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Abstract
Axion-like particles (ALPs) arise from well-motivated extensions to the Standard
Model and could account for dark matter. ALP dark matter would manifest as
a field oscillating at an (as of yet) unknown frequency. The frequency depends
linearly on the ALP mass and plausibly ranges from 10−22 to 10 eV/c2. This
motivates broadband search approaches. We report on a direct search for ALP
dark matter with an interferometer composed of two atomic K-Rb-3He comag-
netometers, one situated in Mainz, Germany, and the other in Kraków, Poland.
We leverage the anticipated spatio-temporal coherence properties of the ALP
field and probe all ALP-gradient-spin interactions covering a mass range of nine
orders of magnitude. No significant evidence of an ALP signal is found. We
thus place new upper limits on the ALP-neutron, ALP-proton and ALP-electron
couplings reaching below gaNN < 10−9 GeV−1, gaPP < 10−7 GeV−1 and
gaee < 10−6 GeV−1, respectively. These limits improve upon previous labo-
ratory constraints for neutron and proton couplings by up to three orders of
magnitude.

1 Introduction
Abundant astrophysical and cosmological observations at different scales [1–3] suggest
that about 85% of the matter in the Universe does not noticeably interact beyond
gravitational interactions and is thus known as “dark” matter (DM). Since the DM
composition remains unknown, it serves as a provocative indication of physics beyond
the Standard Model (SM) and drives the search for hypothetical DM particles.

Ultralight ( 10 eV/c2) pseudoscalar bosons known as axion-like particles (ALPs) are
particularly well-motivated DM candidates [4–7]. ALPs could account for the correct
abundance of relic DM (via, for example, a misalignment mechanism [8]) and a subset
of them could resolve the strong-CP problem [9]. Additionally, ALPs can interact with
SM particles through couplings to photons, gluons, and fermions [10], offering direct
ways of probing their existence [11–13].

In this article, we present the results of an interferometric ALP search (see also
Ref. [14, 15]). The search explores a wide mass range (nine orders of magnitude) and
investigates ALP couplings to three distinct spin types (i.e., those associated with pro-
ton, neutron, and electron). The interferometer is composed of two K-Rb-3He atomic
comagnetometers, one located at the Jagiellonian University in Kraków, Poland [16]
and the other, separated by 860 km, at the Johannes Gutenberg University in Mainz,
Germany, see Fig. 1(a). The interference occurs through the phase-sensitive combi-
nation of the amplitude data, in a manner similar to that used in radio telescope
networks (e.g., the event horizon telescope [17]). The main difference between our
and other schemes is that we are sensitive to ALP DM gradients rather than electro-
magnetic waves and that the corresponding improvement in angular resolution does
not play a role in searching for DM, which is assumed to have a homogeneous local
density. It might, however, be important in searches when DM models feature more
heterogeneous mass distribution including streams and halos [18–21], or if there are
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Fig. 1 (a) Schematics of the comagnetometric interferometer. The two devices comprising the inter-
ferometer are indicated in their respective locations in Mainz and Kraków. The small red arrows
at the Earth surface point in the directions of the sensor sensitivity axes. In our model, Earth is
moving in the galactic rest frame at velocity vE through the ALP DM field, characterized by its de
Broglie wavelength λDB, that is more than a thousand times larger than the Earth radius. Besides
its translational motion, Earth rotates around its axis giving rise to sidereal modulation of the signal
at the frequency ωE. Base image: Google Earth. Image © 2025 Google, Image Landsat / Coper-
nicus, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, IBCAO. (b) Orientation of the sensitive axes
of the comagnetometers with respect to Earth’s rotation axis. The sensitive axes of the comagne-
tometers can be decomposed into components along and perpendicular to the Earth’s rotation axis.
The former results in an ALP signal component (carrier) arising at the ALP Compton frequency ωa,
while the latter results in (generally asymmetric) sidebands separated from the carrier by the sidereal
frequency ωE. (c) Signal interferometry in the data analysis (illustration). The points in the three
subfigures correspond to the complex Fourier amplitudes of all probed frequency bins of the Mainz
(left), Kraków (middle) datasets and their combination (right). The frequency points are intended
for illustration purposes and do not correspond to experimental data. We assume normal noise distri-
butions. The circles indicate the standard deviation. The points marked with red, blue, and orange
represent injected ALP signatures observable in both comagnetometers and how they appear in the
combined signal. Due to the directional sensitivity of the comagnetometers, the injected ALP signal
manifests as a carrier of amplitude AK only in the Kraków data, and sideband signatures of different
amplitudes and phases in both Kraków (AK

±) and Mainz (AM
± ) data. The phase difference between

the signals arises due to the different orientation of the sensitive axes (π/2), as well as the different
locations (ϕ) of the sensors. Appropriate phasing allows to coherently add the ALP signals, while the
noise adds incoherently.

distinguishable emitters of bosonic fields in the Universe, e.g., black holes emitting
ALPs in a process of superradiance [22] or during binary merger [23]. The interfer-
ence increases the signal-to-noise ratio of the search compared to a single sensor [24].
This work constitutes the first constraints from an interferometer composed of two
comagnetometers.

We optimize both comagnetometers to operate in the self-compensating regime
[25–27]. To a first order, the devices are insensitive to low-frequency magnetic-field
variations, but retain sensitivity to non-magnetic spin interactions [28, 29]. This makes
them excellent tools for probing the interaction of the galactic ALP DM field a(r, t)
with neutron spins σN , proton spins σP and electron spins σe, which are described
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by the Hamiltonians

HN = gaNN∇a · σN ,

HP = gaPP∇a · σP ,

He = gaee∇a · σe ,

(1)

where gaNN , gaPP , and gaee are unknown coupling constants to neutrons, protons
and electrons. Self-compensating comagnetometers have already established the most
stringent limits in certain mass ranges, even surpassing astrophysical constraints [30–
32]. In this work, we search in experimentally-unconstrained ALP parameter space in
the ultralight mass range below 10−13 eV/c2.

If the estimated local DM density (≈ 0.4GeV/cm3) [33] is mostly due to an ALP
of mass ma, the occupation number of the ALP field would be large and hence it can
be approximated as a classical field oscillating near the ALP Compton frequency [34].
In this model, the characteristics of the oscillating ALP field, such as the amplitudes
and the phases of the ALP gradient components, fluctuate in time according to the
properties of virialized dark matter [35–39]. The characteristic time scale of the fluc-
tuations results from the ALP DM velocity spread, which leads to a coherence time of
around 106 oscillations of the field (for example, about 15 years for ma = 10−17 eV/c2).

In our work, we focus primarily on the regime where the coherence time of the
ALP collective oscillation is larger than the total measurement time. In this regime,
the ALP field can be treated as having a constant amplitude and direction and hence
its signatures at the two sensor locations are highly correlated. For reference, an ALP
particle of mass 10−17 eV/c2, assuming a relative velocity equal to that of Earth in the
galactic rest frame, has a de Broglie wavelength of ∼ 103 astronomical units. Thus,
by properly combining the signals from both stations, the ALP signals will be added
constructively, while the effects of local noise fluctuations sum incoherently and are
suppressed, see Fig. 1(c).

An additional analysis of the results allows us to extend the search to ALP masses
below ∼ 5×10−20 eV/c2. This is possible by looking for spectral signatures in the data
that would arise due to the rotation of Earth. The properties of the field gradient in
this ultralow frequency regime are discussed and the signal properties are explicitly
reviewed below.

This article is structured as follows. In Sec. 2.1, we review the ALP DM signal
model, explicitly showing the expected signatures in the frequency domain for a daily
modulated sensor, and discuss how the sensitivity can be improved by analyzing inter-
fering signals from multiple sensors. In Sec. 2.2, we show the analysis framework and
discuss how data is combined to maximize a signal-to-noise ratio. As no ALP can-
didates are found, we set limits on the ALP DM pseudoscalar spin interactions in
Sec. 2.3. The experimental setup and some technical details of the search are presented
in Sec. 3.
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2 Results and discussion

2.1 Signal model
To describe the expected-signal model in the two comagnetometer locations, we utilize
the framework described in Refs. [30, 37, 38]. Due to its high occupation number, the
ALP-field can be approximated as a sum of N independent oscillations. We write the
components of the ALP field gradient at position r and time t in a Cartesian frame
of reference i = x, y, z, where the Solar System is at rest

∇ia(r, t) =
h̄
√
2ρDM

mac
√
N

N∑
n=1

∇i sin(ωnt− kn · r + ϕ′
n)

=

√
2ρDM

c
√
N

N∑
n=1

(vn)i cos(ωnt− kn · r + ϕn) .

(2)

The negative sign in the second line is absorbed by the random phase ϕn = ϕ′
n + π,

c is the speed of light, ma is the ALP mass, ρDM ≈ 0.4GeV/cm3 [33] is the local
DM density, kn = mavn/h̄ is the ALP-field wave vector, ωn is the angular frequency
of each oscillating mode n, and (vn)i is the i-th component of the relative velocity
vn between the ALP mode and the sensor. Assuming that ALPs are virialized in the
Milky Way, the velocities vn follow a 3D normal distribution centered at zero in the
galactic frame. On Earth, the observed velocity distribution will be offset by Earth’s
velocity in the galactic frame (vE)i. We neglect effects due to the movement of Earth
within the Solar System as it is negligible compared to the velocity of the Solar System
in the galaxy [38]. The velocity components (vn)i are then distributed according to

f(vi) =
1

v0
√
π
exp

{
−
[
vi − (vE)i

v0

]2}
, (3)

where v0 ≈ 220 km/s is the virial velocity in the Milky Way, determining the variance
of the velocity distribution to be v20/2. The dark matter escape velocity is neglected,
since it has a negligible effect on the distribution.

Each mode of the ALP field experiences a kinetic energy correction, leading to
a small frequency shift ωn ≈ ωa(1 + v2

n/2c
2). Thus, most of the ALP spectrum is

concentrated within a spectral width given by [38]

∆ω ≈ ωa
v20
c2

≈ ωa × 10−6. (4)

The collective mode can be described by a nearly monochromatic oscillation with
independent amplitude and phase for each orthogonal spatial direction. The ampli-
tudes and phases are random and evolve smoothly on time scales set by the coherence
time τ ≈ 2π/∆ω. The underlying probability distributions of the amplitudes and
phases can be derived from Eqs. 2 and 3 [38]. This results in six independent param-
eters: three amplitudes (αx, αy, and αz), following Rayleigh distributions, and three
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phases (ϕx, ϕy, and ϕz), following uniform distributions over [0, 2π) [37]. Because the
ALP de Broglie wavelength in the analyzed mass range is much larger than the sen-
sor separation, λ = 2π/kn ≫ d = 860 km, we neglect the spatial dependence, i.e.,
kn · r ≈ 0, in Eq. 2 for both sensors. The ALP gradient can then be written as

∇a(t) =

√
2ρDM

c
√
N

N∑
n=1

vn cos(ωat+ ϕn)

= x̂αx cos(ωat+ ϕx) + ŷαy cos(ωat+ ϕy)

+ ẑαz cos(ωat+ ϕz) ,

(5)

whereωa is the Compton angular frequency of the ALP. The sum can be evaluated
with the central limit theorem, and results in the amplitude terms αi. The probability
distributions of the amplitudes αi are given by [38]

αi ∼
√
2ρDM

c

√
v20/2 + (vE)2i

2
α . (6)

where α is a Rayleigh distributed random number with scale parameter equal to 1.
The sensitive axis m̂ of a single sensor located at Earth’s surface rotates with

the sidereal frequency of Earth, ωE. The coordinate system is chosen such that the ẑ
component is parallel to the Earth rotation axis and the x̂ component is perpendicular
to the Greenwich meridian. The coordinate system can be assumed static in the
galactic rest frame over the timespan of the experiment. This results in a fixed mz

component and daily modulated mx and my components:

m̂(t) = x̂ sin θ sin(ωEt+ ϕE)

+ ŷ sin θ cos(ωEt+ ϕE)

+ ẑ cos θ ,

(7)

where θ = ̸ (ẑ, m̂) is the polar angle and ϕE = ̸ (x̂, m̂) is the azimuthal angle in
a spherical Earth coordinate system. The experimental signal is proportional to the
projection of the gradient of the ALP field on the sensitive axis of the sensor,

∇a(t) · m̂(t) =
αx sin θ

2

{
sin

[
(ωa + ωE)t+ ϕx + ϕE

]
− sin

[
(ωa − ωE)t+ ϕx − ϕE

]}
+
αy sin θ

2

{
cos

[
(ωa + ωE)t+ ϕy + ϕE

]
+ cos

[
(ωa − ωE)t+ ϕy − ϕE

]}
+αz cos θ cos(ωat+ ϕz) .

(8)

The pseudomagnetic field in the experiment is given by Ba = geff
µn

∇a · m̂, with
µn/2π = −32.4MHz/T the gyromagnetic ratio of 3He, and geff = gaNNξN (gaPP ξP )
the effective nucleon coupling taking into account the neutron (proton) content ξN (ξP )
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[40]. In the case of an electron interaction, the effective coupling is given by the ratio
of the gyromagnetic ratios of electron and neutron geff = gaeeγn/γe (see Sec. 3.5).

To obtain the frequency-domain signature of Eq. 8, we describe the three frequency
components of the amplitude-modulated signal as a carrier, oscillating at the ALP
Compton frequency ωa and two sidebands, separated from the carrier by Earth’s
sidereal frequency ±ωE. The magnitudes of the three components (in magnetic-field
units) are given by

|A| = geff

µn
αz cos θ ,

|A−| =
geff

µn

sin θ

2

√
α2
x + α2

y − 2αxαy sin(ϕx − ϕy) ,

|A+| =
geff

µn

sin θ

2

√
α2
x + α2

y + 2αxαy sin(ϕx − ϕy) .

(9)

Because there are three complex amplitudes A and A± that depend differently on
six random variables αi and ϕi, the amplitudes are independent of one another. It is
worth noting that even though the signal in the different frequency components are a
result of an amplitude modulation, the sideband amplitudes are generally asymmet-
ric. However, for measurements that average a large number of coherence times, the
sidebands magnitude converge to the same value.

Note that the total power of the gradient of the ALP DM signal within a single
coherence patch distributed among three frequencies ωa, ω+, and ω− is

|A|2

cos2 θ
+

2(|A+|2 + |A−|2)
sin2 θ

= g2eff(α
2
z + α2

x + α2
y) = g2eff|α|2 , (10)

where α = (αx, αy, αz) gives the 3D amplitude of the ALP DM field.
In our experimental search for ALP DM, it is essential to consider the role of noise

in the comagnetometer data. Correlated measurements of ALP DM with two sensors
instead of a single sensor lead to a substantial improvement of sensitivity. In fact, the
improvement is greater than a factor of

√
2 expected from two measurements of a

quantity with uncorrelated noise [24, 41]. The reason lies in the respective orientation
of the sensitive axes of the sensors. In our configuration, the combination of both
sensors allows access to all spatial components of the ALP gradient signal.

The individual ALP gradient components are independent random values
described by Rayleigh distributions. Probing all of them simultaneously using the ALP
DM interferometer configuration enables us to increase the combined signal amplitude
and extend the range of the search into lower values of geff.

The spatial configuration of the two-station ALP DM interferometer is as follows:
the sensitive axis of the Mainz station is horizontal in the laboratory pointing East
in the Earth rotation plane (θM = 90 ◦ ± 1◦), and therefore, is exclusively sensitive
to the sideband signal A±. In contrast, the sensitive axis of the Kraków station is
horizontal in the laboratory pointing North (θK = 50 ◦ ± 1◦). The Kraków comagne-
tometer is therefore sensitive to all ALP spectral signatures (carrier and sidebands).
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The uncertainties on the angle are negligible compared to the statistical noise of the
experiment.

2.2 Search strategy and results
In our experiment, we searched for ALP DM with Compton frequencies up to 11.6 Hz.
In this frequency range, the linewidth of the ALP signal is below the frequency reso-
lution of the analysis method. Additionally, the sensitive axes of the comagnetometers
are modulated at the Earth sidereal frequency, ωE/2π ≈ 11.6µHz, resulting in resolv-
able sidebands, see Eqs. 9. The expected amplitude ratio between the central peak
(carrier) and sidebands is given by the components of the sensitive axes parallel
(carrier) and perpendicular (sidebands) to the rotation axis of Earth.

The data analyzed in this work correspond to a total of 40 25-hour segments in
Mainz and 28 25-hour segments in Kraków, collected over a 92-day period between
January 6 and April 7, 2024. Data collection was performed as consistently as possible,
but several technical interruptions occurred during the measurement campaign. From
that data, 25-hour continuous data segments were used for the analysis, ensuring
sidereal frequency resolution (∆ωωE).

In general, when searching for unknown dynamic-observables, it is crucial to pre-
cisely know the sensor frequency response. However, in the case of ALP DM, the
frequency response cannot be directly measured. To address this issue, the frequency
responses of both comagnetometers to exotic interactions were inferred using the
method reported in Ref. [29]. The method involves (1) measuring the response to a
magnetic step perturbation, (2) fitting the Discrete Fourier Transform (DFT) data
with a model that describes the coupled spin dynamics, and (3) inferring the frequency
response of neutrons, protons, and electrons to postulated non-magnetic (exotic)
interactions. In our analysis, the frequency responses was determined for each 25 h
data segment. The calibration-fit results for Mainz and Kraków are summarized and
discussed in Sec. 3.1.

The DFT is applied to a uniform timeseries of 25 hours duration with a rectangular
window to generate a DFT subset. To coherently combine ALP DM signals from
different DFT subsets, a frequency-dependent shift is applied and the subsets are
phase aligned. Then, all DFT subsets of the respective station are averaged, resulting
in a mean value and its standard deviation. We confirmed that the time-shifted DFT
averaging procedure had no effect on the Fourier coefficients of injected oscillations.

To search for ALP DM signals [Eq. 10], we construct an estimator of signal ampli-
tude S(ω). To achieve the optimum signal-to-noise ratio, we extract all potential ALP
DM signatures from the data by combining the Mainz and Kraków DFT datasets.
We then combine the power of carrier and sidebands. Cross-correlated combination
of spatially distributed measurement has been performed previously, e.g. Ref. [42]. In
this case specifically, the complex Fourier components of the sidebands (A±) in Mainz
and Kraków are added with weights taking into account the direction of the sensitive
axes and the noise level (see Sec. 3.2). The interfered sideband signal then reads

AK+M
± =

aM± AM
± + aK±AK

± e−i(ϕ+π/2)

aK± + aM±
, (11)

8



where ai± are the weights with ± designating the higher (+) and lower (−) frequency
sideband and superscript i = M,K indicates the Mainz and Kraków stations, respec-
tively. The angle between the positions of the Mainz and Kraków comagnetometers
in the rotation plane of the Earth is ϕ, see Fig. 1(b). Accounting for the angle ϕ is
required to ensure constructive interference of an oscillating ALP DM signal recorded
in the two comagnetometers. The constructive interference of the ALP DM signal in
the combination of the sidebands is illustrated in Fig. 1(c).

Next, we combine the carrier in Kraków AK with the interfered sideband signal
AK+M

± . The signal estimator S(ω) for ALP DM incorporates the appropriate weights
for averaging signal power; bK for the carrier in Kraków and bK+M

± for the upper and
lower interfered sideband, see Sec. 3.2. The Mainz carrier signal does not contribute
to the signal estimator S(ω), as its weight bM ≈ 0, because cos(θM ) ≈ 0, meaning
that there is no contribution to AM from ALP DM. The estimator for the ALP DM
signal S(ω) is defined in the following way

S(ω) =

√√√√bK |AK |2 + bK+M
−

∣∣AK+M
−

∣∣2 + bK+M
+

∣∣AK+M
+

∣∣2
bK + bK+M

− + bK+M
+

. (12)

Note that the standard deviation of the DFTs is propagated accordingly, resulting in
an uncertainty in the signal estimator ∆S(ω) for each frequency.

The value of S(ω), given in magnetic-field units and determined from the acquired
data, is represented by the blue points in Fig. 2. An ALP DM signal in the S(ω) data
would correspond to a single data point at frequency ωa. Since this is one point out
of the whole dataset consisting of a million points, one per frequency, the distribution
of S(ω) over all frequencies characterizes the technical-noise of the interferometer.

In order to estimate the expected value of the technical noise amplitude at each
frequency, fit(ω), we use the measured values of S(ω) at surrounding points. For
frequencies below 0.1 Hz, the mean is inferred from a global fit assuming a 1/f noise
model. Above 0.1 Hz the mean is based on the moving average of 500 consecutive
points centered around (but excluding) the frequency of interest. Figure 2 shows the
mean of the technical noise as an orange line determined as discussed above, as well
as a light red line indicating the 95% global significance threshold for each frequency.

To determine whether any of the estimator data points are significantly larger than
expected from the measured technical noise, a detection threshold is established. The
set of the signal-estimator values S(ω), normalized with the expected noise at each
frequency, is found to match a non-central χ2 distribution with six degrees of free-
dom (see Sec. 3.3). The fitted non-central χ2 distribution is used to set the detection
threshold to guarantee that a candidate signal has only a 5% global chance of aris-
ing due to technical noise which accounts for the look-elsewhere effect. The measured
values of S(ω) are consistent with noise and therefore shows no evidence of an ALP
DM candidate.

For ALP DM with frequencies below ωE, a different search approach is used. An
ALP DM contribution at ωE would be observed for the Compton frequencies ωa < ωE
even if ωa cannot be directly resolved in our data.This is due to the fact that the Earth

9



Fig. 2 Signal estimator S(ω), obtained by interfering the Mainz and Kraków comagnetometer data,
for frequencies above ωE. The results are shown as a function of frequency in the upper figure. The
data shows a 1/f scaling behavior up to 10−2 Hz consistent with technical noise of the apparatus.
The peak sensitivity of the estimator reaches 10−17 T. No ALP candidate is found beyond the global
95% significance threshold in p-value, as shown in the lower plot.

rotation is modulating the ALP field that would be measured in the experiment, so
there would always be a signal oscillating at Earth sidereal frequency ωE. Similar anal-
ysis techniques have been proposed previously [43–45] that did not take into account
the stochasticity of the ALP field. The width of each frequency bin is approximately
equal to ωE. In this situation, the sidebands are at ωE±ωa. Since ωE > ωa, they appear
in the same frequency bin at ωE. By examining the frequency bin at ωE, the ALP
search can be extended to the limit where the ALP oscillation is much slower than
the rotation of Earth (ωa ≪ ωE). Due to the particular characteristics of this bin, we
do not include it in the general ALP DM search described in the previous paragraph.
Instead, we add Mainz and Kraków amplitudes with their respective weights and
obtain AK+M (ω) following Eq. 11. We use the estimator AK+M (ω)/∆AK+M (ω) nor-
malized by the standard deviation ∆AM+K(w) as the expected noise model. For the
frequency bins below 0.1 Hz the estimator histogram follows a Rayleigh distribution
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Fig. 3 Histogram of the measured-noise distribution and the combined amplitude value at ωE as a
function of the measured Fourier amplitude. For an ALP field oscillating below ωE, the sidebands
are not resolved and an ALP signature is present at ωE. However, AM+K(ωE) is compatible with
the expected noise distribution and thus no ALP candidates with frequencies ωa < ωE are reported.
The blue arrow indicates the frequency bin at ωE, the dashed red line indicates the 95% confidence
detection threshold and the orange distribution is the measured noise for the the frequency bins
between ωE and 0.01Hz. The amplitude is normalized by the standard deviation ∆AM+K(ω) to
whiten the noise.

which is used to calculate detection threshold (95% local significance threshold) for the
measured value AK+M (ωE). The results are shown in Fig. 3. The measured amplitude
at ωE is S(ωE) = 4.7×10−14 T and the standard deviation is ∆S(ωE) = 4.2×10−14 T.
The standard deviation is calculated from the value of the Fourier coefficients at ω of
each of the 25-hour segments. Then, it is propagated following the definition of S(ω).
It is consistent with noise and therefore shows no evidence of an ALP DM candidate.

2.3 Setting limits
Since our measurements did not reveal any ALP DM candidates in the frequency
range below 11.6Hz, we proceed to set limits on the ALP DM pseudoscalar couplings.
Specifically, we set exclusions on the ALP-proton coupling gaPP , ALP-neutron cou-
pling gaNN , and ALP-electron coupling gaee. For simplicity, when constraining one
of the three couplings, we do not consider interactions due to the other couplings.
We describe the exclusion strategy for a generic geff coupling to the spin. For pro-
ton and neutron couplings, geff is rescaled by the respective nucleon contributions ξP
and ξN to the total nuclear spin to get the final exclusions for gaPP = geff/ξP and
gaNN = geff/ξN . The values for 3He of the nuclear content are ξN and ξP are calcu-
lated by using by using the Full-scale shell model, according to Ref. [40]. Table 1 shows
the values for the nuclear contents and the gyromagnetic ratios γN and γe, among
other relevant parameters.

The electron-coupling frequency response of the setup depends on the effect of the
magnetic shield. While the effect of the shield on the ALP field itself can be neglected,
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the electron spins in the ferromagnetic shield “see” the exotic field effectively as a weak
magnetic field. The shield generates an actual magnetic field in its inner volume to
compensate. Therefore within the shielded volume, we have both the ALP field and
the real magnetic field produced by the shield [46].

The frequency-dependent response of the comagnetometer to this combination of
fields is discussed in Sec. 3.5. Below, the Larmor precession frequency of 3He (≈ 3
Hz) the comagnetometer is, by design, insensitive to magnetic fields and its frequency
response to the ALP field [29] is the same as the nuclear frequency response but
rescaled by the gyromagnetic ratio of the electron gaee = geffγN/γe.

To compute upper limits on the ALP-coupling strength, the statistical proper-
ties of the technical noise distribution and the distribution of ALP DM signatures in
the signal estimator S(ω) have to be considered. The ALP DM signal distribution
Sgeff(ω), given an effective coupling geff, is obtained by performing Monte Carlo simu-
lations based on Eq. 12. It accounts for the stochastic properties of ALP DM (Sec. 2.1)
according to Eq. 9.

We use the Confidence Levels (CLs) method [47], commonly used in new particle
searches since Ref. [48] to determine the limits on the coupling strength geff. If the
measured value S(ω) is purely due to noise, it can be represented by a random number
Xn drawn from a non-central χ2 distribution with a scale parameter determined by
the expected value based on the neighbouring points (1/f fit for frequencies below
0.1 Hz and moving average for frequencies above). The potential contribution to S(ω)
from an ALP DM signal can also be represented by a random number accounting
for its stochastic nature. We compute this with Monte Carlo simulations and scale
the ALP DM distribution with the interaction strength geff. Finally, we add the noise
distribution to the signal distribution and draw from the combined distribution a
random number XS+n.

A certain value of geff is excluded with CL = 95% at frequency ω when

P(XS+n ≤ S(ω))

P(Xn ≤ S(ω))
≤ 1− CL = 0.05 , (13)

where P indicates the probability. The condition described by Eq. 13 means that for
the excluded value of geff, there is only a 5% relative probability that an ALP DM
signal contributes to the measured value of S(ω).

The sidereal frequency bin at ωE is used to expand the search to frequencies below
10−5 Hz. Due to constraints on ALP DM density below ma = 10−22 eV/c2 [12], the
exclusion from the sidereal frequency bin is limited to the range from 2.4× 10−8 Hz up
to the sidereal frequency ωE/2π ≈ 1.1× 10−5 Hz. In this range, the field is considered
nearly constant (ωa ≈ 0). The derivation of the signal model in this regime, as well
as for the intermediate regime, is shown in Sec. 3.4.

For frequencies around 10−1 Hz, the total measurement time is on the order of
the ALP field coherence time τωa . The ALP oscillation is coherent for measurement
times Tτωa/2.5 [36, 41]. In particular, for frequencies wa/2π5× 10−2 Hz the ALP
field is not coherent over the entire measurement time (T = 92 days). Therefore, for
frequencies above 5 × 10−2 Hz, we weaken our estimated constraints on the coupling
constants by

√
T/τωa to account for the incoherent averaging, as discussed in Ref. [11].
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We also consider that over several coherence times the stochastic amplitudes [αx,
αy, and αz in Eq. 9] will change. When calculating Sgeff(ω) with MC simulations, we
average the stochastic amplitudes over the number of coherence times during the total
measurement time.

The final results of this work are constraints on proton, neutron, and electron ALP
couplings gaNN , gaPP and gaee, respectively. The excluded parameter space covers
a frequency range from 10−8 to 11.6Hz, corresponding to masses from 10−22 to 4 ×
10−14 eV, a total of nine orders of magnitude. Figures 4, 5, and 6 show the constrained
parameter space in the context of previous laboratory searches. We plot the constraints
smoothed with a moving average to guide the eye (mean limits). The scatter of the
constraint data is similar to that in Fig. 2. In the mass range between 1.2× 10−17 and
4× 10−17 eV, the exclusion improves previous constraints by 3-4 orders of magnitude
in gaNN and gaPP . The constraints on gaee improve direct DM search constraint by
up to one order of magnitude and confirm the exclusions from solar axions searches
and stellar physics.

Note that we do not include the results of Ref. [45] in Figs. 4 and 6. Reference
[45] presented a re-analysis of the comagnetometer data from the Princeton group
acquired in three different experiments [49–51]. More recently, the Princeton group
published their own re-analysis of their data [30], which notes critical issues in the
interpretation of their data not accounted for in Ref. [45]. We regard the Princeton
analysis as the definitive interpretation of the data.

Both comagnetometers in Mainz and Kraków are part of the Advanced GNOME
experiment [52]. With additional comagnetometers currently in development, the net-
work is set to expand, significantly enhancing its sensitivity to both ALP DM and
transient events in future science runs.

At the same time, this experiment is part of the CASPEr family of experiments
[44, 53], significantly improving previous CASPEr results (up to seven orders of
magnitude) while also extending the covered mass range, see Figs. 4 and 5.
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Fig. 4 Exclusion plot for the neutron coupling (mean limits). Other laboratory (solid lines) and
astrophysical (dashed lines) constraints are shown for reference and extracted from [54]: CASPEr-
ZULF [44, 53], K-3He [30, 51], nEDM [55], PSI HgM [56], SNO [57], NASDUCK [58], Hefei 129Xe
[59], ChangE [31], and neutron-star cooling [60].
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Fig. 5 Exclusion plot for the proton coupling (mean limits). Other laboratory (solid lines) and
astrophysical (dashed lines) constraints are shown for reference and extracted from [54]: CASPEr-
ZULF [44, 53], ChangE [31], K-3He (rescaled from gaNN constraints) [30] and neutron-star cooling
[60].
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Fig. 6 Exclusion plot for the electron coupling (mean limits). Other laboratory (solid lines) and
astrophysical (dashed lines) constraints are shown for reference and extracted from [54]: Electron
g − 2 [61], Torsion pendulum [62, 63], K-3He [30], XENONnT (Solar Axions) [64], Solar neutrinos
[65], and red giant branch [66].

3 Methods

3.1 Experimental setup
The interferometer is composed of two self-compensating comagnetometers located
about 1000 km apart: one in Mainz, Germany and the other in Kraków, Poland. The
two self-compensating comagnetometers are similar to that reported in Refs. [27, 29].
At the core of the Mainz (Kraków) comagnetometer system is a spherical cell heated
to about 180◦C and mounted inside a four-layer magnetic shield. The cell is filled with
3 amg of 3He and 50 Torr of N2 and loaded with a drop of an alkali-metal mixture with
1% 87Rb and 99% natural-abundance K (molar fractions). Spins are optically pumped
with a 30mW/cm2 (50mW/cm2) circularly-polarized light tuned to the center of the
Rb D1 (D2) line. The readout is realized by monitoring the polarization rotation of
a ∼ 15mW/cm2 (1mW/cm2) linearly-polarized light detuned about 0.5 nm from the
K D1 line. To reduce the influence of the magnetic-field noise at low frequencies, the
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comagnetometers are operated in the self-compensating regime [25]. To operate in
this regime, a Bz (compensation) field of about 100 nT (50 nT) is applied in Mainz
(Kraków). In the Mainz comagnetometer, we modulate the Bx field with a 80 Hz sine
wave. The signal demodulated at that frequency exhibits a resonance that is used to
lock the system to the compensation point and therefore follows slow drifts of the
equilibrium compensation field [27]. The sensitivity of both comagnetometers to exotic
nucleon couplings is estimated with a daily (every 25 h) calibration pulse according to
the calibration procedure described in Ref. [29]. In the Kraków comagnetometer, the
drifts from the compensation point are corrected depending on demand after applying
the calibration pulse (see, for example, two groups of fitted values of ωe and ωHe

in Fig. 7, corresponding to two time-separated datasets), while there is no such a
correction procedure in Mainz. The response to the calibration pulse is fitted with
such parameters as the amplitude of the response that relates the voltage output to
pseudo-magnetic fields, the detuning from the compensation point ∆Bz, the Larmor
frequency of both electron spin ωe, and 3He nuclear spin ωn and the relaxation rate
of electrons Re (at the current stage of the work, nuclear relaxation Rn is ignored).
Figure 7 summarizes the fit parameters for all 25 h datasets. As shown, there is little
variance in the parameters during the whole run. The detuning from the compensation
point ∆Bz remains below 5 nT, which is within 5% (10 %) of to the leading field
∼ 100nT (∼ 50 nT) in Mainz (Kraków). The fitted parameters encode the effects of
ambient drifts of the environment, such as temperature and external magnetic field,
that affect the comagnetometer sensitivity. By recalibrating every 25 h the effects
of such drifts on the low-frequency noisefloor of the comagnetometer are taken into
account. A detailed discussion of the setup stability on shorter time scales is provided
in Chapter 6 of Ref. [16]. The low-frequency calibration factor for Mainz and Kraków
are displayed in Fig. 7.

3.2 Weights of the ALP signal estimator S(ω)

The weights used in the signal estimator [see Eqs. 11 and 12] are defined in the
following way

aM± =
sin θM
(σM

A±
)2

,

aK± =
sin θK
(σK

A±
)2

,

bM =
2 cos θM
(σM

|A|2)
2
≈ 0 ,

bK =
2 cos θK
(σK

|A|2)
2
,

bK+M
± =

2

(σK+M
|A±|2 )

2
,

(14)
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Fig. 7 Comagnetometer calibration parameters. Top: summary of the frequency-response-fit results
used for sensor calibration in Mainz and Kraków: response function amplitude A, detuning from the
compensation point ∆Bz , alkali-metal and noble gas Larmor frequencies ωe and ωn, alkali-metal
polarization relaxation rate Re (divided by 20 only for the better visualization with other parameters).
The fit parameters are described in detail in Ref. [29]. Horizontal bars designate the median values
of parameters and the shaded regions extend to the first quartiles. Bottom: low frequency (DC)
calibration factor changes over the measurement timespan.

where ai± and bi± are the weights with ± designating the higher (+) and lower (−)
frequency sideband and index i = M,K,K +M indicates the Mainz, Kraków, and
combined signal, respectively. The σA (σ|A|2) represents the standard deviation of the
Mainz and Kraków amplitudes (power) in the frequency bin of interest. For the inter-
fered sidebands, the weights are resulting from error propagation of bK+M

± according
to Eq. 11. The factor 2 in bM , bK and bK+M

± is given by the expected ALP DM signal
in the carrier being twice the sidebands [Eq. 9].

3.3 Noise distribution and signal insertion demonstration
In order to derive the global threshold and the limits, it is important to understand
the expected distribution of the signal estimator S(ω). The signal power estimator
S2(ω) is a sum of six squares of normally-distributed numbers: the real and imag-
inary Fourier coefficients from three frequency bins. However, to compare noise at
different frequencies, we normalize (“whiten”) each bin by the estimated mean noise,
fit(ω). Note that the expected value of the noise is proportional to the standard
deviation of S(ω), namely ∆S(ω). The signal estimator excess square S2(ω)/∆S2(ω)

follows a non-central χ2-distribution, defined as Z =
∑N

n=1 X
2
n, where {Xn} is a set

of normally distributed random numbers with different means and same variance.
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From propagation of errors, we have that ∆S2(ω) = 2S(ω)∆S(ω). As S(ω)/∆S(ω) =
2S2(ω)/∆S2(ω), they both follow the same distribution. This is also the case for
S(ω)/fit(ω) ∼ S(ω)/∆S(ω), which is the estimator used to calculate the global thresh-
old and the limits. The fitted non-central χ2 distribution reproduces the histogram of
S(ω)/fit(ω), especially its tail, which is critical for claiming detection, see Fig. 8.
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Fig. 8 Histogram of the normalized signal estimator S(ω)/fit(ω). It is obtained by dividing the signal
estimator S(ω) to the expected noise, fit(ω). The global threshold at each frequency is determined by
fitting the normalized signal estimator with a non-central χ2 distribution with six degrees of freedom.
This enables the calculation of the limits according to Eq. 13. Note that the y-axis is in logarithmic
scale to show the tail of the distribution in more details.

Let us now consider the modification of the distribution induced by an ALP DM
signal. Both noise and ALP DM signal are expected to have the same distribution:
Gaussian variables in both Fourier quadratures of the raw Fourier spectrum (before
combining the Mainz and Kraków carrier and sidebands). We inject the ALP DM
signal in the raw Fourier spectrum as a normally-distributed random variable and
then the data are combined to obtain the signal estimator S(ω) [see Eqs. 11 and 12].

Figure 9 shows the distribution of S(ω/2π = 11.1mHz) with an injected ALP DM
signal for different coupling strengths geff computed according to Eq. 9. To sample the
stochastic ALP parameter space, we injected 106 different sets of random amplitudes
αi and phases ϕi. The resulting distributions are the sum of the noise and ALP signal
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distributions. As shown, increasing geff increases the mean and the variance of the
distribution, which has to be taken into account when setting limits.
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Fig. 9 Insertion of a signal at a frequency bin situated at around 11.1 mHz. We show the probability
distribution function (p.d.f.) of the signal amplitude assuming three different effective couplings geff.
The shape of both noise and signal are the same, since they come from the same distribution. By
changing the inserted effective coupling geff, S(ω) reaches above the detection threshold at this
frequency. Due to the measurement time being shorter than the coherence time, this distribution is
only sampled once, so it is possible that even for a large coupling strength the amplitude might still
be below the threshold.

3.4 Derivation of the ALP signal in the ultra-low oscillating
regime ωa ≪ ωE

Consider a single station and a quasi-constant oscillating ALP field at ωa ≪ ωE. The
expected signal, defined in Eq. 8, becomes (ignoring the constant terms)

lim
ωa→0

∇a(t) · m̂(t) = sin θ
{
αx cosϕx sin(ωEt+ ϕE)

+αy cosϕy cos(ωEt+ ϕE)
}
.

(15)
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Therefore, the oscillating signal expected in the sensor is driven only by the rotation
of Earth at ωE with an amplitude

AωE = geff sin θ
√
(αx cosϕx)2 + (αy cosϕy)2 . (16)

In contrast to the case of ωa > ωE [Eq. 10], the ALP DM signal amplitude explicitly
depends on the random phases ϕx and ϕy. In this regime, where ωa ≈ 0 there is a
probability of measuring near a zero crossing of the oscillation (when AωE ≈ 0).

We want to account for the reduction of signal amplitude due to sampling a frac-
tion of the oscillation, when 0 < ωa < 1/(2πT ), with T = 92days is the total period
when the measurements took place. Here, some of the ALP DM oscillation is still mea-
sured. We perform Monte Carlo simulations of the integrated power of the respective
oscillation fractions. We define this factor as

κ2(ωa, ϕx, ϕy) =

∫ T

0

dt
α2
x cos

2(ωat+ ϕx) + α2
y cos

2(ωat+ ϕy)

T (α2
x + α2

y)/2
, (17)

where ϕx and ϕy are uniformly distributed phases between (0,2π]. They are sampled
in a Monte Carlo procedure to estimate the distribution of κ for a given ωa. The
constraints at a frequency ωa < ωE are given by the product of κ(ωa, ϕx, ϕy) and the
signal distribution at ωE. Then, the limits are calculated by taking a 95% C.L. with
the CLs method.

Fig. 10 Left: 95% Confidence Level on κ in function of the ALP Compton frequency. The factor κ
represents the reduction in sensitivity to an ALP oscillation when searching via the Earth modulation
of the field and accounts for the random phase of the ALP field. It also reduces the sensitivity of the set
limits accordingly. It reaches a minimum of 0.3. The black dashed line represents a κ factor of 1. Right:
Comagnetometer frequency response to exotic electronic perturbations. Different shielding scenarios
are shown in Mainz (top) and Kraków (bottom): unshielded (dashed), 50% shielded (dotted), fully
shielded (dash-dotted). The neutron coupling frequency response (full line) is shown for reference.

Figure 10 (left) represents the 95% C.L. of the factor κ depending on the ALP
frequency.
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3.5 Comagnetometer response to exotic electron interaction
As explicitly shown in Ref. [29], the direct coupling of the ALP DM with electrons
results in a frequency response that is significantly different from those of neutrons
and protons. To accurately estimate the response of the system, one has to consider all
possible manifestations of the ALP-electron interaction. The comagnetometer vapor
cell is surrounded by a mu-metal shield that cancels the external magnetic fields.
However, due to the electron-based mechanism of magnetic shielding, the mu-metal
also responds to an exotic electron interaction and induces a “compensating” magnetic
field inside the shield (the response of the shield in the case of an exotic electron
perturbation has been discussed in Ref. [46]). For the purpose of searching for ALP-
electron coupling in the analyzed frequency range, we assume that the ALP-electron
shielding factor is of the order of the magnetic shielding factor.

The ALP-electron interaction for a comagnetometer and a mu-metal shield man-
ifests in the following way. The shield generates an opposing real magnetic field as a
response to the applied exotic effective field at the sensor position. For a comagnetome-
ter inside the shield, the two fields are superimposed. The electron is influenced by
both opposing (magnetic and exotic) fields such that the perturbation of the electron,
and consequently its response, is canceled. However, the magnetic field generated by
the shield is picked up by the 3He nuclear spins, which do not directly respond to the
ALP electron interaction. Hence, for 100% shielding (i.e., when the induced magnetic
field is equal and opposite to the effective exotic field), the frequency response has
the same shape as the comagnetometer response to exotic nuclear spin interactions.
It is rescaled by the response of the electrons in the shield to the ALP interaction,
which is assumed to be flat in the frequency range of interest, effectively attenuating
the response by factor γN/γe. This is the scenario we assume when setting the limits
in Fig. 6.

In general, the nuclear and electron spin perturbation in the comagnetometer is dif-
ferent for arbitrary shielding factors and then the self-compensating mechanism would
not apply. However, an interesting case is when the shield responds only at a 50%
level to the exotic electron coupling. In the framework of Ref. [28], this corresponds to
αe = 0.5 and αn = −0.5. In this case, although the magnetic and exotic interactions
are equal in strength, they have opposing directions and hence the comagnetome-
ter remains sensitive to the electron exotic interaction. The shape of the frequency
response is a combination of the electron and nuclear spin responses.

Figure 10 (right) shows the comagnetometer response for three different shielding
scenarios. They converge at frequencies below the nuclear Larmor frequency (∼ 3Hz),
since the nuclear spin dominates the dynamics in this regime. Thus, the limits on
ALP-electron coupling of this work in this frequency range are almost invariant for any
shielding. However, for searches beyond 11.6 Hz, the response changes significantly. For
high frequencies (∼ 100Hz), the unshielded electron response is greater compared to
the fully shielded response and a detailed shielding model should be considered while
setting limits. For reference, the nuclear spin response to exotic neutron interactions
is also displayed in Fig. 10.
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Symbol Name Value Source

ξN neutron spin content in 3He 0.87 [40]
ξP proton spin content in 3He 0.027 [40]
γN gyromagnetic ratio of 3He −32.43 MHz/T [67]
γe effective gyromagnetic ratio of K −5.38 GHz/T [68]
ρDM local DM energy density 0.4 GeV/cm3 [33]
v0 virial DM velocity 220 km/s
vE velocity of Earth in galactic rest frame 233 km/s
ωE/2π Earth sidereal frequency 11.6 µHz
θM Mainz sensor polar angle 90± 1◦

θK Kraków sensor polar angle 50± 1◦

Table 1 Summary of constants used in the data analysis. Effective
gyromagnetic ratio of K atoms γe estimated for 39K (I = 3/2) in SERF regime
taking into account slowing down factor polarization level of 50% [68]. We denote
polar angle as the angle of sensitive axis relative to the rotation axis of the Earth.

3.6 Parameter table

4 Data availability
The calibrated data for neutron interactions from Mainz and Kraków comagnetome-
ters are publicly available in https://doi.org/10.6084/m9.figshare.28902860.

5 Code availability
The code that support the plots in this paper are available from the corresponding
authors upon request.
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