent 5

Device 5

Control 5

Agent 6

Device 6

Control 6

Agent 7

Device 7

Control 7

Agent 8

Device 8

Control 8

Electrical connection Communication connection

Figure 2. Agent communication network in MGs.

126

2.2. Graph Theory 127

Denote an undirected graph G = (V , E, A) with N nodes, where V represents the 128

set of nodes, and E ⊂ V × V constitutes the set of edges. The nodes are connected by a 129

adjacency matrix A =
[
aij
]
∈ RN×N , where aij = 1 if there is an edge (j, i) ∈ E, and aij = 0 130

otherwise. Given the undirected of G, the matrix A satisfies aij = aji. The neighborhood of 131

any node i, denoted Ni = {j ∈ V : (i, j) ∈ E}. 132

A path in G is defined as a sequence of edges connecting two nodes, and the graph is 133

considered connected if a path exists between every pair of nodes. Associated with A is the 134

Laplacian matrix L = [lij] ∈ RN×N , where lij = −aij for i ̸= j, and lii = ∑N
j=1 aij. Note that 135

when G is connected, the eigenvalues of L are ordered as 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN(L), 136

with λ2(L) being the second smallest eigenvalue. Additionally, the concept of a switching 137

graph sequence is introduced as Gσ(t) = (V , Eσ(t)), where σ(t) : [0,+∞) → 1, 2, . . . , w is 138

a piecewise constant signal dictating the graph configuration at any given time. Here, 139

w represents the total number of distinct switching graph possible. The corresponding 140

Laplacian matrices, and the set of neighbors for any agent i, are denoted as Lσ(t), and Nσ(t), 141

respectively. 142

2.3. Definitions and Lemmas 143

Consider the nonlinear system 144

ẋ(t) = g(x(t)), x(0) = x0, (1)

where g : RN → RN is a continuous function with g(0) = 0, and x(t) ∈ RN denotes the 145

system state at time t. 146

To facilitate the analysis of FXT distributed TV resource management, several mathe- 147

matical preliminaries are introduced below. 148

Lemma 1 ([32]). Let V(x(t)) be a smooth, positive definite scalar function. If there exist constants 149

α ∈ [0, 1) and κ > 0 such that 150

V̇(x(t)) ≤ −κVα(x(t)),

then the origin of system (1) is finite-time stable, and the settling time satisfies T(x0) ≤ V1−α(x0)
κ(1−α)

. 151
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Lemma 2 ([33]). Let V(x(t)) be a positive definite scalar function. If there exist constants κ > 0, 152

γ > 0, α > 1, and β ∈ (0, 1) such that 153

V̇(x(t)) ≤ −κVα(x(t))− γVβ(x(t)),

then the origin of system (1) is fixed-time stable, and the settling time satisfies T(x0) ≤ 154

1
γ

( γ
κ

) 1−β
α−β

(
1

1−β + 1
α−1

)
. 155

Definition 1 (Filippov Solution [34]). Consider system (1), where g(x(t)) may be discontinuous. 156

The Filippov set-valued map associated with g at x is defined as 157

F[g](x) ≜
⋂
δ>0

⋂
µ(S)=0

co{g(y) | y ∈ B(x, δ) \ S},

where µ(S) denotes the Lebesgue measure of the set S, co denotes the convex hull, and B(x, δ) is an 158

open ball centered at x with radius δ. A function x(t) is called a Filippov solution to ẋ = g(x) if it 159

is absolutely continuous and satisfies ẋ(t) ∈ F[g](x(t)) at almost everywhere. 160

Lemma 3 ([22]). Let η1, η2, . . . , ηn ≥ 0. Then, for any ν > 0, the following inequalities hold 161(
n

∑
i=1

ηi

)ν

≤
n

∑
i=1

ην
i , 0 < ν ≤ 1,(

n

∑
i=1

ηi

)ν

≤ nν−1
n

∑
i=1

ην
i , ν > 1.

Lemma 4. ([26]) for an undirected and connected graph G, when 1T
Nε = 0 for ε = [ε1, ε2, ..., εN ]

T , 162

we have ∑N
i=1 ∑j∈Ni

|εi − ε j| ≥ (2λ2(L)εTε)1/2. 163

Lemma 5. ([35]) Let B ∈ RN×N be a symmetric positive semidefinite matrix, and let the global 164

cost function C(P, t) be ω-strongly convex over P ∈ RN for each fixed t ≥ 0, with ω > 0. Denote 165

by P∗(t) the optimal solution to the TV regularized RMP at time t. Then, the following inequality 166

holds for all t ≥ 0 167

1
2

ωλ2(B)(C(P, t)− C(P∗, t)) ≤ ∇PC(P, t)T B∇PC(P, t)

where λ2(B) denotes the second smallest eigenvalue of B. 168

3. Problem Formulation 169

In this section, we define five types of agents within the MG context under the intro- 170

duced MAS framework. Additionally, corresponding cost functions of each kind of agent 171

are designed to facilitate optimal resource management modeling. In the following content, 172

for convenience, we often omit t where it does not cause confusion. 173

3.1. Conventional Generator Agents 174

This class of agents includes natural gas turbines, fuel-fired generators, and other 175

controllable power sources. These units typically exhibit convex cost characteristics due 176
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to thermal efficiency and fuel consumption laws. To capture such behavior under TV 177

operating conditions, their generation cost is modeled as a TV quadratic function [3,11]: 178

CG
i (PG

i , t) = αG
i (t)(PG

i )2 + βG
i (t)PG

i + γG
i (t),

MG
i (t) =

∂CG
i

∂PG
i

= 2αG
i (t)PG

i + βG
i (t),

PG,min
i ≤ PG

i ≤ PG,max
i ,

(2)

where αG
i (t), βG

i (t), γG
i (t) are TV cost coefficients, and MG

i (t) denotes the marginal cost 179

function. The parameters PG,min
i and PG,max

i specify the operating limits of generator 180

i. In resource management optimization, aligning marginal costs across generators is 181

essential for achieving economic dispatch and system-wide efficiency. This design helps 182

maintain power balance under demand fluctuations, mitigates resource over-utilization, 183

and improves operational fairness and stability. 184

3.2. RG Agents 185

RG agents represent Photovoltaics generators and Wind turbines, which are inherently 186

intermittent and uncertain. While conventionally treated as nondispatchable, we consider 187

them controllable within their available output range to facilitate real-time coordination. 188

Following the modeling framework of [36], the cost function of each RG agent is modeled 189

as a TV quadratic function: 190

CR
i (PR

i , t) =αR
i (t)

(
Pavail

i (t)− PR
i

)2
+ βR

i (t)(Pavail
i (t)− PR

i ) + γR
i (t)

(
PR

i − P̂i(t)
)2

,

MR
i (t) =

∂CR
i

∂PR
i

= 2αR
i (t)

(
Pavail

i (t)− PR
i

)
− βR

i (t) + 2γR
i (t)

(
PR

i − P̂i(t)
)

,

0 ≤ PR
i ≤ Pavail

i (t),

(3)

where Pavail
i (t) denotes the forecasted available output, and P̂i(t) is the scheduled value 191

from the previous time step. αR
i (t), βR

i (t), and γR
i (t) are TV coefficients. 192

3.3. Energy Storage Agents 193

Energy storage agents (e.g., BESSs, Supercapacitors) act as controllable and dispatch- 194

able units that provide temporal balancing by charging during periods of low marginal 195

cost and discharging during peak demand or high-cost intervals. Inspired by the modeling 196

approaches in [3], to comprehensively reflect the operational characteristics of batteries- 197

including energy conversion losses, degradation costs, and dynamic control effort, we 198

adopt the following TV cost function 199

CS
i (PS

i , t) = αS
i (t)(PS

i )
2 + βS

i (t)PS
i + γS

i (t)(PS
i )

4 + ζS
i (t)

(
1

SOCi(t)
+

1
1 − SOCi(t)

)
+ ϕS

i (t)
(

PS
i − P̂S

i (t)
)2

, (4)

where PS
i (t) is the charging/discharging power of storage agent i, with PS

i > 0 for discharg- 200

ing and PS
i < 0 for charging; SOCi(t) ∈ (0, 1) is the state of charge; P̂S

i (t) is the reference 201

or scheduled value; αS
i (t), βS

i (t), γS
i (t), ζS

i (t), ϕS
i (t) are continuously TV coefficients. The 202

marginal cost is given by 203

MS
i (t) =

∂CS
i

∂PS
i
= 2αS

i (t)PS
i + βS

i (t) + 4γS
i (t)(PS

i )
3 + 2ϕS

i (t)
(

PS
i − P̂S

i (t)
)

. (5)
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The operational constraints of the battery are 204

PS,min
i ≤ PS

i ≤ PS,max
i , SOCmin

i ≤ SOCi ≤ SOCmax
i .

Here, PS,min
i and PS,max

i denote the minimum and maximum charging/discharging power, 205

respectively, and SOCmin
i and SOCmax

i represent the lower and upper bounds of the state 206

of charge. 207

3.4. Load Agents 208

Load agents represent controllable or shiftable loads, such as HVAC systems, industrial 209

machinery, or smart appliances, whose power consumption can be adjusted to support grid 210

stability and economic dispatch. However, such flexibility typically incurs user discomfort 211

or performance degradation. To model this trade-off, Motivated by the formulation in [11], 212

we adopt the following TV cost function 213

CL
i (PL

i , t) =αL
i (t)(PL

i − P̂L
i (t))

2 + βL
i (t)(PL

i − P̂L
i (t))

4 + γL
i (t)

(
dPL

i (t)
dt

)2

, (6)

where PL
i (t) is power consumption of load agent i; P̂L

i (t) denotes the desired or baseline 214

load level at time t; αL
i (t), βL

i (t), γL
i (t) are TV weights reflecting sensitivity to deviation and 215

response effort. The marginal cost is given by 216

ML
i (t) =

∂CL
i

∂PL
i
= 2αL

i (t)(PL
i − P̂L

i (t)) + 4βL
i (t)(PL

i − P̂L
i (t))

3.

The allowable range of adjustable load is defined by 217

PL,min
i ≤ PL

i (t) ≤ PL,max
i .

Here, PL,min
i and PL,max

i represent the minimum and maximum allowable power consump- 218

tion of load agent i, respectively. 219

3.5. Utility Agents 220

MG operation typically alternates between two modes: islanded and grid-connected. 221

The utility agent becomes active during grid-connected operation, representing the interac- 222

tion with the external utility grid. It monitors the net power exchange between the MG and 223

the main grid and applies corresponding charges or credits. To account for the asymmetry 224

between purchase and sale electricity prices, we adopt a smooth TV cost function as follows 225

[37] 226

CU
i (PU

i , t) =
β

buy
i (t) + βsell

i (t)
2

PU
i +

β
buy
i (t)− βsell

i (t)
2

PU
i tanh(ηPU

i ), (7)

where β
buy
i (t) and βsell

i (t) denote the TV purchase and sale electricity rates, and η > 0 is 227

a smoothing parameter. In the grid-connected mode, the optimality condition requires 228

that the marginal cost of each dispatchable agent equals the electricity rate imposed by the 229

utility grid. 230

3.6. Formulation of the TV RMP 231

In a MG consisting of N1 CDGs, N2 RGs, N3 BESSs, N4 controllable loads (flexible or 232

shiftable loads), and a utility interface, the objective is to minimize the aggregate operation 233

cost of all agents while maintaining supply-demand balance. 234
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To accommodate both islanded and grid-connected operating modes within a unified 235

formulation, we introduce a binary mode indicator σU(t) ∈ {0, 1}, where σU(t) = 1 denotes 236

grid-connected mode and σU(t) = 0 corresponds to islanded operation. Accordingly, the 237

convex optimization problem is formulated as: 238

min
N1

∑
i=1

CG
i (PG

i , t) +
N2

∑
i=1

CR
i (PR

i , t) +
N3

∑
i=1

CS
i (PS

i , t) +
N4

∑
i=1

CL
i (PL

i , t) + σU(t) · CU(PU , t)

239

s.t.
N1

∑
i=1

PG
i +

N2

∑
i=1

PR
i +

N3

∑
i=1

PS
i + σU(t) · PU =

N4

∑
i=1

PL
i

PG,min
i (t) ≤ PG

i (t) ≤ PG,max
i (t), i = 1, . . . , N1

PS,min
i (t) ≤ PS

i (t) ≤ PS,max
i (t), i = 1, . . . , N3

PL,min
i (t) ≤ PL

i (t) ≤ PL,max
i (t), i = 1, . . . , N4

where PG
i , PR

i , PS
i , and PL

i represent the power outputs or consumptions of the CDGs, RGs, 240

BESSs, and load agents, respectively. PU(t) denotes the power exchanged with the utility 241

grid, and CU(PU , t) is the associated cost function. The switching variable σU(t) allows the 242

model to seamlessly adapt to both operational modes. 243

To simplify the notation and following the modeling approach in [37], we define the 244

total number of agents as N = N1 + N2 + N3 + N4 + 1, where the last agent represents 245

the utility grid. Let Pi denote the output power of agent i, Pmax
i and Pmin

i be its upper and 246

lower bounds, respectively. Accordingly, the optimization problem can be reformulated as 247

follows 248

min
N

∑
i=1

Ci(Pi(t), t)

s.t.
N

∑
i=1

Pi(t) =
N

∑
i=1

di

Pmin
i (t) ≤ Pi(t) ≤ Pmax

i (t), i = 1, ..., N.

(8)

249

Remark 1. The growing use of RDGs, flexible loads, and energy storage units has introduced 250

more uncertainty and variability into modern MG operations. As a result, static or single-period 251

optimization models are often inadequate for capturing the real-time dynamics of such systems. To 252

address this challenge, we formulate the MG RMP as a constrained TV convex optimization problem. 253

This modeling approach offers several advantages: (i) Real-time adaptability: Enables continuous 254

response to renewable fluctuations, load shifts, and market signals; (ii) Theoretical tractability: 255

Convexity and smoothness guarantee solution uniqueness and support gradient-based methods; (iii) 256

Distributed readiness: It fits well with distributed control methods based on local communication. 257

Overall, this TV optimization model provides a rigorous and flexible foundation for real-time RMP 258

in complex MG environments. 259
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4. Main results 260

4.1. Design of the FXT Distributed Algorithm 261

To incorporate this mechanism, the following TV penalty function is adopted: 262

hϵ(t),i(gi(Pi)) =


0, gi(Pi) ≤ 0
(gi(Pi))

2

2ϵ(t) , 0 ≤ gi(Pi) ≤ ϵ(t)

gi(Pi)− ϵ(t)
2 , gi(Pi) > ϵ(t),

(9)

where ϵ(t) = ϵ0e−αt is an exponentially decaying function with ϵ0 > 0 and α > 0. Thus, by 263

using this penalty function, the RMP (8) is subsequently reformulated as: 264

min Cϵ(t)(P(t), t) =
N

∑
i=1

Cϵ(t),i(Pi(t), t)

s.t.
N

∑
i=1

Pi(t) =
N

∑
i=1

di,
(10)

where Cϵ(t),i(Pi(t), t) = Ci(Pi(t))+ ζ(hϵ(t),i(Pi(t)− Pmax
i (t))+ hϵ(t),i(Pmin

i (t)− Pi(t))), P = 265

[P1, ..., PN ]
T and ζ is a positive penalty parameter. Define P∗ = [P∗

1 , ..., P∗
N ] and P̆∗ = 266

[P̆∗
1 , ..., P̆∗

N ] as the optimal solution for the TV optimal RMP (8) and (10) at time t, respectively. 267

In our case, the penalty parameter is not fixed but varies with time as ϵ(t) = ϵ0e−αt, 268

where ϵ(t) is strictly positive and monotonically decreasing over time. According to the 269

designed TV penalty function (9) and inspired by [38], setting ζ = 1−N
1−

√
N

ζ∗, for each t, the 270

relationship between (8) and (10) can be expressed as 271

0 ≤ C(P∗(t))− Cϵ(t)(P̆∗) ≤ ϵ(t)ζN

Furthermore, as t → ∞, we have ϵ(t) → 0, which implies 272

lim
t→∞

|C(P∗(t))− Cϵ(t)(P̆∗)| = 0.

Here, ζ∗ > max{γ∗}, γ∗ = {γ∗
1 , ..., γ∗

N} represents the vector of Lagrange multipliers that 273

satisfy the Karush—Kuhn—Tucker (KKT) conditions as referenced in [38]. Moreover, as 274

stated in [39], the upper bound of γ∗ is determined by: 275

max{γ∗
i }N

i=1 ≤
2 max{maxPi∈P̃i

|∇PCi(Pi, t)|}N
i=1

min{Pmax
i − Pmin

i }N
i=1

, (11)

where ∇PCi(Pi, t) denotes the gradient of Ci(Pi, t) with regard to Pi, and P̃i = {Pi ∈ 276

R|Pi(t)− Pmax
i (t) ≤ 0 and Pmin

i (t)− Pi(t) ≤ 0}. 277

Remark 2. Unlike traditional fixed-penalty methods [3,38] that yield only ϵ-suboptimal solutions, 278

the proposed TV penalty scheme with ϵ(t) = ϵ0e−αt ensures asymptotic convergence to the exact 279

solution of the original constrained problem. As ϵ(t) → 0, the optimality gap ϵ(t)ζN vanishes, 280

guaranteeing exact optimality in the limit. This adaptive design also avoids manual tuning of a small 281

static ϵ, which is often challenging in practice. Instead, it achieves a balance between early-stage 282

numerical stability and late-stage accuracy. The theoretical guarantee follows by extending the 283

penalty-based convergence results in [38]. 284
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Before proceeding with the main analysis, we introduce the following standard as- 285

sumptions commonly adopted in distributed optimization and control literature[14,21,25, 286

26,40,41]. 287

Assumption 1: The switching graph Gσ(t) is undirected and connected. The duration 288

between any two consecutive switching instances exceeds a positive threshold η > 0. 289

Furthermore, within each time interval, the communication graph remains fixed.τ 290

Assumption 2: Slater’s condition holds for the TV optimization problem (8), i.e., there 291

exists a feasible allocation P̄i(t) such that: Pmin
i (t) < P̄i(t) < Pmax

i (t), ∀i ∈ V , and 292

∑N
i=1 P̄i(t) = ∑N

i=1 di. 293

Assumption 3: For all t ≥ 0, each Ci(Pi, t) is ωi-strongly convex and twice continuously 294

differentiable with respect to Pi, and continuously differentiable in t. 295

The FXT distributed optimization algorithm refers to a class of distributed control 296

strategies that solve optimization problems over MASs with the guarantee that convergence 297

to the optimal solution is achieved within a uniform and bounded time, regardless of 298

the initial conditions. In the FXT framework, each agent relies solely on local objective 299

information and communication with neighbors, making the algorithm fully distributed. 300

To address the TV RMP, we develop a fully distributed FXT optimization algorithm 301

based on the ϵ(t)-penalty function. The core idea is to ensure that all agents reach consensus 302

on the penalized gradients within a fixed time, despite the switching nature of the commu- 303

nication topology. To this end, we incorporate a nonlinear consensus protocol that includes 304

a discontinuous term ∑j∈Nσ(t)
i

sign(ξi − ξ j) and a power function ∑j∈Nσ(t)
i

sigβ(ξi − ξ j), 305

which together guarantee FXT convergence in the presence of network dynamics. Beyond 306

enforcing agreement, each agent updates its state along a direction determined by the 307

local Hessian Hϵ(t),i(Pi, t) and gradient of its penalized cost function. In addition, a time 308

derivative compensation term ∂
∂t∇Pi Cϵ(t),i(Pi, t) is also introduced to account for the explicit 309

temporal evolution of the objective. This combination enables each agent to optimize its 310

decision variable based on both dynamic local objectives and network-wide coordination. 311

Utilizing this structure, the FXT distributed optimization algorithm is constructed as 312

follows. The MAS dynamics for agent i are characterized by: 313

ξ̇i ∈− Hϵ(t),i(Pi, t)(γ1 ∑
j∈Nσ(t)

i

sign(ξi − ξ j) + ∑
j∈Nσ(t)

i

sigβ(ξi − ξ j)) +
∂

∂t
∇Pi Cϵ(t),i(Pi, t) (12)

where ξi = ∇Pi Cϵ(t),i(Pi, t) denotes the local gradient, Hϵ(t),i(Pi, t) = ∇2
Pi

Cϵ(t),i(Pi, t) is the 314

corresponding Hessian of the penalized cost function. The functions sign(·) and sigβ(·) = 315

sign(·)| · |β (with β > 1) are discontinuous or non-smooth, so the system dynamics are 316

understood in the Filippov sense. The positive parameter γ1 is a control gain to be designed. 317

Note that the update rule in (12) is fully distributed, allowing each agent to compute its 318

state using only local gradients and information from neighboring agents under a switching 319

communication topology. 320

Remark 3. Compared to [26], our method explicitly addresses the global equality constraint 321

and guarantees FXT convergence without relying on a global time variable t, which enhances its 322

practical applicability. In contrast to [41], our controller features a simpler structure and lower 323

implementation complexity, while still ensuring strong convergence guarantees. It is worth noting 324

that the satisfaction of the equality constraint relies on the initialization condition ∑N
i=1 Pi(0) = 325

∑N
i=1 di. From an engineering perspective, setting the initial outputs to sum to a prescribed constant 326

is straightforward to achieve through centralized initialization or lightweight coordination, and 327
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doing so avoids the need for explicit constraint enforcement during the evolution, thereby reducing 328

the overall control cost. 329

Remark 4. Additionally, although the use of the discontinuous sign function may lead to chattering 330

effects in physical implementations, this issue can be effectively mitigated by employing smooth 331

approximations such as the hyperbolic tangent tanh(kx), logistic sigmoid 2
1+e−kx − 1, or saturation- 332

type functions like x√
x2+ϵ

. These approximations preserve convergence behavior while improving 333

robustness and continuity, making them more suitable for real-world deployment. 334

Lemma 6 (Gradient-Based Optimality Characterization). Under the MAS dynamics in (12), 335

the current allocation P(t) coincides with the optimal solution P∗(t) of the penalized RMP (10) if 336

and only if ξi(t) = ξ j(t), ∀i, j ∈ V , and ∑N
i=1 Pi(t) = ∑N

i=1 di. 337

Proof. Let z∗(t) = [P∗T(t), λ∗T(t)]T denote the optimal solution of problem (10), where 338

λ∗(t) is the corresponding Lagrange multiplier. The Lagrangian function is given by 339

L(P, λ(t)) =
N

∑
i=1

Cϵ(t),i(Pi, t) + λ(t)

(
N

∑
i=1

Pi −
N

∑
i=1

di

)
.

From the KKT conditions, we obtain: 340

(1) ∇pCϵ(t),i(P∗
i (t), t) + λ∗(t) = 0, ∀i, which implies ξi(t) = ξ j(t), ∀i, j; 341

(2) Primal feasibility: ∑N
i=1 P∗

i (t) = ∑N
i=1 di. 342

In addition, the strong convexity of each Cϵ(t),i ensures that the optimal solution is unique. 343

Conversely, suppose there exists a feasible allocation P̂(t) = (P̂1(t), . . . , P̂N(t)) such 344

that 345

∇pCϵ(t),i(P̂i, t) = δ(t), ∀i, and
N

∑
i=1

P̂i =
N

∑
i=1

di. (13)

where δ(t) is a common gradient value shared by all agents under P̂(t). By convexity of 346

each Cϵ(t),i, we have: 347

Cϵ(t),i(P∗
i , t) ≥ Cϵ(t),i(P̂i, t) +∇pCϵ(t),i(P̂i, t) · (P∗

i − P̂i).

Summing the above inequality over all i and using the fact that the gradients are equal to 348

δ(t) and both P̂(t) and P∗(t) satisfy the equality constraint in (13), it follows that 349

N

∑
i=1

Cϵ(t),i(P∗
i , t) ≥

N

∑
i=1

Cϵ(t),i(P̂i, t).

Since P∗(t) is the optimal solution, equality must hold. By strong convexity of the objective 350

function, this implies P̂(t) = P∗(t). 351

4.2. Convergence Analysis 352

In what follows, we establish two theorems addressing the cases where the Hessians of 353

the TV cost functions are either identical or heterogeneous. The corresponding convergence 354

properties are rigorously analyzed. 355

4.2.1. Identical Hessian Case 356

This subsection focuses on the case where the Hessians of the cost functions in (10) are 357

identical across agents, that is, Hϵ(t),i(Pi, t) = Hϵ(t),j(Pj, t), for ∀i, j ∈ V and t ≥ 0. 358

Assumption 4. For all t ≥ 0 and i ∈ V , there exist positive constants τ and κ, satisfy 359

that Hϵ(t),i(Pi, t) ≥ τ > 0 and | ∂
∂t∇Pi Cϵ(t),i(Pi, t)| ≤ κ. 360
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Theorem 1. Under Assumptions 1–4, suppose the initial condition ∑N
i=1 Pi(0) = ∑N

i=1 di holds, 361

and the control gain γ1 satisfies γ1 > 2κ
τ . Then, under the distributed algorithm (12), the TV 362

regularized RMP (10) is solved in FXT Tf , i.e. P(t) = P∗(t), ∀t ≥ Tf . 363

Proof. Since ξi = ∇Pi Cϵ(t),i(Pi, t) by definition, and Cϵ(t),i is strongly convex, its Hessian 364

Hϵ(t),i is positive definite and hence invertible. Applying the chain rule yields 365

ξ̇i = Hϵ(t),i(Pi, t) · Ṗi +
∂

∂t
∇Pi Cϵ(t),i(Pi, t).

Substituting the Filippov differential inclusion from the system dynamics (12) into the 366

expression of ξ̇i, we obtain that 367

Ṗi(t) ∈ −γ1 ∑
j∈N σ(t)

i

sign(ξi − ξ j) + ∑
j∈N σ(t)

i

sigβ(ξi − ξ j). (14)

Summing over all agents i ∈ {1, . . . , N}, Since the interaction graph Gσ(t) is undirected, 368

leading to ∑N
i=1 Ṗi(t) = 0. Therefore, the total power allocation remains invariant: 369

N

∑
i=1

Pi(t) =
N

∑
i=1

Pi(0) =
N

∑
i=1

di, ∀t ≥ 0.

Define the error εi = ξi − 1
N ∑N

j=1 ξ j. It is easy to verify that the relative error satisfies 370

εi − ε j = ξi − ξ j. We consider the following Lyapunov candidate: 371

V =
1
2

N

∑
i=1

ε2
i . (15)

Since the interaction graph Gσ(t) is undirected and connected, it follows that the errors 372

are zero-mean, i.e., ∑N
i=1 εi = 0. Taking the time derivative of V(t), and using the identity 373

ε̇i = ξ̇i, we obtain: 374

V̇ =
N

∑
i=1

εi ε̇i =
N

∑
i=1

εi ξ̇i

∈− γ1

N

∑
i=1

∑
j∈Nσ(t)

i

εi Hϵ(t),i(Pi, t)sign(ξi − ξ j)−
N

∑
i=1

∑
j∈Nσ(t)

i

εi Hϵ(t),i(Pi, t)sigβ(ξi − ξ j))

+
N

∑
i=1

εi
∂

∂t
∇Pi Cϵ(t),i(Pi, t)

(16)

We now consider the first term in (16). Since all Hessians are identical, i.e., Hϵ(t),i(Pi, t) = 375

Hϵ(t),j(Pj, t) =: H(t), and the graph is undirected (i.e., j ∈ Ni ⇔ i ∈ Nj), we have: 376

− γ1

N

∑
i=1

∑
j∈N σ(t)

i

εi H(t) sign(ξi − ξ j)

=− γ1

2

N

∑
i=1

∑
j∈N σ(t)

i

H(t)(εi sign(ξi − ξ j) + ε j sign(ξ j − ξi))

=− γ1

2

N

∑
i=1

∑
j∈N σ(t)

i

H(t)(ξi − ξ j) sign(ξi − ξ j).
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Using the fact that (ξi − ξ j) sign(ξi − ξ j) = |ξi − ξ j|, and that the Hessian is uniformly 377

lower bounded as H(t) ≥ τ > 0, we obtain: 378

−γ1

N

∑
i=1

∑
j∈Nσ(t)

i

εi H(t) sign(ξi − ξ j) ≤ −γ1τ

2

N

∑
i=1

∑
j∈Nσ(t)

i

|ξi − ξ j|. (17)

Next, we consider the second term in (16). Following the same lines with the above 379

analysis, we obtain: 380

−
N

∑
i=1

∑
j∈Nσ(t)

i

εi Hϵ(t),i(Pi, t) sigβ(ξi − ξ j)

=− 1
2

N

∑
i=1

∑
j∈Nσ(t)

i

Hϵ(t),i(Pi, t) (ξi − ξ j)sigβ(ξi − ξ j) ≤ −τ

2

N

∑
i=1

∑
j∈Nσ(t)

i

|ξi − ξ j|1+β.

(18)

Now, we bound the last term in (16) involving TV gradients. Rewriting the term using 381

the definition of εi yields 382

N

∑
i=1

εi
∂

∂t
∇Pi Cϵ(t),i(Pi, t)

=
N

∑
i=1

(
ξi −

1
N

N

∑
j=1

ξ j

)
∂

∂t
∇Pi Cϵ(t),i(Pi, t) =

1
N

N

∑
i=1

N

∑
j=1

(ξi − ξ j)
∂

∂t
∇Pi Cϵ(t),i(Pi, t).

(19)

Applying the triangle inequality and Assumption 4, we have 383∣∣∣∣∣ N

∑
i=1

εi
∂

∂t
∇Pi Cϵ(t),i

∣∣∣∣∣
≤ 1

N

N

∑
i=1

N

∑
j=1

|ξi − ξ j| ·
∣∣∣∣ ∂

∂t
∇Pi Cϵ(t),i

∣∣∣∣ ≤ κ

N

N

∑
i=1

N

∑
j=1

|ξi − ξ j| ≤ κ
N

∑
i=1

∑
j∈Nσ(t)

i

|ξi − ξ j|.
(20)

Integrating the bounds derived in (17)—(20) and applying Lemmas 2.3 and 2.4, we 384

obtain from (16) that, under the condition γ1 > 2κ
τ , 385

V̇ ≤− γ
N

∑
i=1

∑
j∈Nσ(t)

i

|ξi − ξ j| −
τ

2

N

∑
i=1

∑
j∈Nσ(t)

i

|ξi − ξ j|1+β

386

≤− γ

 N

∑
i=1

∑
j∈Nσ(t)

i

|ξi − ξ j|2


1/2

− τ

2
(N2 − N)

1−β
2

 N

∑
i=1

∑
j∈Nσ(t)

i

|ξi − ξ j|2


1+β

2

.

Since the graph Gσ(t) is undirected and connected, the edge-wise disagreement can be 387

bounded below using the second smallest eigenvalue λ2(Lσ(t)) of the Laplacian as 388

N

∑
i=1

∑
j∈N σ(t)

i

|ξi − ξ j|2 ≥ 2λ2(Lσ(t)) ε⊤ε = 4λ2(Lσ(t))V.
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Substituting this into the previous bound yields 389

V̇ ≤− γ

2

(
4λ2(Lσ(t))V

)1/2
− τ

2
(N2 − N)

1−β
2

(
4λ2(Lσ(t))V

) 1+β
2

=− aV1/2 − bV
1+β

2 ,

(21)

where γ = γ1τ
2 − κ, a = γ

2 (4λ2(Lσ(t)))
1
2 and b = τ

2 (N2 − N)
1−β

2 (4λ2(Lσ(t)))
1+β

2 . Applying 390

Lemma 2.2 and the comparison principle, it follows that the system state ξi(t) achieves 391

consensus in fixed time Tf , with the settling time estimated by 392

Tf ≤ Tmax =
1
a

( a
b

) 1
β

(
2 +

2
β − 1

)
. (22)

Finally, by invoking Lemma 3.1, it can be concluded that the TV regularized RMP (10) is 393

solved within FXT Tf , i.e., P(t) = P∗(t) for all t ≥ Tf . 394

Remark 5. Although the proposed FXT algorithm guarantees convergence within a fixed time 395

independent of the initial conditions, the convergence trajectory follows a nonlinear power-law 396

decay profile. Specifically, the evolution of the state error typically satisfies a relation of the form 397

∥x(t)− x∗∥ ∼ (Tf − t)γ with 0 < γ < 1, indicating a slowing-down convergence rate as the 398

trajectory approaches the fixed settling time Tf . 399

Moreover, according to (22), the result implies that Tmax increases polynomially with the 400

number of agents N, and decreases with the algebraic connectivity λ2 of the switching graph Lσ(t) 401

over the dwell interval σ(t). Therefore, while FXT consensus is theoretically ensured, the practical 402

convergence speed may degrade in large-scale or weakly connected networks. 403

4.2.2. Nonidentical Hessian Case 404

While the previous analysis relies on the assumption of identical Hessians, real-world 405

systems often involve heterogeneity across agents. In the following, we extend our results 406

to the case where the Hessian matrices are allowed to differ. 407

Assumption 5. For all t ≥ 0 and i ∈ V , the partial time derivative ∂
∂t Cϵ(t),i(Pi, t) is 408

uniformly Lipschitz continuous with respect to Pi. That is, there exists a constant θ > 0 409

such that
∣∣∣ ∂

∂t Cϵ(t),i(Pi, t)− ∂
∂t Cϵ(t),i(P̃i, t)

∣∣∣ ≤ θ∥Pi − P̃i∥, ∀Pi, P̃i ∈ R. 410

Theorem 2. Under Assumptions 1–3 and 5, suppose the initial condition ∑N
i=1 Pi(0) = ∑N

i=1 di 411

holds, and the control gain satisfies γ1 > (2
√

2Nθ)/(ωλ2(Lσ(t))
1
2 ) . Then, under the distributed 412

algorithm (12), the TV regularized RMP (10) is solved in FXT T̃f , i.e. P(t) = P∗(t), ∀t ≥ T̃f . 413

Proof. Similar to the proof for global equality satisfaction in Theorem 4.1, the structure of 414

the system dynamics in (12) guarantees that the supply-demand balance is preserved at all 415

times. 416

According to Assumption 3, the total cost function Cϵ(t)(P(t), t) is strongly convex. 417

Therefore, we define the following Lyapunov candidate: 418

V1 := Cϵ(t)(P(t), t)− Cϵ(t)(P∗(t), t),

which is positive definite with respect to the optimal point P∗(t), i.e., V1(t) ≥ 0, and 419

V1(t) = 0 if and only if P(t) = P∗(t). 420
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Taking the time derivative of V1(t), we obtain: 421

V̇1 =
d
dt

Cϵ(t)(P(t), t)− d
dt

Cϵ(t)(P∗(t), t) ∈
N

∑
i=1

ξi · Ṗi(t) +
N

∑
i=1

∂

∂t
Cϵ(t),i −

N

∑
i=1

∂

∂t
C∗

ϵ(t),i, (23)

where ∇Pi Cϵ(t),i =
∂

∂Pi
Cϵ(t),i(Pi, t), and ∂

∂t C∗
ϵ(t),i =

∂
∂t Cϵ(t),i(P∗

i , t). 422

According to the system dynamics given in (14), the first term in (23) can be expressed 423

as 424

N

∑
i=1

ξi · Ṗi(t)

∈−
N

∑
i=1

∑
j∈Nσ(t)

i

ξi

(
γ1sign(ξi − ξ j) + sigβ(ξi − ξ j)

)

=− 1
2

N

∑
i=1

∑
j∈Nσ(t)

i

(
γ1|ξi − ξ j|+ |ξi − ξ j|1+β

)

≤− 1
2

γ1(2ξT Lσ(t)ξ)
1
2 − 1

2
1

(N2 − N)
β−1

2

(2ξT Lσ(t)ξ)
1+β

2

By virtue of Lemma 2.5, it can be conclude that 425

2ξT Lσ(t)ξ ≥ ωλ2(Lσ(t))V1

Substituting this into the inequality above yields 426

N

∑
i=1

ξi · Ṗi(t) ≤ −a1V
1
2

1 − b1V
1+β

2
1 (24)

with a1 = 1
2 γ1ω

1
2 λ2(Lσ(t))

1
2 , b1 = 1

2 ω
1
2 λ2(Lσ(t))

1
2 (N2 − N)

1−β
2 . 427

For the remaining terms in (23), and invoking Assumption 5, we have 428

N

∑
i=1

∂

∂t
Cϵ(t),i −

N

∑
i=1

∂

∂t
C∗

ϵ(t),i ≤ θ
N

∑
i=1

|Pi − P∗
i | ≤

√
Nθ∥P − P∗∥2 (25)

Since each Ci(Pi, t) is ωi-strongly convex, one has V1 ≥ ω
2 ∥P − P∗∥2

2, with ω = min{ωi}. 429

Therefore, it follows that 430

N

∑
i=1

∂

∂t
Cϵ(t),i −

N

∑
i=1

∂

∂t
C∗

ϵ(t),i ≤
√

2Nθ√
ω

V
1
2

1 (26)

Combine with (23) and (24), one can further obtain that 431

V̇1 ≤ −a2V
1
2

1 − b1V
1+β

2
1

(27)

where a2 = a1 −
√

2Nθ√
ω

. Provided that the gain condition γ1 > (2
√

2Nθ)/(ωλ2(Lσ(t))
1
2 ) 432

holds, we have a2 > 0 and FXT convergence follows. Applying Lemma 2.2 and the 433
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comparison principle, the state P(t) reaches the optimal trajectory P∗(t) of the TV RMP (10) 434

in fixed time T̃f , with settling time bounded by 435

T̃f ≤ Tmax =
1
a2

(
a2

b1

) 1
β
(

2 +
2

β − 1

)
.

Finally, by invoking Lemma 3.1, it follows that the TV regularized RMP (10) is solved in 436

fixed time T̃f , i.e., P(t) = P∗(t) for all t ≥ T̃f . 437

Remark 6. The validity of Theorems 1 and 2 relies on several structural and regularity assump- 438

tions. Specifically, both theorems require that Assumptions 1–3 hold: the communication graph 439

must be connected within every switching interval, the TV optimization problem must satisfy 440

Slater’s condition, and the initial state of the agents must satisfy the global equality constraint 441

∑N
i=1 Pi(0) = ∑N

i=1 di. In addition, each local cost function Ci(Pi, t) is assumed to be ωi-strongly 442

convex, twice continuously differentiable with respect to Pi, and continuously differentiable in 443

time t. To further guarantee FXT convergence, Theorem 1 assumes that the time derivative of the 444

gradient,
∣∣∣ ∂

∂t∇Pi Cϵ(t),i(Pi, t)
∣∣∣, is uniformly bounded, while Theorem 2 requires that the partial time 445

derivative ∂
∂t Cϵ(t),i(Pi, t) is uniformly Lipschitz continuous in Pi. 446

While these conditions are commonly adopted in the distributed optimization literature [14,21, 447

25,26,40,41], some of them may not always be easy to satisfy in real-world applications, especially 448

in systems with nonconvex objectives, fast-varying dynamics, or intermittent communication. 449

Remark 7. This work considers both identical and nonidentical Hessian cases in the TV RMP. 450

When the Hessians are identical across agents, the analysis is more straightforward, requiring milder 451

conditions to ensure FXT convergence and yielding tighter bounds on the settling time. This setting 452

is suitable for systems with homogeneous or coordinated devices. In contrast, the nonidentical 453

Hessian case captures more realistic scenarios where agents have diverse dynamic behaviors and cost 454

structures. Although it introduces stricter convergence requirements, it significantly broadens the 455

model’s applicability to practical, heterogeneous MGs. The inclusion of both cases demonstrates the 456

flexibility and generality of the proposed framework. 457

Remark 8. Lemma 3.1, and Theorem 4.1 jointly demonstrate that the proposed distributed FXT 458

algorithm is capable of solving the TV RMP (10), which involves both local inequality constraints 459

and a global equality constraint, within a guaranteed fixed settling time Tf . Moreover, as t → ∞, 460

the algorithm asymptotically converges to the exact solution to the original problem (8) without 461

regularization. At the settling time t = Tf , the solution trajectory remains ϵ(Tf )ζN-close to 462

the optimal solution of problem (8), where ϵ(t) = ϵ0e−αt defines the vanishing regularization 463

parameter. This allows the optimality gap to be explicitly tuned via the parameters ϵ0 and α, 464

making it arbitrarily small and within acceptable bounds in practice. Such a trade-off is particularly 465

beneficial in engineering applications, as it enables a significantly simpler algorithmic structure 466

while ensuring high-quality near-optimal performance. 467

Remark 9. The switching topology is considered in this paper, because it is essential due to 468

the dynamic nature of communication links in MAS, where changes in distance, environmental 469

interference, or operational factors can cause link failures or new connections. Research in this area 470

is crucial for designing the optimization algorithms that adapt to these dynamics, ensuring system 471

performance and stability even with topology changes. This facilitates robust, efficient operations 472

across diverse applications such as drone swarms, automated vehicle coordination, and mobile sensor 473

networks[42–44], where consistent communication is vital for coordinated action and resource 474

management. 475
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5. Simulation results 476

To validate the effectiveness of the proposed distributed FXT optimization strategy, 477

two illustrative case studies are conducted based on the IEEE 14-bus test system. As 478

shown in Fig. 3, the system includes one utility grid connection, two RGs, two conventional 479

dispatchable generators , two BESSs, and three loads. 480

Main

Grid

CG2

RG1

RG2

CG1

L1

L2

L3

BESS1

BESS2

Figure 3. IEEE 14-bus test system.
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Figure 4. Agent communication graphs.

5.1. Effectiveness test 481

In this case study, we evaluate the accuracy of the proposed control algorithm. The 482

communication graphs switch cyclically from (1) to (4) as depicted in Fig.4. In particular, 483

nodes 1 to 10 correspond to MG components RG1, RG2, CG1, CG2, BESS1, BESS2, L1–L3, 484

and PCC respectively. The detailed parameters associated with each component are listed 485

in Table 1. The total power demand is quantified at 200 MW. The TV cost function of 486

each device of MG is select as Ci(Pi) = (Pi + sint
3
2 )2 + 0.1i. In addition, the lower and 487

upper bounds of Pi are set to Pmin
i = [20, 20, 21, 20, 17, 10, 10, 4, 1, 30]T MW and Pmax

i = 488

[45, 50, 35, 42, 30, 30, 25, 17, 20, 45]T MW. 489
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Figure 5. (a) Marginal utility trajectories. (b) Power evolution of P1–P10. (c) Demand-supply
synchronization. (d) The curves of inequality constraint functions.

Fig.5(a) shows that the curves of marginal cost of each agent reach consensus after 490

about 0.32s. From Fig.5(b), it can be observed that the trajectories for power genera- 491

tion / consumption stabilize at PT = [29.493, 20.855, 21.393, 21.919, 19.152, 15.372, 16.157, 492

13.390, 10.623, 33.643] MW. 493

Fig.5(c) displays the total generated power curve, demonstrating that it converges 494

to the total demand of 200 MW within approximately 0.36s. The simulation results for 495

the inequality constraint functions is shown in Fig.5(d). Clearly, all curves, regardless of 496

starting inside or outside the designated area, converge to the feasible region. 497

5.2. Plug-and-Play Capability Test 498

This case evaluates the plug-and-play capability of the proposed distributed FXT 499

optimization algorithm. The communication topology, cost parameters, and load demand 500

are maintained identical to those in the precedent studied case. 501
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Figure 6. (a) The actual output power Pi. (b) Power demand and supply. (c) The curves of inequality
constraint functions. (d) Marginal cost of MG.

Initially, the system reaches an optimal operating point with all devices active. Subse- 502

quently, PCC and RG1 are disconnected from the system at t1 = 2 s and t3 = 7 s, respectively, 503

and their associated control variables are reset to zero. As shown in Fig. 6 (a)-(d), it can 504

be observed that the output of the remaining generators and energy storage devices and 505

loads have increased/decreased, and re-balance at a very fast speed. Additionally, the total 506

output supply of each device meets the total demand. At t2 = 4 s and t4 = 9 s, DG1 and 507

RG1 are reconnected to the system. The system quickly returns to the pre-disconnection 508

operational state, with all devices resuming their original optimal values. 509

These results demonstrate the plug-and-play capability of the proposed algorithm, 510

enabling fast reconfiguration and re-optimization in response to dynamic changes in system 511

components. 512

Remark 10. In real-world applications, the plug-and-play capability is crucial for maintaining the 513

adaptability and scalability of MGs. It allows for the seamless addition or upgrading of components 514

to respond to new technologies and changing energy needs, thus ensuring that MGs remain robust 515

and efficient in the face of dynamic energy landscapes. Furthermore, the proposed algorithm also 516

supports the dynamic connection and disconnection of the utility grid, enhancing system-level 517

flexibility and enabling hierarchical energy management. 518
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5.3. Comparative experiment 519

Table 1. TV cost parameters and inequality constraints.

Unit ai(t) bi(t) ci(t) Pmin
i Pmax

i
RG1 1 sint2 4sint 20 45
RG2 1 sint + 10 5 20 50
CG1 1 0.5sint − 1.8 2 20 45
CG1 1 3 11 20 42

BESS1 0.9 sin(t + 3) cost 17 30

BESS1 tanh(t +
0.5) + 2 1.2 0 10 30

L1 2.5 0 tanht 10 25
L2 1 0.5sin(0.8t) 6 4 37
L3 sint + 3 −3 11 1 20

PCC tanh(t +
0.5) + 2 6 7sint 2 35
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(a) Marginal cost in this paper
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Figure 7. (a) The curve of marginal cost in this paper; (b) The curve of marginal cost in [26]; (c)The
curve of marginal cost in [28].

To verify that the distributed FXT optimization algorithm proposed in this paper has a 520

faster convergence rate, a comparative study is conducted in this section. The proposed 521

distributed FXT optimization algorithm is evaluated against the algorithms presented in 522

[26] and [28]. Under this test, uniform TV communication network settings, load demand 523

and initial conditions were employed across all algorithms. The test system and switching 524

communication graph used here remains the same as in the previous section. The load 525

demand is set as 100MW. And the cost parameters of each devices are listed in Table 1. 526

As depicted in Fig. 7 (a)-(c), all marginal costs converged to the similar dynamic 527

optimal value. While the competing algorithms referenced in [26] and [28] exhibit fluc- 528

tuations and a slower approach towards the equilibrium state, the algorithm from this 529

study achieves a rapid and steady convergence to the optimal marginal cost within just 2 530

seconds. This performance gap highlights not only the efficiency but also the robustness 531

of the proposed method. This enhanced performance underscores improvements in com- 532

putational efficiency, making it a compelling choice for real-time applications in dynamic 533

environments. 534
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5.4. Effectiveness of Smooth Approximations to the Sign Function 535

To reduce chattering, the simulations in this section adopt a smooth approximation to 536

replace the discontinuous sign function in the controller. 537

0 0.5 1 1.5 2 2.5 3

Time(s)

-30

-25

-20

-15

-10

-5

0

5

Total supply

Total demand

(a)

0 2 4 6 8 10 12

Time(s)

155

160

165

170

175

180

185

190

195

200

205

Total supply

Total demand

(b)

Figure 8. (a) Improved Fig. 5(c) under the smooth approximation strategy. (b) Improved Fig. 6(b)
under the smooth approximation strategy.

As shown in Fig. 5(c) and Fig. 6(c), using the sign function in the controller leads 538

to noticeable chattering in the total supply curves. To reduce this effect, we replace the 539

sign function with a smooth approximation, specifically the hyperbolic tangent function 540

tanh(kx), k = 10. As illustrated in Fig. 8(a) and Fig. 8(b), this change effectively reduces the 541

chattering and results in smoother system behavior and better demand-supply matching. 542

Remark 11. The theoretical guarantees in this paper are established under several technical assump- 543

tions, including persistent connectivity of the switching communication graph and strong convexity 544

of local cost functions (Assumption 1 and 3). These conditions ensure rigorous FXT convergence 545

but may be restrictive in practice. If the communication graph becomes temporarily disconnected, 546

information flow among agents is interrupted, which can prevent marginal cost consensus and lead 547

to coordination failure. Similarly, if some local cost functions lose strong convexity, the gradient 548

dynamics may become ill-conditioned, potentially causing oscillations or divergence from the optimal 549

trajectory. Nevertheless, once connectivity and strong convexity conditions are restored, the system 550

is expected to re-enter the convergence regime and recover stable coordination. These observations 551

highlight the conservative nature of the current theoretical framework. Future work will aim to 552

relax these assumptions by considering jointly connected graphs and general convex (not necessarily 553

strongly convex) objectives, to improve the robustness and applicability of the algorithm in practical 554

settings. 555

6. Conclusion 556

This paper proposed a novel FXT distributed optimization algorithm to solve the 557

constrained TV RMP in MGs under a MAS framework. By integrating a time-decaying 558

regularized penalty function, the algorithm simultaneously addressed both local inequality 559

and global equality constraints, ensuring that the regularized problem was solved within 560

a provable FXT. Meanwhile, the original constrained TV RMP was asymptotically solved 561

as the regularization diminished over time, yielding a tunable and vanishing optimality 562

gap. Theoretical analysis rigorously established FXT convergence under both identical 563

and heterogeneous Hessian scenarios. Numerical experiments on the IEEE 14-bus MG 564

further verified the algorithm’s effectiveness in terms of convergence speed, distributed 565

adaptability, and robustness to dynamic switching topologies. 566
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While the present study focused on undirected communication graphs, future work 567

will extend the FXT framework to directed or unbalanced communication topologies, 568

thereby further enhancing its applicability in more complex and realistic distributed energy 569

systems. 570
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Appendix A 575

Table A1. Notation Summary.

Symbol Meaning

σ(t) Switching signal mapping time to graph index
Lσ(t) Laplacian matrix under the current switching graph
λ2(L) Second smallest eigenvalue of L
Ni Neighbor set of agent i
σU(t) Binary mode indicator: 1 for grid-connected, 0 for islanded
ϵ(t) Time-varying penalty parameter, ϵ(t) = ϵ0e−αt

hϵ(t),i(·) Smooth penalty function for agent i
Hϵ(t),i(Pi, t) Hessian of penalized cost for agent i
ξi(t) Gradient of the penalized local cost: ξi(t) = ∇Pi Cϵ(t),i(Pi, t)
λ(t) Lagrange multiplier
δ(t) Auxiliary scalar representing a shared gradient value across agents
P∗(t) Optimal solution of the constrained RMP
P̆∗(t) Optimal solution of the penalized RMP
εi Error variable of agent i
Tf Fixed-time settling time
Tmax Upper bound estimate of the fixed-time Tf
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