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Rayleigh-Bloch waves are guided acoustic waves propagating along a periodic line of inclusions
placed inside an open, infinite medium. Below the sound cone, they are transversely evanescent on
both sides of the line of inclusions. Guidance is then achieved without any cladding surrounding
the segmented core. Inclusions usually impose definite boundary conditions, resulting in a single
guided band. We consider instead the case of permeable, slow inclusions inside a fast medium.
Introducing the concept of guided quasi-normal modes, we obtain the complex dispersion relation
taking into account radiation at infinity. We thus show that multiple bands of leaky Rayleigh-Bloch
waves appear and that guided bound states in the continuum arise as a result of the combination
of symmetry and periodicity.

I. INTRODUCTION

Rayleigh-Bloch (RB) waves are waves guided along a
periodic chain of scatterers or inclusions inside an open,
infinite, host medium (Figure 1a) [1]. The significance of
such an arrangement is that the chain acts as a guide
and confines waves in space even though there is no
physical boundary to contain them. In essence, the dis-
persion of Rayleigh-Bloch waves is not determined by
boundary conditions but by the periodic distribution
of inclusions. Denoting x the periodic axis (Figure 1),
guided modes of propagation are Bloch waves of the
form p(x, y) exp(ı(ωt− kx)), with k the Bloch wavenum-
ber and p(x, y) a wave field periodic along axis x that
decays exponentially in the positive and negative y di-
rection. Strictly speaking, the dispersion of Rayleigh-
Bloch waves lies only under the sound cone, the region
of dispersion space for which waves have a phase velocity
smaller than that of any bulk wave in the host medium.
Rayleigh-Bloch waves have been discussed for many dif-
ferent physical systems, including surface water waves
[2–5], thin elastic plates [6] and one-dimensional infinite
array of point masses on an infinite, thin elastic plate [7],
whispering gallery modes [8], lines of acoustic resonators
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FIG. 1. Waveguide composed of a line of periodic inclusions in
an open, infinite, host medium. The central portion shows the
primitive unit-cell with lattice constant a, terminated at top
and bottom by perfectly matched layers (PML). The diameter
of cylindrical inclusions is d = 0.6a.

inside a thick plate [9], and acoustic diffraction gratings
in air [10].
There have been several discussions of the relation of

Rayleigh-Bloch waves to the trapped modes that ap-
pear due to rigid obstacles placed symmetrically in be-
tween parallel walls having either Neumann or Dirichlet
conditions [3, 11–13]. The obvious difference is indeed
the boundary condition at infinity being replaced by a
boundary condition at a finite distance, hence the sim-
ilarity remains limited to the perfectly evanescent RB
waves whose dispersion lies below the sound cone. The
two-dimensional problem of acoustic scattering of an inci-
dent plane wave by a semi-infinite array of either rigid or
soft circular scatterers [1, 2, 14–16] reveals the existence
of complex eigenfrequencies, corresponding to leaky, ra-
diating wave solutions, whose dispersion extends inside
the sound cone [17]. It is the purpose of this paper to
show that leaky Rayleigh-Bloch waves can be guided in-
side the sound cone and that guided bound states in the
continuum arise, as a result of the combination of symme-
try and periodicity. The concept of guided quasi-normal
modes (QNMs) is proposed to obtain the complex dis-
persion relation of leaky Rayleigh-Bloch waves [18] and
the case of slow inclusions placed inside a fast medium is
shown to be of particular interest.

II. VELOCITY OR IMPEDANCE CONTRAST?

We consider in the following that the time-harmonic
wave field satisfies a scalar Helmholtz equation, which
includes the case of acoustic waves and of surface waves
on water, for instance. It is hence representative of the
simplest wave models and could be extended to vector
elastic waves in the future. For concreteness of the dis-
cussion, we use acoustic notations in the following. The
wave equation is written

−(∇− ıkx̂) ·
(
ρ̄−1(∇− ıkx̂)p

)
− ω2B̄−1p = σ (1)

with ρ̄ = ρ/ρ0 the mass density relative to the host
medium; similarly B̄ = B/B0 is the relative elastic
modulus. Both dimensionless quantities are functions of
space coordinates (Figure 1). σ is a body source term.
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FIG. 2. Maps of the dispersion relation of Rayleigh-Bloch waves, computed using the resolvent band structure method [17].
The color scale is for the local density of states (LDOS) estimated from the response to a stochastic source term. Panels are
for (a) hollow inclusions satisfying a Neumann boundary condition along their edge, (b) inclusions with ρ̄ = B̄ = 100 (v̄ = 1
and Z̄ = 100), (c) inclusions with ρ̄ = B̄ = 2 (v̄ = 1 and Z̄ = 2), (d) inclusions with ρ̄ = 1 and B̄ = 1/4 (v̄ = 1/2 and Z̄ = 1/2),
(e) inclusions with ρ̄ = 2 and B̄ = 1/2 (v̄ = 1/2 and Z̄ = 1), (f) inclusions with ρ̄ = 4 and B̄ = 1 (v̄ = 1/2 and Z̄ = 2).

The wave field has the dependence p(x, y) exp(ı(ωt−kx)),
with p(x, y) periodic along axis x and the primitive unit
cell depicted in Figure 1.

Rayleigh-Bloch waves are most often considered in the
case of hard-wall boundaries inside a fluid medium. In
this case a Neumann boundary condition along the edge
of the inclusion applies (vanishing normal derivative of
the wave field; ∂np = 0); alternatively the Dirichlet
boundary condition can also be considered (vanishing
wave field; p = 0). Figure 2a displays the dispersion re-
lation computed using the resolvent formalism [17]. The
diagram shows the local density of states (LDOS) esti-
mated from the response to a stochastic source σ in Eq.
(1), for every point (k, ω) in dispersion space. In or-
der to include scaling effects, the reduced wavenumber
k̄ = ka/(2π) and the reduced frequency ω̄ = ωa/(2πv0)

are used, with v0 =
√

B0/ρ0 the velocity in the host
medium. As a note, in the different panels of Fig. 2 there
is a slight asymmetry in LDOS values with respect to the
X point; this spurious imbalance in the response results
numerically from the limited resolution of the finite ele-
ment mesh used. Below the sound cone, i.e. within the
non-radiative region of dispersion space, there is a single
band giving the dispersion relation for Rayleigh-Bloch
waves, for hollow inclusions with a hard-wall boundary.
This is the usual solution considered in most papers on
RB waves. The single band is folded at the X point of the
Brillouin zone because of periodicity. A Bragg band gap
opens for frequencies above it, but the upper band that

closes this band gap is not apparent. We show in the
following that it actually locates inside the sound cone
and is strongly subject to radiation loss, so that it does
not leave a visible trace in the resolvent band structure.

We now consider that the inclusions are filled with
another fluid instead of being hollow. Heuristically, it
can be understood that letting the dimensionless mass
density of the inclusion tend to infinity results in a van-
ishing normal gradient of the wavefield along the inclu-
sion boundary [19]. Hence, we can consider a fictitious
medium such that both ρ̄ and B̄ become very large in the
same proportion. As a result the dimensionless acoustic

velocity v̄ =
√

B̄/ρ̄ = 1 remains constant whereas the

dimensionless acoustic impedance Z̄ =
√
ρ̄B̄ increases in

proportion. It can be checked that the dispersion rela-
tion for ρ̄ = 100 and B̄ = 100 in Figure 2b is actually
very close to the hollow inclusion case of Figure 2a. It
is further instructive to test a case with ρ̄ = B̄ not too
large, in which case there is no velocity contrast but a
moderate impedance contrast (v̄ = 1 and Z̄ = 2; see Fig.
2c). There is still a single band, but the Bragg band gap
tends to close toward the crossing point of right and left
sound lines. It is generally observed that the dispersion
of Rayleigh-Bloch waves follows closely the sound lines
when v̄ = 1 and that the Bragg opening under the sound
cone scales with the impedance contrast.

The situation changes if the inclusions are allowed to
be slower than the host medium, in which case the dis-
persion of Rayleigh-Bloch waves shifts down in frequency

https://doi.org/10.1103/195c-gy6f
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FIG. 3. Complex dispersion relation for leaky Rayleigh-Bloch waves treated as guided quasi-normal modes. The color scale is
for the inverse of the quality factor. (a) For hollow inclusions (same conditions as in Fig. 2a) the first band is guided but the
second band, extending inside the sound cone, is always strongly leaky. (b) For filled inclusions with ρ̄ = 1 and B̄ = 1/4 (same
conditions as in Fig. 2d) the dispersion of the second band is lossless at both the X and the Γ points. The latter solution is a
bound state in the continuum (BIC) whereas the former is a guided wave. The real part of the pressure field of guided QNM
solutions is shown within the primitive unit-cell at high-symmetry points.

as they localize more inside the inclusions (see Fig. 2d-f).
Significantly, the second band above the Bragg band gap
now appears clearly and extends inside the sound cone,
i.e. inside the radiative region of dispersion space. The
Bragg band gap itself exists even if the impedance con-
trast vanishes (case of Fig. 2e) and its opening is favored
for Z̄ < 1 (Fig. 2d) as compared to the inverse setting
Z̄ > 1 (Fig. 2f).

From the above observations, it can be concluded that
the point in dispersion space around which the Bragg
band gap opens for Rayleigh-Bloch waves can be moved
down under the sound cone using slow inclusions (v̄ < 1).
This results in the second or folded band to be much less
leaky than in the usual case of hollow inclusions. The
opening of the Bragg band gap is then favored by de-
creasing the relative acoustic impedance of the inclusions
(Z̄ < 1).

III. COMPLEX DISPERSION RELATION

We now attempt to describe leaky RB waves that are
partially guided along the chain of inclusions. The con-
cept of quasi-normal mode (QNM) [20, 21] is used to
quantify the effect of radiation loss of a phononic res-
onator in an open medium [22]. For a QNM with a com-
plex frequency ω, in particular, the quality factor of the
resonance is defined as Q = ℜ(ω)/2ℑ(ω). Bloch waves
are the eigenfunctions of a periodic, lossless medium and
the band structure is composed of their dispersion re-
lation. Here, we describe damped resonances in the
resolvent band structure as quasi-normal Bloch waves,
their complex eigenfrequencies defining complex bands
ωn(k). The practical algorithm described in Ref. [22]
to obtain a single QNM is here modified to track the
complex dispersion relation of guided QNMs as a func-
tion of the wavenumber. Consider a discrete sequence
(ki, i = 0 · · ·m) sampling the k axis. Starting from a

given point (ki, ωi) of dispersion space, the iteration con-
verges fast toward the closest QNM at fixed ki, yielding
an estimate of the complex frequency ωn(ki) as well as
of the field pn(x; ki) of the QNM of interest. If i = 0
the starting frequency has to be guessed from the re-
solvent band structure and a stochastic source is chosen
for initialization. For step i > 0, the starting frequency
and the QNM candidate can be chosen as ωn(ki−1) and
pn(x; ki−1), and the iteration will converge to ωn(ki) and
pn(x; ki). Repeating this elementary step, the complex
band is easily and efficiently obtained, since each itera-
tion requires the solution of only a few linear systems.
Considering the case of Rayleigh-Bloch waves for hol-

low inclusions in Fig. 2a, the complex band tracking
algorithm readily produces the complex dispersion rela-
tion displayed in Fig. 3a. The first band, that was visible
in the resolvent band structure, is lossless (purely real)
since it belongs to guided modes under the sound cone. It
is seen that the QNM tracking algorithm does not func-
tion very well at low frequencies and low wavenumbers,
since the solution extends laterally very widely inside the
PML. The QNM can in this case not be clearly separated
from PML eigenmodes and can be lost by the tracking
algorithm. Note that this limitation does not affect the
computation of the resolvent band structure, anyway.
The second complex band has a low quality factor for
all wavenumbers and could not be seen in the resolvent
band structure, since its response is very low. Moving
the excitation frequency to the complex plane however
makes it apparent.
Considering the slow inclusion case of Fig. 2d, the

same procedure leads to the complex dispersion relation
displayed in Fig. 3b. The first complex band is similar
to the one in Fig. 3a, though the wave field localizes
on the inclusions rather than in between them. Signifi-
cantly, since the second complex band has moved down
in frequency, it first appears as lossless after the folding
at the X point of the Brillouin zone (ka/(2π) = 0.5) but
becomes lossy as it enters the sound cone. Surprisingly,

https://doi.org/10.1103/195c-gy6f


Phys. Rev. B 111, L220101 https://doi.org/10.1103/195c-gy6f 4

a b

1

2

3
4

5

1 233 4 5

XG c

4

FIG. 4. Dispersion relation of Rayleigh-Bloch waves for inclusions with ρ̄ = 1 and B̄ = 1/9 (v̄ = 1/3 and Z̄ = 1/3). (a)
Map of the dispersion relation computed using the resolvent band structure method [17]. The color scale is for the local
density of states (LDOS) estimated from the response to a stochastic source term. (b) Complex dispersion relation for leaky
Rayleigh-Bloch waves treated as guided quasi-normal modes. The color scale is for the inverse of the quality factor. The real
part of the pressure field of guided QNM solutions is shown within the primitive unit-cell at high-symmetry points. Examples
of bound states in the continuum (BIC) are shown for bands 3 and 5 at the Γ point. (c) The Rayleigh-Bloch wave of band 4
at ka/(2π) ≈ 0.236 inside the first Brillouin zone is also a BIC.
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FIG. 5. Dispersion relation of Rayleigh-Bloch waves for inclusions with ρ̄ = 1 and B̄ = 1/16 (v̄ = 1/4 and Z̄ = 1/4).
(a) Map of the dispersion relation computed using the resolvent band structure method [17]. The color scale is for the local
density of states (LDOS) estimated from the response to a stochastic source term. (b) Complex dispersion relation for leaky
Rayleigh-Bloch waves treated as guided quasi-normal modes. The color scale is for the inverse of the quality factor. The real
part of the pressure field of guided QNM solutions is shown within the primitive unit-cell at high-symmetry points. Examples
of bound states in the continuum (BIC) are shown for bands 3 and 5 at the Γ point, and band 8 at the X point.

loss tends to 0 (Q −→ ∞) at the Γ point (ka/(2π) = 0)
for this second band. At this point, the QN Bloch wave
becomes a bound state in the continuum (BIC) [23–25],
since it it lossless although its dispersion lies inside the
sound cone. The BIC property here results from a com-
bination of symmetry and periodicity, as the QN Bloch
wave is a collective vibration state of the periodic, infinite
chain of inclusions. This is in contrast to band folding
considered as the BIC generation mechanism [26].

We next increase the material contrast in Fig. 4. The
frequency decrease of the dispersion of QN Bloch waves
is stronger and a total of 5 bands is observed in the fre-
quency range of interest, the first three of them being
guided Rayleigh-Bloch waves, i.e. extending below the
sound cone. Each new band is clearly associated with a
particular resonance of the inclusion and has a definite
symmetry, in particular dictated by the azimuthal num-
ber m of isolated QNMs discussed in Appendix A. Band
3 (m = 1) and band 5 (m = 2) both hold a BIC at the

Γ point. Surprisingly, another BIC occurs for band 4 for
a k value in between high symmetry points Γ and X, at
ka/(2π) ≈ 0.236. As Fig. 4c shows, m = 2 for this BIC
also.
Increasing again the material contrast in Fig. 5, the

overall trends are confirmed. There are now 8 com-
plex bands, with the additional appearance of a m = 3
resonance leading to a BIC at both the Γ and the X
point (band 8). Band 4 again holds a BIC for a k
value in between high symmetry points Γ and X, at
ka/(2π) ≈ 0.172, again with m = 2. The correspond-
ing modal shape, not shown in Fig. 5, is very similar to
the one in Fig. 4c.

IV. CONCLUSION

The complex dispersion relation of Rayleigh-Bloch
waves has been discussed for both the traditional case

https://doi.org/10.1103/195c-gy6f
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of hollow inclusions and the case of slow inclusions in a
homogeneous propagation medium. The introduction of
slow inclusions, in particular, results in the appearance of
localized resonances whose frequencies down-shift when
velocity decreases, leading to the formation of additional
Rayleigh-Bloch wave bands. The key to the description
of leaky Bloch waves that are partially guided along a pe-
riodic chain of inclusions is here the concept of phononic
quasi-normal modes, that has been extended to include
the case of guided waves. For a fixed real wavenumber,
QNMs have a complex eigenfrequency that can be esti-
mated by a search inside the complex dispersion plane.
As a result, both the eigenmodes and the quality factor
Q of the associated resonance are obtained. Interestingly,
for certain values of the wavenumber and as a result of
its symmetry, a guided QNM can uncouple from bulk ra-
diation modes, allowing to identify it as a bound state in
the continuum (BIC).

The material system considered in the present deriva-
tion – a fluid in a fluid – may seem difficult to realize ex-
perimentally. The reason for this choice was to handle the
Helmholtz equation for scalar waves, one of the simplest
among the class of wave equations. The results discussed
here, however, already apply to the case of pure-shear
out-of-plane elastic waves in solids, for instance, or of
transverse-electric and transverse-magnetic electromag-
netic waves. It remains to extend the exposed method
to vector Rayleigh-Bloch waves in solids and in three di-
mensions, but the concept incidentally shines a new light
on previous experimental [27] and numerical [28] results
for surface acoustic waves (SAW) guided along a chain of
pillars on a substrate.
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Appendix A: QNM symmetry

The numerical observations made in Section III hint
at the importance of quasi-normal mode symmetry.
Rayleigh-Bloch waves, as as particular type of Bloch
waves, are collective, periodic excitations. As such they
convey the symmetry of both the primitive unit-cell and

of the periodic lattice. In this appendix we examine the
symmetry of the former, given here by the symmetry of
the inclusion.
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FIG. 6. Quasi-normal modes of isolated slow inclusions with
diameter d = 0.6a. The labels refer to m and n, the azimuthal
and radial numbers. Quasi-normal modes are computed for
the case ρ̄ = 1, B̄ = 1/16 of Table I and their modulus is
displayed after normalization.

TABLE I. Properties of quasi-normal modes of isolated slow
inclusions with diameter d = 0.6a. m and n are the azimuthal
and radial numbers, respectively.

Contrast mn 00 10 20 01 30

ρ̄ = 1, B̄ = 1/4 ω̄ 0.39 0.59 0.96 − 1.26
Q 1.5 3.4 4.7 − 10.5

ρ̄ = 1, B̄ = 1/9 ω̄ 0.13 0.41 0.65 0.69 0.88
Q 1.6 3.4 16.1 5.1 50.3

ρ̄ = 1, B̄ = 1/16 ω̄ 0.11 0.30 0.49 0.53 0.67
Q 2.0 6.7 30.1 8.5 171.7

Consider a single inclusion embedded in an infinite
surrounding acoustic medium. It support quasi-normal
modes describing vibretions localized around the inclu-
sion but radiating energy away from it. This situation
can be represented numerically using a PML surrounding
completely the inclusion [22]. The first five QNMs that
are found numerically in the frequency range of interest
are displayed in Fig. 6. Considering the central symme-
try of the problem, the acoustic wave equation separates
in polar coordinates (r, θ). As a result, QNMs are in-
dexed by an azimuthal number m and a radial number
n, so that pmn(r, θ) = exp(ımθ)Pn(r). They are doubly-
degenerate if m > 0. The numerical QNM solutions thus
converge to a superposition with azimuthal indices ±m
in this case. The result of the classification of QNMs is
summarized in Table I. Quality factors are either low or
moderate, because of radiation toward infinity, and im-
prove with the azimuthal number. The reduced QNM fre-
quencies are in a clear correspondance with the Rayleigh-
Bloch bands of figures 3b, 4 and 5. The BICs discussed

https://doi.org/10.1103/195c-gy6f
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in section III are found for azimuthal numbers m > 0.
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