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Strong shape-dependent intensity of inelastic light scattering by gold nanocrystals
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We present a numerical approach to calculate inelastic light scattering spectra from gold nanocrys-
tals, based on the finite element method. This approach is validated by comparison with previous
analytic calculations for spherically symmetric scatterers. Superellipsoid nanocrystals are consid-
ered in order to smoothly vary the shape from octahedra to cubes via spheres, while preserving
cubic symmetry. Spectra are calculated and discussed taking into account the irreducible repre-
sentation of the involved vibration modes. A strong increase in the inelastically scattered light
intensity is observed for small variations of the shape around the sphere. This increase is related to
variations of the electric field inside the nanocrystals, which are very small for small nanospheres
but increase quickly for non-spherical nanocrystals. This strong dependence with shape must be
taken into account when interpreting experimental spectra acquired from inhomogeneous ensembles
of nanocrystals whose shape dispersion are usually neglected. The overall changes in the spectra
when varying the shape of the nanocrystals provide additional insight into previously published re-
sults. Preliminary calculations for chiral shapes further show a significant difference between spectra

obtained with right or left circularly polarized light.

I. INTRODUCTION

The vibrations of objects are governed by their com-
position but also by their size, shape and environment.
Their exploration therefore provides a way to gain insight
into all these properties. At the nanoscale the frequen-
cies of vibrations fall into the GHz to the THz range.
Different experimental methods have been used to detect
them[l]. Inelastic light scattering by metallic nanoparti-
cles has been shown to be suitable for this purpose more
than 50 years ago[2]. This experimental technique is still
of interest nowadays thanks to continuous progress in
the controlled synthesis of metallic nanocrystals and to
the performance of Raman and Brillouin spectrometers.
Most of the existing literature in this domain relies on the
assignment of modes to the peaks observed in the spec-
tra, based on a comparison of experimental frequencies
with calculated ones. In this context, the Raman selec-
tion rules[3] for isotropic spheres have been very helpful
in reducing the number of responsive vibrations. How-
ever, this method becomes less and less useful as ob-
jects of lower symmetry are considered. A few methods
were proposed[4, [5] in the past to calculate Raman spec-
tra, but they have not been widely used, in particular
because they have not been extended to non-spherically
symmetric systems. Recently, there has been a renewed
interest in this domain with the appearance of an ana-
lytic approach for spherical nanoparticles composed of an
elastically isotropic material[6], that was later extended
to dimers[7]), and of other numerical approaches[8-I0].
A few recent works have also been devoted to the related
topic of numerical models of acousto-plasmonic coupling
in metallic nanoparticles[TTHI3].
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The present work also aims at obtaining a general nu-
merical approach to calculate the Raman spectrum for
metallic nanoparticles of arbitrary shape but with addi-
tional constraints. First, we want to demonstrate the va-
lidity of the numerical model by reproducing the spectra
obtained analytically for spheres[6]. For this reason, we
rely on the formalism developed in that work. Second, we
want to calculate spectra for nano-superellipsoids which
have been shown to be a good approximation to the shape
of rounded nanocubes, for which experimental spectra
have been published in recent years[14] [15]. By doing so,
the shape can be smoothly varied from an octahedron to
a cube via a sphere, preserving cubic symmetry and thus
allowing the use of group theory[I6] to help monitor the
variations of the calculated spectra with shape. Third,
cubic elasticity is introduced in order to calculate spec-
tra that are closer to experimental conditions. Indeed,
previous works have demonstrated that the splitting of
the main low-frequency Raman peak is due to anisotropic
elasticity in nanoparticles whose internal lattice structure
is monodomain cubic gold or silver[I5] [I7]. In the follow-
ing, we use the term “nanocrystal” in the latter case and
“nanoparticle” otherwise. Since the final goal is to devise
a general method to calculate spectra for nanoparticles
with arbitrary shapes, symmetry is not enforced during
finite element calculations but used at the classification
stage. To interpret the results, free vibrations are indeed
calculated using the Rayleigh-Ritz approach[I8]. This
method takes advantage of the cubic symmetry[I6] 19].
It is very fast and allows determining the irreducible rep-
resentations of the vibrations and to follow the dispersion
of each mode as the shape is varied.
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II. METHODS

To calculate Raman spectra, we use the expressions
derived by |Girard et al.[6]. They rely on a simple mech-
anism of Raman scattering, based on the density fluc-
tuations in the nanoparticles induced by the elastic vi-
brations. Alternatives exist which also take into account
the deformation potential coupling[l, 8, 10, I1I]. This
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The volume and surface integrals in Eq. are over the
nanoparticle only, n(w) is the Bose factor, k = ||k||u
is the scattered wave-vector, and n is the outward nor-
mal to the surface. As a first-order perturbation theory,
acousto-plasmonic coupling is evaluated from the unper-
turbed internal electric field and nanoparticle vibration,
in contrast to a full-wave approach that requires solving
the scattered electric field for every particle vibration[IT].
Equation is further reminiscent of optomechanical
coupling in dielectric nanostructures[20], that also in-
volves a linear combination of volume and surface overlap
integrals.

E;+ and u; are both calculated using the finite ele-
ment method (FEM) with FreeFem++[21], as in Ref. [I1l
Vibration eigenmodes are obtained by solving the Navier
equation for a nanoparticle defined by its mass density p,
elasticity tensor C7;, and shape. We neglect the embed-
ding matrix in this calculation so that only free vibra-
tions are considered. This assumption is generally valid,
in particular when the matrix mass density and the co-
efficients of the elasticity tensor are smaller than those
of the nanoparticle[22]. Should radiation of elastic waves
inside the host medium be included, it would be required
to properly account for leakage, for instance using the
concept of quasi-normal modes[23], but this goes beyond
the scope of the present work.

For the electric field calculation, we consider the plane-
wave illumination of the single metallic nanoparticle at
rest, with permittivity ¢, embedded in an homogeneous
dielectric medium defined by its real permittivity €,, =

nZ,. We solve the vector wave equation as detailed in
Ref. 11l

We consider superellipsoid (or superquadrics) nanopar-
ticles whose surface is defined by the implicit equation
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Their shape varies from octahedra for n = 1 to cubes for
n — oo via spheres for n = 2. Their length in the z,
y and z directions is 2L. The shapes considered in this
work are represented in Fig. [I}

Superellipsoids are meshed with gmsh[24], starting
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is required when considering very small or non-metallic
nanoparticles[5]. This is not the case in this work and
the deformation potential coupling can be neglected.

In this theory, the Stokes Raman intensity for each
vibration eigenmode ¢ (pulsation w;, displacement w;)
of a homogeneous particle is given by overlap integrals
involving the internal electric field Ej,; and the vibration
field, as

2
d(w—w;) (1)
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FIG. 1. Superellipsoids of cubic symmetry considered in this
work. The shape varies from an octahedron for n = 1 (left
side) to a cube as n — oo (right side), via a sphere at n = 2.

from the parametric description of their surface

z(t,p) = Lc(t,n)c(p,n),
y(t,p) = Lc(t,n) s(p,n), (3)
z(t,p) = L s(t,n),

with 0 <t < 7 and 0 < p < 27w. Coordinates ¢t and p
identify with the usual spherical coordinates 6 and ¢ for
n = 2 only. Functions ¢(z,n) and s(x,n) are defined as

c(x,n) = cosz |cosz|[/" L,

s(x,n) = sinz |sinz|/?/"L. (4)

III. RESULTS AND DISCUSSION
A. Spherical nanoparticles

We first apply the method presented above to the case
of isotropic spheres, in order to reproduce the analytic
calculations from |Girard et al[6]. Fig. [2 shows spectra
for isotropic gold spheres with diameters 18 and 49 nm
that can be directly compared with those presented in
Fig. 3 of Ref. |6l The elastic parameters for gold are ob-
tained from the sound velocities (v, = 3330 and v =
1250 m/s). The mass density is p = 19300 kg/m3. Opti-
cal constants are taken from |Johnson and Christy[25)].
For simplicity, we used A\ = 520.8 nm (e = (0.62 +
2.0817)%). That wavelength is close to A = 532 nm and
no significant change is expected from this minor differ-
ence. The nanospheres are embedded in a transparent
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FIG. 2. Raman spectra computed for two isotropic gold
spheres embedded in a transparent matrix of index n,, = 1.5,
for a 520.8 nm excitation wavelength and in the backscatter-
ing geometry. Two diameters are considered, 18 nm (top)
and 49 nm (bottom). Labels (¢,n) and arrows indicate the
frequencies of the n'® overtone of the spheroidal mode with
angular momentum ¢. Raman active modes are indicated in

bold. Compare with Fig. 3 of Ref.[6

matrix of index n,, = 1.5. Spectra are calculated for the
back-scattering configuration. The 300 lowest frequency
vibrations are taken into account. They cover the fre-
quency range up to about 1.4 times the breathing mode
frequency (fundamental spheroidal mode with ¢ = 0).
The different contributions were summed after broaden-
ing with a Lorentzian shape function with a full width at
half-maximum of 3 GHz, as in Ref. [6l

The agreement with the original figure is very good
for the larger nanoparticle, for which most vibrations
have a negligible contribution to the spectrum, except for
the expected Raman active ones: fundamental and first
overtone of the quadrupolar mode (spheroidal ¢ = 2),
and a minor contribution from the fundamental breath-
ing mode (spheroidal ¢ = 0). The weak spheroidal ¢ = 3
peak also agrees with the analytic calculations. It results
from the relaxation of the selection rules for nanopar-
ticles that are not very small compared to the optical
wavelength.

The agreement is good for the smaller nanoparticle as
well, except for the additional weak contributions from
spheroidal modes with ¢ > 2. As already pointed out in
Ref. [0, the intensity of the main peak is in this case three

orders of magnitude lower than for the larger nanoparti-
cle. This fact results from the almost exact cancellation
of volume and surface integrals in Eq. . The spu-
rious peaks have even smaller intensities. Reproducing
such small intensities is challenging with numerical ap-
proaches. The spherical shape is imperfectly modeled
due to the mesh discretization and to the convergence of
the finite element method. The results reported in Fig.
are therefore promising, since all the main features of
the calculated spectra are reproduced, except for minor
deviations in the most numerically challenging cases.

B. Superellipsoidal nanoparticles

To demonstrate the usefulness of the present approach,
we now consider the case of non-spherically symmetric
particles that can not be modeled analytically. To do
so, we first vary the shape of the nanoparticles. Fig. [3]
shows normalized spectra calculated for different superel-
lipsoids chosen so that the shape varies around the sphere
while keeping 2L = 18 or 49 nm. Frequencies are mul-
tiplied by the cubic root of the volume and expressed
as sound velocities, as in previous works[I4, [I5]. Us-
ing these reduced frequencies, the position of Raman ac-
tive vibrations remain mostly unchanged while varying
L and n[l6]. The peaks are now broadened with nar-
rower Lorentzian functions to better highlight individual
contributions. Vibrations are also calculated using the
Rayleigh-Ritz method[I6] for each irreducible represen-
tations of Oy with varying n. The resulting dispersion
curves are added to Fig. [3[ for both Raman active (blue)
and inactive (grey) modes to help assign peaks. The
spectra contain two intense E; and Ty, peaks that merge
into the quadrupolar vibrations of the sphere (n = 2) at
853 m/s. This modal splitting results from cubic sym-
metry (n # 2) being lower than spherical symmetry. The
incident light polarization is kept along a (100) direction
and the E; peak is more intense. Additional weaker peaks
at higher frequency are present even for 2L = 18 nm
when n # 2. Their assignment will be discussed later.

The most striking point regarding these spectra is their
intensity that increases sharply when the shape deviates
from the sphere, as seen in Fig. 4| (top). This variation
is strong, in particular for the smaller nanoparticles for
which the intensity increases by two orders of magnitude
between n = 2 and n = 2.2 or n = 1.8 while the volume
variation remains small (£10%). |Girard et al.| pointed
out that the main ingredient driving the Raman inten-
sity is the spatial variation of the electric field inside the
nanoparticle. Therefore, to understand the origin of the
large intensity variations, we plot the magnitude of the
electric field inside the n = 1.8, 2 and 2.2 nanoparticles
with 2L = 18 nm in Fig. The internal electric field
is almost the same everywhere inside the sphere. This
is expected because it is exactly constant for a dielec-
tric sphere in the electrostatic case (an analytic deriva-
tion is provided in Ref. 26]). It is not exactly zero in
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FIG. 3. Raman spectra computed for isotropic gold superellipsoid nanoparticles with 2L = 18 (black) and 49 nm (red, below)
and n = 1.5, 1.8, 2, 2.2, 3 and 8 from top to bottom. Spectra are normalized by the maximum intensity and shifted vertically
as 1/n for clarity and to overlay frequency variations with n. Intensities are divided by a factor 15 for reduced frequencies
ranging from 650 to 1100 m/s. The blue and gray curves show the dispersion curves for Raman active (Aig, Eg and Tag) and

inactive vibrations, respectively.

the numerical calculations because the retardation effect
is taken into account (variation of the phase of the in-
cident electric field along the propagation direction) as
in Mie scattering theory. The average value is neverthe-

:’:—:‘Eim’ for 2L = 18 nm. We calculated

the standard deviation o of the magnitude of the elec-
tric field inside the nanoparticle to quantify its variation.
The results plotted in Fig. 4| (bottom) show that o varies
quickly around m = 2. When n varies from 2 to 1.8
for 2L = 18 nm, the intensity increases by two orders
of magnitude while the volume decreases. To reach the
same intensity, it would be necessary to multiply the vol-
ume V of the 2L = 18 nm sphere by ~ 9 according to
the V22 intensity variation obtained in Ref.[6. The dif-
ference is even more striking when the shape tends to an
octahedron (larger intensity increase as the volume be-
comes smaller). Similarly, when going from a sphere to
a cube while keeping L constant, the volume is approxi-
mately doubled. The V23 law predicts that the intensity
is multiplied by ~ 5.5 which is much less than the 2 or
4 orders of magnitude observed in Fig. 4| (top). From
this point of view, the variation of intensity with shape

less close to

is significantly stronger than the variation with size.

To the best of our knowledge, this strong shape depen-
dence has not been reported previously in the literature.
Yet the spherical shape approximation is never perfectly
valid, because actual nano-objects are made of a finite
number of atoms. In addition, nanocrystals are often
faceted as can be predicted for example by Wulff con-
struction. It is therefore necessary to be careful when
comparing experimental results with the spherical ap-
proximation, in particular when discussing the intensities
for small, almost spherical nanoparticles.

C. Symmetry and Raman active modes

We now turn to the modal assignment of the lower in-
tensity features in the spectra. As explained before, care
should be taken for small spheres due to the very low
intensity of the spectrum resulting in the appearance of
spurious peaks due to numerical and discretization issues.
Thanks to the strong intensity increase discussed before,
this point is less problematic for non-spherical nanoparti-
cles. Peaks around 1700 m/s in Fig. are present in most
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FIG. 4. Intensity of the E; band normalized at n = 8 (top)
and standard deviation o of the electric field amplitude in-
side the nanoparticle normalized to the amplitude of the inci-
dent electric field (bottom), for different superellipsoids whose
cross-section along the x = 0 plane is represented in the mid-
dle.

spectra. The corresponding vibrations are Raman active
modes (A1g, E; and Ty,) coming from the (2,1) and (4,0)
spheroidal modes of the sphere. For the larger nanopar-
ticles, peaks are also present around 1300 m/s and come
from the previously mentioned (3,0) spheroidal mode of
the sphere. For the shape closest to a cube (n = 8),
additional peaks are observed near 610 and 1130, 1250
and 1320 m/s. The first one comes from the (2,0) tor-
sional modes, whereas the others come from the (3,0)
spheroidal and (3,0) torsional modes of the sphere. Ra-
man scattering by torsional modes is generally considered
to be negligible, including for large nanoparticles. This is
because such vibrations do not modify the mass density
during oscillation, but also because the shape of a sphere
does not change during oscillations caused by torsional
vibrations. It is indeed well-known for spheres that the
Raman intensity is associated to the ability of the vi-
bration to change the shape during oscillation[5]. For
cubes, torsional vibrations modify the shape, which ex-

FIG. 5. ||E;ntl| inside gold superellipsoids with 2L = 18 nm
for n = 1.8, 2 and 2.2 from left to right. The directions of
the incident field E; and propagation k; are indicated with
arrows.

plains why the Raman scattering cross-sections for these
vibrations becomes non-negligible. However, contrarily
to the strong shape dependence reported above for the
intensity, the apparition of peaks due to torsional modes
is only observed for values of n significantly different from
2.

D. Superellipsoidal nanocrystals

A detailed comparison with experiments is out of the
scope of the present work because results reported in
the literature differ in nanocrystal composition, shape,
size, excitation wavelength, optical index of the sur-
rounding medium, different ligands, presence of neigh-
bouring nanocrystals, ... In the following, we highlight
some general features of the Raman spectra of metallic
nanocubes and their manifestation in published spectra.
While the previous calculations provide an interesting
insight in Raman scattering from non-spherically sym-
metric nanoparticles, it does not take elastic anisotropy
into account. Gold and silver nanocubes are often sin-
gle domain (not twinned) and their shape comes from
the cubic lattice structure of gold. This has to be taken
into account to model the vibration frequencies of gold
nanocrystals accurately and assign the observed Raman
peaks[I7]. For this reason, we calculated the spectra for
the same 2L = 49 nm gold nanocrystals using the elastic
parameters for cubic gold (p = 19.283 g/cm?, Cy; = 191,
C12 =162 and Cyy = 42.4 GPa). The z, y and z axes of
the superellipsoids are along the <100> directions of the
lattice structure.

Computed normalized spectra are plotted in Fig. [6]
with the same conventions as in Fig. |3l Note that there
is a strong relationship between the intensities calculated
for nanocrystals with identical shapes but different elas-
ticity tensors. Indeed, the displacements associated to
each vibration mode for each system form an orthogo-
nal basis. The vibrations of one system are therefore
fully described by projecting onto the second system[27].
Therefore, the strong shape dependence of the intensity
discussed before for isotropic elasticity is still valid for
cubic gold. As a note, the Raman spectrum for a sphere
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FIG. 6. Raman spectra computed for cubic Au superellipsoid nanocrystals 2L = 49 nm (red) and n = 1.5, 1.8, 2, 2.2, 3, 8
and 50 from top to bottom. The spectra are normalized at the maximum intensity and shifted vertically as % for clarity and
to overlay the frequency variations with n. Intensities are divided by 15 between 450 and 700 m/s. The blue and grey curves
show the normalized frequencies of the Raman active (A1g, Eg and Tag) and inactive vibrations respectively.

made of an elastically anisotropic material can be ob-
tained more accurately by projecting the vibrations of
the anisotropic sphere obtained numerically (FEM or
Rayleigh-Ritz for example) onto those of the isotropic
sphere (Lamb modes[28]) and calculating the intensities
using the analytic approachl6].

The main Raman peaks in Fig. [6] correspond to the E,
and Ty peaks at about 600 and 950 m/s, coming from
the splitting of the intense spheroidal £ = 2 peak of the
isotropic sphere. The spectra also show minor contribu-
tions to the high frequency side of the Ty, peak which
shift to the low frequency side for n > 3. A similar behav-
ior was recently reported for silver nanocubes[15]. It was
assigned to the anti-crossing between two T, branches.
The present calculations show an additional contribu-
tion of the second Eg branch. Interesting experimental
Raman spectra for gold nanocrystals were also reported
recently[I4]. They showed very narrow peaks because
they were obtained for single nanocrystals and therefore
without inhomogeneous broadening, contrarily to most
reported results involving ensemble measurements,i.e.,
for which the spectra contain the contribution of several
nanocrystals. The present calculations, and in particu-
lar those presented in Fig. [6] shed a new light on these

results. The substructures observed for the E, and Tgg
peaks were tentatively assigned to their splitting due to
unequal dimensions of the nanocrystals along the 3 direc-
tions. Even so, the spectrum near the expected E; peak
seemed to be composed of 3 contributions which could
not be explained by the two-fold degeneracy of the E,
mode. The spectra calculated for n = 50 show that ad-
ditional Raman inactive vibrations can contribute in this
frequency range. Their calculated intensity is here small,
but the nanocubes in Ref. [I4] were larger (2L ~ 80 nm).
The large shift observed for the peak near the Ty, fre-
quency when changing the incident polarization was also
not explained. The present calculations show that ad-
ditional contributions in this frequency range are indeed
possible, as discussed before for silver nanocubes. Fi-
nally, the nanocrystals showing the most unexpected fea-
tures in Ref. [14] were those close to a silica step. In ad-
dition, the spectra were sensitive to the polarization of
the incident light. The presence of this step was also
shown to modify the electric field magnitude inside the
nanocube. Different incident polarizations are expected
to modify FEi,;. As detailed above, these modifications
can in principle change the calculated spectra. Taking
into account all these factors goes beyond the scope of



this work, but will be considered in the future. They
may open the door to monitoring the electric field inside
metallic nanoparticles through inelastic scattering mea-
surements.

As indicated in the introduction, |Montano Priede|
let al 8] recently reported similar calculations for small
gold spherical nanocrystals made of isotropic and cubic
gold. As discussed before, calculations for anisotropic
spheres can be handled analytically after projection of
the vibrations onto those of an isotropic sphere. We note
also that the method used in that work requires the calcu-
lation of the electric field for the sphere deformed by each
vibration mode, which requires significantly more com-
putations. Calculations were actually performed only for
a few selected vibrations (spheroidal ¢ = 0 and 2). This
selection is valid for an isotropic sphere, but question-
able for an anisotropic sphere whose vibrations are not
pure Lamb modes anymore; it can not be applied non-
spherical shapes.

In another recent work, |Gelfand and Pelton[I0] pre-
sented calculated spectra for small isotropic silver and
gold spheres and a silver cube. Similar comments re-
garding the analytical solution for spheres and the larger
computational resources required to calculate spectra are
valid. The authors did not attempt to check the valid-
ity of the Raman selection rules, arguing that Raman
inactive vibrations have been experimentally observed in
Ref. However, the cited work concerns much larger
silica spheres with diameters > 200 nm. The Raman
selection rules are indeed invalid in that case because
they are derived for sizes that are small compared to the
wavelength of light. The authors also argue that the Ra-
man selection rules break down for non-totally symmetric
vibrations because the deformed nanoparticle does not
have the same symmetry as the undeformed one. This
reasoning seems dubious because it should also apply to
Raman scattering in molecules. It is difficult to discuss in
detail here the results presented by the authors because
the peaks in the spectra of spheres were not assigned to
Lamb modes. However, we note that the relative inten-
sities for the silver sphere are quite different from those
reported in Ref. [5l While the reason for this discrepancy
is unknown, it may be related to a poor convergence of
the calculations in this challenging case, as explained be-
fore. We also believe that our work demonstrates that
the Raman selection rules remain useful to follow the
evolution of the intensity of each mode, in particular
when smoothly varying the shape of the nanoparticles. A
direct comparison with spectra calculated in
[EIH is difficult since that work focused on nanorods
which are not considered in the present work. We note
however that the electromagnetic coupling in dimers was
shown to play a significant role, which agrees with the
sensitivity to the variation of the electric field discussed
in the present work.

intensity (arb. units)

10 20 30 40 50 10 20 30 40 50
frequency (GHz)

FIG. 7. Raman spectra for left (blue line) and right (red
line) circularly polarized incident light, and their difference
(black line) for a sphere (bottom left panel), a rounded cube
with n = 8 (top left panel) and a rounded twisted cube (right
panel). The 3D views of the nanoparticles are plotted within
a cube with edge length 2L. The incident beam propagates
in the direction perpendicular to the front face of the cubes.
The rounded twisted cube is obtained from the rounded cube
by applying a rotation along the vertical axis z by an angle
varying linearly with z so that the top and bottom faces are
rotated by +45°.

E. Chiral nanoparticles

We now turn to calculations for chiral gold nanoparti-
cles excited with circularly polarized light. To the best
of our knowledge, no such measurements have been re-
ported in the literature despite the strong current in-
terest in chirality. These calculations are motivated by
the similarity with the probing of molecular chirality us-
ing Raman optical activity (ROA)[30]. We thus aim at
investigating the possibility of probing chirality in gold
nanoparticles. To this end, we consider chiral nanoparti-
cles that are identical or as close as possible to the pre-
vious ones, to ease comparison. We calculated spectra
for right (clockwise from the point of view of the re-
ceiver) and left circularly polarized incident light for a
sphere, a rounded cube and a twisted rounded cube made
of gold with isotropic elasticity. We used the same length
(2L = 49 nm) for all of them. Only the last particle has
a chiral shape. It is obtained starting from the rounded
cube (superellipsoid with n = 8) by rotating the points
around the z-axis by the z-dependent angle a(z) = 7 7.

The calculated spectra and 3D representations of the
nanoparticles are presented in Fig. [7] The volume of



the twisted and non-twisted rounded cube are the same,
so their vibrational frequencies are close. Indeed, the
peaks with the largest intensity fall in the same frequency
range. As expected, the spectra calculated for the right
and left circular polarizations are equal (within numerical
precision) for achiral nanoparticles (sphere and rounded
cube). A large difference is obtained, in contrast, for the
twisted rounded cube. ROA is a very small effect with
a magnitude of about 1072 or less requiring special de-
tection schemes to observe it. In the present case, the
magnitude is larger than 107!, suggesting that observa-
tion may be possible using existing setups. Indeed, even
if all the peaks near the quadrupolar-like vibration would
merge when adding an inhomogeneous broadening, as in
ensemble measurements for example, the position of this
peak would shift between the two circular polarization
because the sign of the difference is opposite for the low
and high frequency sides. We assign this larger mag-
nitude to the large size of the nanoparticles compared
to molecules, which makes it easier to observe an effect
due to the spatial variation of the incident electric field,
but also to the fact that we consider the vibrations of a
larger entity (compared to the vibrations a few molecular
bonds in the Raman spectra of molecules). The validity
and the applicability of these calculations must of course
be reevaluated when investigating real systems. In par-
ticular, the shape we considered is somewhat arbitrary,
even if more complex shapes have been reported in the
literature[3I]. The environment of the nanoparticle can
also play a significant role and inhomogeneous broaden-
ing in ensemble measurements may further hinder this
difference.

IV. CONCLUSION

A numeric approach based on the finite element
method has been proposed to calculate inelastic light
scattering spectra of metallic nanoparticles. The ap-
proach satisfactorily reproduces the results of the ana-
lytical model from which it was derived. Calculations
for superellipsoids have revealed a strong variation of the
intensity of scattered light with shape, in particular for

small nanoparticles. This effect originates from the spe-
cial case of spheres for which the internal electric field is
constant in the electrostatic approximation, resulting in
a very small intensity originating only from small retar-
dation effects. Going away from this particular case by
changing the shape is shown to increase the inelastically
scattered intensity by orders of magnitude. This point
must carefully be taken into account when the scatter-
ing intensity plays a role, as in ensemble measurements
for example. Indeed, within an inhomogeneous popula-
tion of almost spherical nanoparticles, the less spherical
ones may contribute more to the spectrum, making cal-
culations based on the spherical approximation mislead-
ing. Spectra calculated for nanocubes with cubic elas-
ticity show the contribution of vibration modes which
have not been considered before to assign experimental
features. In particular, this work supports the interpreta-
tion of original features observed experimentally on single
gold nanocubes as originating from the variation of the
internal electric field inside the nanocubes when mod-
ifying the incident polarization or the environment, as
observed for nanocrystals near a silica step. This opens
the door to using inelastic light scattering as an indirect
probe of the inner electric field in metallic nano-objects.
Finally, preliminary calculations show that the spectra
of chiral nano-objects with right and left circularly po-
larized incident light differ significantly making inelastic
light scattering spectroscopy suitable to assess the chi-
rality of nano-objects.
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