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We report a generalized nonlinear Schrödinger equation
simulation model of an extreme learning machine (ELM)
based on optical fiber propagation. Using the MNIST hand-
written digit dataset as a benchmark, we study how accuracy
depends on propagation dynamics, as well as parameters
governing spectral encoding, readout, and noise. For this
dataset and with quantum noise limited input, test accura-
cies of over 91% and 93% are found for propagation in the
anomalous and normal dispersion regimes, respectively. Our
results also suggest that quantum noise on the input pulses
introduces an intrinsic penalty to ELM performance. ©
2025 Optica Publishing Group. All rights, including for text and data
mining (TDM), Artificial Intelligence (AI) training, and similar tech-
nologies, are reserved.
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There is currently intense interest in developing photonic-based
artificial intelligence hardware. Often described as optical neu-
romorphic computing [1,2], experiments have reported photonic
neural networks [3–8], reservoir computers [9–11], and extreme
learning machines (ELMs) [7,12,13]. One specific focus has
been applying nonlinear wave propagation directly as a com-
putational resource [14], and recent experiments have reported
ELM classification based on nonlinear propagation and super-
continuum generation in optical fiber [15–18]. However, while
fiber-based ELM performance has been studied experimentally
over broad parameter ranges [17,18], guidance from a robust
simulation model is clearly needed in order to gain a more
complete picture of such nonlinear wave-based computing.

Here, we report such an end-to-end numerical model of non-
linear fiber propagation in an ELM architecture, where we
analyze handwritten digit classification using the MNIST Digit
dataset of 60,000 training and 10,000 test images. (Supplement 1
shows results for the more complex MNIST Fashion dataset.) We
specifically study how the ELM-based classification accuracy
depends on data encoding, propagation dynamics, and readout,
as well as input noise. Although some parameter dependencies
have been studied experimentally [17–19], simulations provide
significant new insights in evaluating the effect of quantum and

technical noise sources and in exploring different dynamical
regimes.

We begin by describing the overall system in Fig. 1. An ELM
can be considered as a neural network model computing output
Y from input X. An ELM’s ability to compute depends on the
projection of input X into a higher-dimensional space via a non-
linear transformation H = fNL(X), with H considered as a hidden
layer. ELMs are computationally extremely efficient because it is
only the output weights that are trained and, in contrast to deep
neural networks or reservoir computers, they do not involve
backpropagation or recurrence. Specifically, based on a training
dataset H (computed from X) and corresponding target data YT,
the ELM learns a model YT ≈ HWout. Importantly, Wout can be
computed in a single step according to Wout ≈ H† YT, where H†

is the Moore–Penrose pseudoinverse of H. We use pseudoin-
verse computation here because it solves the linear regression
problem directly (minimizing mean squared error between pre-
dicted and target outputs) and does not require case-by-case
optimization across the wide range of parameters that we study.
We discuss the effect of regularization on this regression step
further in Supplement 1.

We now consider how this system is applied to handwrit-
ten digit classification. For each of the 60, 000 MNIST training
images, we perform (i) bicubic downsampling and flattening
from a 28 × 28 image to a length M vector, (ii) encoding of this
vector on the spectral phase (or amplitude) of a femtosecond
input pulse, (iii) propagation of the encoded pulse in optical
fiber, and (iv) readout of output spectra into K spectral bins
after convolution with a Gaussian spectral response function
and addition of a detection noise floor. The downsampling step
accounts for the limited spectral bandwidth available for encod-
ing on typical input pulses, and consistent with what would be
a necessary approach in any practical system, we assume that
spectral measurements are made with a single-shot basis real-
time technique [20]. The underlying idea here is that input pulses
encoded with different images will produce distinguishable out-
put spectra after nonlinear propagation. Since the spectra for
images corresponding to the same digit (0–9) in the training
set will be expected to exhibit high-dimensional similarity in
their structure, a readout step can be trained to identify these
similarities and classify the corresponding digits.
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Fig. 1. Schematic of the supercontinuum ELM model show-
ing the three steps of encoding, generalized nonlinear Schrödinger
equation (GNLSE) propagation, and spectral readout.

Specifically, after propagation and readout, the training
dataset consists of a 60, 000 × K array of spectra, forming the
hidden layer H, where the propagation dynamics emulate the
ELM transformation fNL. The target dataset YT is a 60, 000 × 10
matrix of known digits (using one-hot encoding), and the K × 10
weight matrix Wout is obtained from solving Wout = H†YT using
the Moore–Penrose pseudoinverse algorithm. The model accu-
racy is determined by applying Wout to H obtained for 10,000 test
images not used in training and computing the accuracy com-
paring the ELM predictions and the known test digits. Accuracy
associated with the training data is also typically calculated.

The propagation model is the generalized nonlinear
Schrödinger equation (GNLSE), written in dimensional
form as iAz − 1/2 β2ATT − i/6 β3ATTT + 1/24 β4ATTTT + γ(1 +
iω0 ∂T)(A [R ∗ |A|2]) = 0 [21]. Here, A(z, T) is the complex field
envelope (distance z, comoving time T), βk are the dispersion
coefficients, γ is the nonlinearity coefficient, andω0 is the carrier
frequency. The nonlinear response function in the convolution
term (∗) is R(t) = (1 − fR)δ(t) + fRhR(t), with Raman fraction
fR = 0.18 and hR the experimental Raman response of fused
silica [22]. Input pulse quantum noise is included via a semi-
classical model [22,23] that has been found to yield quantitative
agreement with experiment in reproducing supercontinuum
noise characteristics [24]. We also included a Raman noise
source, but this was found to have negligible influence [22,24].
For anomalous dispersion regime propagation, we consider a
dispersion-shifted fiber with 1546.2 nm zero-dispersion wave-
length. At a pump wavelength of 1550 nm, the parameters are
β2 = −0.12 ps2km−1; β3 = 0.040 ps3km−1; β4 = 0 ps4km−1; and
γ = 10.7 W−1km−1. For normal dispersion regime propagation,
we consider a dispersion-flattened fiber with parameters at 1550
nm: β2 = 0.987 ps2km−1; β3 = 7.31 × 10−3 ps3km−1; β4 = 4.10 ×

10−4 ps4km−1; and γ = 7.5 W−1km−1. These parameters corre-
spond to a commercially available fiber. It is straightforward to
also include higher-order dispersion, but these truncations yield
known characteristic spectral broadening features in both dis-
persion regimes [22]. At the fiber lengths studied, attenuation at
∼0.5% level is neglected. Simulations use a 211 computational
grid, but we can analyze the output spectra during readout using
different numbers of sampling points.

Image information is encoded on the input pulses in the fre-
quency domain on a 30 nm full width at half maximum (FWHM)
second-order supergaussian spectrum centered on 1550 nm.
The FWHM of the corresponding temporal intensity profile
is ∆τ∼ 182 fs FWHM. For a particular image, the downsam-
pled image vector of length M is scaled to a desired phase (or

Fig. 2. Simulated spectral evolution of phase-encoded pulses for
(a) anomalous and (b) normal dispersion regime dynamics.

amplitude) modulation depth ϕmax. A 30 nm bandwidth allows
encoding with 0.3 nm resolution, consistent with commercial
Fourier-domain pulse shaping devices. After encoding, we also
scale the input pulse to a particular energy at which we wish to
study the dynamics.

We first show typical anomalous and normal dispersion
regime spectral evolution in Figs. 2(a) and 2(b). These results
use downsampling to 10 × 10 (M = 100) of one particular
image, followed by phase encoding with modulation depth
ϕmax = 0.25π. The encoding adds a low-amplitude temporal
pedestal at the ∼ −50 dB level, and for small ϕmax, the cor-
responding temporal FWHM ∆τ is unchanged from that of
the unencoded pulse. As a result, it is convenient to scale
the input energy so that the pulse injected in the fiber corre-
sponds to a specified parameter N = (γP0T2

0/|β2 |)
1/2, where time

scale T0 ≈ ∆τ/1.76. N is a characteristic measure of nonlinear
strength, which corresponds to soliton number for anomalous
dispersion. For anomalous dispersion regime propagation as
in Fig. 2(a), input N = 10 corresponds to 20.7 pJ energy and
P0 = 103 W peak power, and we propagate over 70 m. For nor-
mal dispersion regime propagation as in Fig. 2(b), N = 10 yields
P0 = 1215 W peak power and 243 pJ energy, and we propagate
over 40 m. To simulate realistic detection, the output spectrum
is convolved with a 1 nm Gaussian spectral response (see Sup-
plement 1) followed by the addition of a −30 dB random noise
background to model the finite dynamic range of real-time spec-
tral measurements [20]. The −30 dB noise background was
computed relative to the peak of the mean spectral intensity of
the ensemble. To generate training and testing spectra under dif-
ferent conditions, we define a particular parameter set and then
implement these encoding and propagation steps on each of the
70,000 images.

Figures 3 and 4 explore parameter dependencies for anoma-
lous and normal dispersion regime propagation, respectively.
Specifically, Fig. 3 shows results for 10 × 10 downsampling,
phase encoding with ϕmax = 0.25π, and 70 m fiber. Figure 3(a)
shows how training (red) and testing (blue) accuracies vary
with soliton number N over the range of 0.5–13. Figure 3(b)
shows results for fixed N = 10, but for varying fiber lengths.
Test and training results are compared with benchmark linear
regression (green dashed line) based on pseudoinverse computa-
tion without fiber propagation. See Supplement 1 for associated
confusion charts. These plots show the expected decrease in
accuracy between training and testing and also the increase in
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Fig. 3. Anomalous dispersion results. For 10 × 10 downsam-
pling, ϕmax = 0.25π, and 70 m fiber, training (red) and test (blue)
accuracies are shown versus (a) soliton number N and (b) fiber
length. Green dashed line: linear benchmark. (c)–(d) use the same
color code. For N = 10 and 70 m fiber, accuracy is shown: (c) for
different ϕmax and (d) for input downsampling to

√
M ×

√
M. (e)

Test accuracy varying readout bins and convolution bandwidths as
indicated. (f) False color plot of test accuracy dependence on N and
readout bandwidth (around 1550 nm). Dashed line: −20 dB output
bandwidth.

accuracy exceeding 90% with increasing propagation complex-
ity (higher N and longer distance.) The decrease in accuracy seen
in Figs. 3(a) and 3(b) around N = 4 and 10 m, respectively, is
associated with the fact that we are in the onset phase of soliton
fission dynamics (see Supplement 1).

Figures 3(c) and 3(d) study the aspects of input encoding
for N = 10 and 70 m fiber. For example, for 10 × 10 down-
sampling, Fig. 3(c) shows how training (red) and testing (blue)
accuracies depend on modulation depth ϕmax. There is a clear
optimum around ϕmax ∼ 0.25π, and performance away from this
point is degraded. Decreasing accuracy for lower modulation
depth is expected since image information is weakly encoded
and will have a limited effect on propagation. The decrease at
higher modulation depth arises because greater ϕmax increas-
ingly modifies the temporal input pulse, reducing peak power at
the expense of a low-amplitude pedestal. This results in reduced
spectral broadening. In Fig. 3(d), we apply optimal modulation
ϕmax = 0.25π, and we study how training (red) and testing (blue)
accuracies depend on image downsampling, i.e., the length M
vector describing a

√
M ×

√
M image. We see that increasing

resolution yields improved results, but test accuracy approach-
ing 90% can be attained even with only 7 × 7 downsampling,
representing only ∼6% of the pixels in the original image.

The results in Figs. 3(a)–3(d) use readout over the full output
spectrum (2048 points over 1317–1882 nm), convolved with a
1 nm spectral response, and with a −30 dB spectral noise floor.
It is important to consider how readout parameters influence
performance, and these results are shown in Figs. 3(e)–3(f). For
downsampling to 10 × 10, ϕmax = 0.25π, and N = 10, Fig. 3(e)

Fig. 4. Normal dispersion results. For 10 × 10 downsampling,
ϕmax = 0.25π, and 40 m fiber, training (red) and test (blue) accu-
racies are shown versus (a) nonlinear parameter N and (b) fiber
length. Green dashed line: linear benchmark. (c)–(d) use the same
color code. For N = 10 and 40 m fiber.

plots test accuracy reading out the spectrum over the full wave-
length span, but changing the readout sampling density using
different numbers (100–2000) of equispaced bins. We also com-
pare results convolving with three different spectral responses of
FWHM: 1 nm (orange), 2 nm (blue), and 5 nm (purple). Clearly,
a higher sampling density yields improved accuracy, but with
1 nm resolution, ∼90% accuracy can still be approached with
only 700 bins. Figure 3(f) examines how the accuracy depends
on the value of the readout bandwidth with respect to the overall
output spectral bandwidth, using the same 10 × 10 downsam-
pling, ϕmax = 0.25π, and 1 nm convolution. The idea here is to
study whether we need to read out spectral information over the
full bandwidth of the output spectrum, or whether a reduced
readout bandwidth is sufficient. The false color plot shows how
test accuracy varies with readout bandwidth (centered on 1550
nm) while varying N over 6–13. Of course, as N increases, the
bandwidth of the output spectrum will also increase, and this
bandwidth (−20 dB level) is shown as the dashed line in the
figure. It is clear that readout over only a portion of the output
spectra (i.e., left of the dashed line) leads to reduced accuracy,
but once we capture the full output spectral bandwidth (i.e., right
of the dashed line), then accuracy improves (then saturates). This
is consistent with the interpretation that nonlinear propagation
transforms the encoded image information (initially restricted
only to 30 nm around the pump) into the high-dimensional space
associated with the broadened spectrum.

Figures 4(a)–4(f) show results for normal dispersion regime
propagation. The overall trends and dependence on parame-
ters such as N and fiber length are qualitatively alike, although
normal dispersion regime propagation consistently shows ∼3%
improvement in training and testing accuracies. This can be
attributed to the well-known observation of improved noise
characteristics in the normal dispersion regime [21]. However,
for both anomalous and normal dispersion, we anticipate that
accuracy would ultimately degrade for increased power and/or

https://doi.org/10.6084/m9.figshare.29196032
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Fig. 5. Lines: Dependence of ELM test accuracy on multiplica-
tive noise for normal (purple) and anomalous (orange) dispersion
regime propagation. These results include input quantum noise and
a −30 dB readout noise floor. Crosses: ideal accuracies without
any input or readout noise. Green dashed line: linear regression
benchmark.

fiber length as a result of deleterious effects such as incoherent
supercontinuum dynamics and polarization instabilities [21].

The studies in Figs. 3 and 4 were repeated using spectral
amplitude encoding on the input pulses. This involved multiply-
ing the supergaussian input spectrum by an amplitude encoding
mask with variable modulation depth. The general trends and
results (see Supplement 1) were extremely similar to those
obtained with phase encoding in terms of parameter dependence
and classification accuracy.

In Fig. 5, we study the impact of noise on ELM performance
using phase encoding for ϕmax = 0.25π and N = 10. Firstly, we
recall that the results in Figs. 2–4 were obtained with quan-
tum noise on the input pulses and a −30 dB readout noise
background. It is straightforward with simulations to model the
ELM without input quantum noise or a readout noise floor, and
this allows us to study the ideal mathematical properties of the
GNLSE to act as a nonlinear ELM transfer function. These
results are shown as the crosses in Fig. 5 and indicate what
can be considered upper limit ideal test accuracies of 96.7%
and 95.0% for normal and anomalous dispersion regime prop-
agation, respectively. Significantly, the addition of only input
quantum noise (i.e., again with no imposed readout noise floor)
reduces these ideal test accuracies to 94.8% and 91.9%, respec-
tively, an important result that highlights an intrinsic quantum
noise penalty for this class of fiber-based ELM. Of course, the
imposed −30 dB instrumental noise floor on the output spectra
reduces accuracy further, with the corresponding results in this
case ∼93% and ∼91%, respectively, for anomalous and normal
dispersion regime propagation.

As might be expected, any additional input noise degrades
performance. To show this, we apply a simple multiplicative
intensity noise model of the form Ain(T) = A0(T)[1 + α/2 η(T)],
where A0 is the temporal input field after addition of quantum
noise and before spectral encoding. Parameter α corresponds
to an intensity noise fraction, and η(T) is a random variable.
Figure 5 shows results applying this noise on input pulses
with 10 × 10 downsampling, phase encoding, ϕmax = 0.25π, and
N = 10. It is clear that testing accuracy decreases with increasing

noise fraction in both anomalous (orange) and normal (pur-
ple) dispersion regimes. Results are clearly more degraded in
the anomalous dispersion regime, further highlighting the noise
sensitivity of anomalous dispersion regime propagation [21].

The GNLSE model framework is a powerful and flexible tool
to explore nonlinear fiber propagation as applied to ELM sys-
tems and provides important insights for experimental design.
Consistent with recent experiments, our results suggest that
normal dispersion propagation yields improved accuracy and
reduced noise sensitivity, but satisfactory results can still be
obtained with anomalous dispersion regime propagation for suit-
able parameters [15–19]. A further key conclusion is to identify
that input pulse quantum noise will likely impose an intrinsic
penalty for all nonlinear fiber propagation-based ELMs.
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