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Abstract—This study focuses on the characterization of
fuel cells and batteries to assess their State of Health (SoH)
using electrochemical impedance spectroscopy (EIS) in an
on-board setting. The characterization methods include
both active and passive EIS techniques, complemented
by robust signal processing algorithms. Initial simulation
results demonstrate the potential of impedance analysis for
accurate SoH estimation. In addition, the implementation
on a Texas Instruments board highlights the practical
challenges associated with real-time programming, paving
the way for future optimization and deployment in real-
world applications.

I. INTRODUCTION

At the heart of the energy transition, the mobil-
ity sector remains one of the main sources of carbon
dioxide (CO2) emissions [1]. In recent years, efforts
have been made to replace internal combustion engines
with electric motors. The latter run on electrical energy
supplied by batteries or fuel cells, significantly reducing
CO2 emissions during use. As part of the France 2030
investment plan, research programs have been launched
to develop these technologies. The HYSySPEM project,

which includes this work, aims to optimize these systems
for heavy-duty vehicles, such as trucks and ships.

Hydrogen electric vehicles are currently classified as
hybrid vehicles, relying on multiple energy sources: a
fuel cell to meet the energy demand during low dynamics
and a battery to manage the transition phases. The aging
of these power sources is a central focus of current
research. However, before reaching the end of their
lifespan, it is essential to determine how these power
sources will be characterized in an on-board context.
One proposed solution is the use of electrochemical
impedance spectroscopy (EIS).

II. ON-BOARD IMPEDANCE MEASUREMENT

EIS is based on the application of a sinusoidal
excitation signal through the source, at a given frequency
and to a fixed operating point, in order to analyze
the voltage and current response [2]. By repeating this
process over a wide range of frequencies, it becomes
possible to determine the impedance spectrum. However,
in the case of on-board use, where no laboratory equip-
ment is available, it is necessary to find a method of
generating an excitation signal. One solution is proposed
by D. Depernet et al. [2], who suggest performing
signal injection via the converter by modulating the duty
cycle. However, given the architecture imposed in the
HYSySPEM project, converters are not always present
at the source level, which means that several methods
of EIS could be used to obtain the impedance of each
system (Fig. 1).

In the case of a fuel cell, fitted with a converter, the
signal injection must be as non-disruptive as possible and
last for the shortest time possible. In the literature, this
type of EIS is referred to as active EIS. However, in the
case of a battery without a converter, where direct injec-
tion of excitation signals is not possible, an alternative
method must be explored. Several articles mention the
concept of passive EIS [2]–[4], which involves analyzing



the frequency content of battery voltage and current
signals in dynamic operation. Dynamic operation refers
to acceleration or deceleration phases generated by the
vehicle user. This is why the precision of the driving
cycle is crucial to the study. It is therefore essential to
define the correct energy management for the chosen
power architecture.

As shown in the article by S. Luciani et al. [5],
in this type of case, the fuel cell is used to generate
slightly variable currents, while the battery compensates
for transients. In our case study, this choice of energy
management is perfectly suited to correctly characterize
the two electrochemical sources using the EIS methods
proposed in the literature. In addition to presenting these
different methods, the aim is to propose a robust signal
processing algorithm that can exploit both methods.
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Fig. 1. Power architecture HYSySPEM project

A. Active EIS applied fuel cell

Active EIS involves applying a low-amplitude sinu-
soidal current at different frequencies to a fixed operating
point. More precisely, it means injecting an alternating
current superimposed on a slightly variable direct current
(Fig. 2).
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Fig. 2. Active EIS application

In the on-board context, perfect steady-state opera-
tion is rare, so what is traditionally done is to block the

source using the power converter [2]. The complication
with this method is that, because the source is blocked
at a fixed operating point, the battery has to manage the
power flow on its own, which can be challenging in some
cases. The injection of the current stimuli must therefore
be as efficient as possible, i.e., sweep the frequency range
as quickly as possible. This is because, if the current,
temperature, or health of the fuel cell varies, so does the
impedance, and the impedance measurement becomes
inaccurate. Non-sinusoidal injection signals can therefore
be used to optimize this time. Several studies and articles
explore this approach, laying the foundations for early
research in this field. E. Sadeghi et al. explore a large
number of possible signals for this type of application,
such as triangle, square-wave, multi-sine, PRBS, and
white noise excitations, and conclude that multi-sine and
PRBS are the most promising [6].

M. Zhang et al. propose other types of signals, one
in particular being highly coherent with the desired
approach: the chirp signal, which automatically scans
the entire frequency range [7]. A similar approach to the
one mentioned above is proposed by M. Koseoglou et
al. [8], which involves continuously injecting a chirp-
type signal and analyzing the response obtained for
each frequency as it is applied. In a publication by N.
Lohmann et al. [9], three types of signals are compared:
rectangular, Gaussian, and cardinal sine (sinc). From this
study, the sinc and Gaussian signals appear to be the
most promising and efficient for this type of application.

The optimization of measurement time to reduce
signal injection is a well-developed subject, enabling
impedance to be calculated just as accurately at the
injected frequency.

B. Passive EIS applied battery

Passive EIS aims to evaluate system impedance
without using excitation signals. The current and volt-
age signals must therefore be analyzed for frequency
disturbances. These disturbances can be induced by
acceleration, deceleration, the driving environment, or
even other power converters (Fig. 4). Lohmann et al. [10]
present similar work, analyzing the frequency content
of a driving cycle. The Goertzel algorithm is used,
which assumes that the frequencies of interest are already
known. This study lays the foundation but presents a
case where the signal processing algorithm searches
exclusively for injected frequencies, as if the battery
were a white box. B. Liebhart et al. address part of
this subject and seek to obtain the impedance of a
lithium-ion battery in a dynamic regime (driving cycle)
without injecting signals [11]. By applying a robust



signal processing method, they succeed in calculating
the system impedance, providing a solid basis for further
research. More recently, B. Yang et al. [4] reused part
of the OPEIS method, previously presented by Liebhart
et al. [11], and applied it to different driving cycles in
urban, mountainous, and rural environments. The results
are promising, as they treat the battery data like a
black box, i.e., without prior knowledge of the frequency
content. This study also highlights the limitations of
OPEIS acquisition and application.

In light of the various avenues explored in recent
years, the study of the driving cycle appears to be a
viable approach for obtaining battery impedance. How-
ever, this type of analysis is not straightforward, as
the impedance of a battery, like that of a fuel cell,
varies significantly not only with current but also with
temperature [10], [12]. This underscores the need for a
robust signal processing method capable of accurately
calculating impedance.

-

+

Battery

Fuel cell

D
C

 B
U

S

Electric 

motor

DC/DC

converter

-

+

DC/AC

converter

Current and voltage measurements

D
C

 B
u

s

+

-

+

-

Current stimuli
Fuel cell

DC/DC

converter

Impedance spectrum

Signal processing algorithm

Source characterization

D
C

 B
u

s
+

-

+

-

Current fluctuation due to vehicle use
Battery

Current and voltage measurements

Signal processing algorithm

Source characterization

Impedance spectrum

Fig. 4. Passive EIS application

III. SIGNALS PROCESSING METHOD

Whether discussing active or passive EIS, a signal
processing algorithm must be implemented to calculate

impedance in the dynamic regime.
In the literature, two methods are presented for ana-

lyzing this type of signal: one calculates the impedance
directly from the voltage and current signals [9], while
the other calculates it from the power spectral density
[3]. The goal is to build upon existing work to develop
a reliable and robust method. The decision was made to
focus on using raw current and voltage signals, as this
method is considered reliable for characterization. The
next step is to optimize this approach to obtain accurate
impedance measurements in both passive and active EIS
(Fig. 3). Furthermore, to ensure the highest possible
precision, a series of methods will be implemented to
validate the calculated measurements.

A. Signals segmentation

Signal segmentation is one of the most crucial as-
pects of the method. This approach, previously proposed
by several researchers [3], [4], [13], involves dividing
the received signals, V(t) and I(t) (voltage and current),
into numerous small segments. The segments are then
categorized into three different frequency ranges (TA-
BLE I): LF (Low-Frequency), MF (Medium-Frequency),
and HF (High-Frequency). The frequency ranges are
selected based on the electrochemical properties of the
power sources. Batteries will have a broader frequency
range due to more significant inductive phenomena [14].

TABLE I
FUEL CELL & BATTERY FREQUENCY RANGES

Frequency ranges Fuel cell Battery
LF 0.1 to 10 Hz 0.1 to 25 Hz
MF 10 to 100 Hz 25 to 250 Hz
HF 100 to 1000 Hz 250 to 3000 Hz

The purpose of this approach is to optimize data
acquisition, enabling accurate detection of all the fre-
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Fig. 3. An optimized method for impedance spectroscopy



quencies present. Several other important parameters can
be used to further refine the results (Fig. 5).

• N = Number of points per segment
• R = Overlap rate
• M = Total number of segments
• L = Signal length

The number of points per segment depends on the
number of periods to be considered for the Discrete
Fourier Transform (DFT) and the number of points per
period. The overlap rate decreases with the frequency
range to maintain approximately constant calculation
dynamics of the frequency components. Once the V(t)
and I(t) signals have been segmented, the segments go
through a validation stage.
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B. Drift compensation

This is a key step in the performance of this algo-
rithm. Indeed, to correctly apply the Discrete Fourier
Transform (DFT), certain conditions must be met [15].
The system must be causal (response only due to the
applied perturbation), linear (follows linear differential
laws), stationary (time-invariant and at steady state), and
stable (maintains consistent behavior over time). For the
purpose of analyzing driving cycle frequencies, these
conditions are not always met. This is why methods are
available to address some of these issues [15]:

• Real time drift compensation
• Time course interpolation

Not all methods can be applied before the DFT, as
some operate directly on time-domain signals, while
others work on frequency-domain signals. Therefore,
initially, only drift compensation will be implemented.
This method helps eliminate disturbances caused by
non-linearity (Fig. 6). In practice, this compensation

is achieved using filters, as presented by D. Depernet
et al. [2]. However, there is currently no method for
compensating for the system’s lack of stability, which
remains a significant issue that can distort the overall
reliability of the measurement.
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Fig. 6. The real-time drift compensation of the sinusoidal pertur-
bation

That’s why we chose to eliminate segments with poor
stability, i.e., segments with high impedance variation. In
the low-frequency range, there is a higher likelihood of
impedance variation due to the longer segment duration
(Fig. 7).
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C. Windows & DFT

Before applying the DFT, a windowing operation
must be performed, as the signals under study are
non-periodic [13]. More specifically, frequencies can
distort the spectrum obtained, a phenomenon known
as spectral leakage. However, a DFT is applicable to
periodic signals, so to mitigate some of the undesirable
effects associated with the study of non-periodic signals,
windowing is performed. The choice of window is there-
fore of prime importance in mitigating spectral leakage.



In articles presenting the spectral analysis of driving
cycles, Gaussian windows [9], Hamming windows [3],
and Hanning windows [4] are used instead of rectangular
windows.

Once the signals have been segmented, validated, and
windowed, the DFT can be applied. This allows us to
move from the time domain to the frequency domain.
Widely used in the literature [2], [12], this method is
reliable. However, the question arises of whether to use
the FFT (Fast Fourier Transform) algorithm to reduce
computation times (TABLE II).

TABLE II
COMPARISON DFT AND FFT METHODS

Criteria DFT FFT
Definition The DFT is a transfor-

mation that converts a
finite sequence of val-
ues into a sequence of
frequency coefficients.

The FFT is an op-
timized algorithm to
compute the DFT more
quickly.

Time com-
plexity

O(N2) O(N*log(N))

Conditions
of use

No specific conditions,
can be used for any N

Typically requires N
to be a power of 2
for classical FFT algo-
rithms

Example
(N=1024)

10242 = 1048576 op-
erations

1024*log2(1024)
=10240 operations

The FFT is an optimized version of the DFT and is
much faster due to its reduced computational complexity,
making it essential for processing large signals. There
are two possible approaches, depending on the electronic
board to be used.

D. Impedance Calculation, Averaging, and Validation

After applying the DFT with a Hamming window,
the impedance is calculated at the detected frequencies
[2], [12]. A validation method, briefly presented in the
’Drift Compensation’ section, is necessary to verify the
measurement. This validation involves the Impedance
High-precision Identification Technique (Z-HIT), used,
for instance, in Zahner software, which is based on
Kramers-Kronig [16] and Hilbert relations [15]. These
relations allow for the calculation of the real and imag-
inary parts of a complex function from one another,
thereby estimating the error between the measured and
calculated curves, ensuring linearity and stability [3].
Finally, impedance averaging is performed over a certain
number of segments, determined by the frequency range
and system stability. A segment that detects a frequency
at a specific operating point cannot be averaged with a

segment that detects the same frequency two minutes
later or under different operating conditions.

IV. PARTICAL APPLICATIONS

Now that the method has been implemented, it must
be tested through simulation based on experimental
data using Matlab/Simulink. For this purpose, a fuel
cell model based on transfer functions was developed,
with its parameters determined through experimental
measurements. In addition, a converter was modeled to
best replicate real operating conditions, allowing for the
injection of excitation signals. To validate the algorithm,
the method is first applied to the modeling of the fuel
cell. Then, the method is tested on the battery test bench
with real measurements.

A. Method Validation on an Experimental Fuel Cell
Model

To test the algorithm under optimal conditions, ex-
perimental data are used. Impedance spectra were ob-
tained at different current levels on the fuel cell under
well-defined experimental conditions (Fig. 8).
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Using an optimization algorithm [17] and an equiva-
lent electrical model (Fig. 9), it is possible to determine
the model parameters, without any faults, as a function
of the current.

These parameters are then used in a model that
represents the characterized electrochemical behavior of
the fuel cell. For example, in Fig. 9, the variation of the
resistor ‘Rm’ as a function of the current is shown.

Thereafter, we used this model to extrapolate the
operation of the PEMFC under dynamic current condi-
tions. This model is subsequently reused to test various
aspects of the signal processing method. The benefit
of examining the proper functioning of the method on
the fuel cell lies in the ability to know the injected
frequencies, allowing for comparison with the reference.
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The first test involves injecting several sinusoidal
signals at a fixed operating point (40A) within the
previously presented frequency ranges. The goal is to
demonstrate that the algorithm works in a typical EIS
case. Frequencies of 270 Hz, 60 Hz, 45 Hz, 18 Hz, 7.2
Hz, 3 Hz, and 0.6 Hz are injected. The spectrum shown
in the graph below (Fig. 10) illustrates the evolution of
impedance for each injected frequency over a duration
of 15 seconds.
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Fig. 10. Impedance spectrum versus time at a fixed operating point
40A

It is clear that there is no variation in impedance
over time, as the measurement was conducted at a fixed
operating point. The black curve represents the reference
impedance spectrum at 40A, displayed every 3 seconds,
while individual frequencies are highlighted in blue. For
example, on the right side of Fig. 10, the evolution of the
impedance at 0.6 Hz with respect to the current (dotted
outline) can be observed.

Next, to simulate real operating conditions, a sig-
nificant drift was introduced to determine whether the
correct real impedance could still be identified.
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Specifically, a linear current ranging from 25 A to
70 A was applied over a duration of 20 seconds, along
with a multi-sinusoidal signal comprising high, medium,



and low frequencies (the same frequencies as at the
fixed operating point). This implies that the system is
nonlinear and not in a steady state due to the drift
and varying impedance. The signal processing algorithm
was therefore applied to obtain impedance spectra under
these conditions.

The impedance spectrum in Fig. 11 - a) below
represents the overall result of the processing. Unlike
the spectrum presented in the previous section, here the
impedance varies, requiring the determination of multi-
ple spectra for different operating points. It is evident
that the impedance for each detected frequency changes
with the current variation. To differentiate the various
impedance spectra, the average operating point was
calculated for each segment. Compared to the impedance
spectra used, spectra were plotted at operating points
of 40 A and 60 A (reference), and these spectra were
compared to the simulation results. In Fig. 11 - b) and
c), the segments corresponding to these operating points
were selected and then averaged. The average is calcu-
lated over all the segments around the operating point,
which varies over a period of 5 seconds. The results
indicate that this method is effective, demonstrating that
the algorithm can determine impedance spectra even
when the system is nonlinear and unstable. Future tests
will involve different types of drifts beyond a simple
slope. However, initially, active EIS tests on the fuel cell
can be performed under good conditions. Having tested
with the measurements provided by the simulation, the
next objective is to use real measurements.

B. Method Validation on Test Bench for Batteries

After validating the proper functioning of the signal
processing algorithm on a fuel cell model, the next step is
to evaluate its performance using real voltage and current
measurements. For this purpose, an experimental bench
dedicated to battery cell characterization is employed.
This bench includes an electronic load capable of gen-
erating current stimuli and random signals. Using this
setup, impedance measurements (EIS) can be performed.

On the test bench, an experimental scenario is defined
for the first time (Fig. 12): applying a constant current
(using current stimuli) to validate the quality of the mea-
surements and the effectiveness of the signal processing
algorithm. The frequency range varies between 1 Hz and
1000 Hz.

This scenario is designed to last only a few seconds
to avoid significant variations in the state of charge
(SoC), which strongly influence impedance values. The
evaluation of these two scenarios will enable the vali-
dation of the algorithm using real experimental data. To

Fig. 12. Constant current discharge (0.5A) + Harmonic injection

validate the measurements, a highly accurate reference
EIS is performed just before this scenario, allowing for a
comparison of the measurements. This reference EIS is
processed using a conventional signal processing algo-
rithm, which operates by knowing the injected frequency
and defining several parameters to ensure qualitative
measurements (sampling frequency, number of points,
number of periods, etc.). In contrast to the reference EIS,
the scenarios are processed using the signal processing
algorithm developed in this article. The figure below
presents the impedance spectrum of both the reference
and the scenario.

Fig. 13. Impedance spectrum processed with the new signal
processing algorithm

By observing the experimental spectrum (Fig. 13),
it is clear that it does not cover the entire frequency
range. Indeed, the reference spectrum is performed over



a frequency range from 3000 Hz to 0.1 Hz, whereas the
scenario covers a range from 1000 Hz to 1 Hz. However,
the impedance measurements remain consistent with the
reference, further validating the algorithm.

In the future, the goal will be to test driving cycles.
For now, however, the focus is on defining an implemen-
tation strategy for the electronic board.

C. Implementation

Now that a large part of the method has been tested
in Matlab/Simulink and experimentally, it’s time to move
on to the implementation phase. The main objectives
are to meet the processing time requirements for each
segment and to manage the memory constraints of the
board. It’s crucial to ensure that the data arrays are
correctly populated while making sure that the FFT and
windowing operations are performed. For instance, with
a 75% overlap, this means that four segments, and thus
five arrays, operate in parallel. Each segment is shifted by
25% relative to the total number of points in the segment
(Fig. 14).
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Fig. 14. Data segmentation with overlap and consideration of high-
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This results in a time of 0.25 times the segment dura-
tion, depending on the frequency range. The most critical
case arises at high frequencies, where the segments
are shortest. In the high-frequency range, based on the
simulations conducted, the duration of a segment is 50
ms, which is significantly shorter than what is required
for the calculations. Specifically, a Texas Instruments
TMS320F28379D microprocessor operating at 200 MHz
is used. According to its documentation, for segments
with 128 points, the windowing step takes 666 processor
cycles, while the FFT calculation requires 3003 cycles
(1).

Tc =
Nwindowing +NFFT

FCPU
≈ 20µs ≪ 0.25 · 50ms (1)

So, it is clear that the time taken to process each table
(segment) before it can be reused is more than sufficient.
The previous diagram illustrates the process with a 75%
overlap rate (Fig. 14). The arrays are first populated, used
for calculations, and then overwritten to make room for
new data. This process will enable real-time calculation
of impedance spectra.

V. CONCLUSION

This study highlighted a signal processing method,
aimed in particular at characterizing a battery and a
fuel cell using active and passive EIS techniques. Active
EIS, which has been extensively utilized, facilitated the
optimization of a signal processing algorithm for passive
EIS. This research established the foundation for this
algorithm and tested it in simulation and in experimental,
demonstrating its effective performance. Although the
algorithm has shown promising results for active EIS
with the fuel cell, it still needs to be fully deployed in real
driving cycles to identify its frequency characteristics.

Subsequently, the algorithm was tested on a battery
test bench, enabling the analysis of real measurements.
Whether applied to the simulation of the fuel cell or the
battery test bench, spectra consistent with the references
were obtained.

Future work will therefore focus on testing more
complex signals to further validate the method. This
advancement will subsequently enable real-time charac-
terization of the battery and fuel cell, aiming to assess
their health status.
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