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SysML v2, BIP, Interaction Modeling

Cyber-physical systems (CPS) require precise interaction modeling and rigorous verification to guarantee
reliability and correctness, particularly in safety-critical systems, where interaction errors such as deadlocks
may lead to critical failures. Although SysML v2 provides expressive modeling capabilities, it lacks explicit
execution semantics for structured interactions. To address this limitation, we propose a structured subset of
SysML v2 to specify interactions at the structural level. These interactions are then mapped to the Behavior,
Interaction, Priority (BIP) framework, which defines their execution semantics and enables formal analysis.
Specifically, we introduce Rendez-vous and Broadcast connectors to enforce synchronization and one-to-many
communication, respectively, ensuring that interactions are explicitly represented and amenable to formal
analysis. BIP provides precise execution semantics, facilitating rigorous verification and streamlining the
process by eliminating the need for external verification models. We validate our approach through a case
study on swarm drone coordination, demonstrating structured execution, the ability to detect and resolve

critical deadlocks, and the correctness and robustness of interactions.

1 Introduction

Cyber-physical systems (CPS) integrate computa-
tional and physical processes, requiring precise mod-
eling and rigorous verification to ensure reliability
and correctness. These systems consist of multiple
interacting components that must coordinate execu-
tion through synchronous and asynchronous interac-
tions. Failures in coordination can lead to dead-
locks or unexpected behaviors, especially in safety-
critical applications such as autonomous vehicles,
aerospace, and industrial automation. Ensuring inter-
action correctness demands formal verification tech-
niques that guarantee safety, liveness, and deadlock
freedom (Graja et al., 2020).

The Systems Modeling Language (SysML) (Object
Management Group (OMG), 2012) provides a struc-
tured framework for CPS modeling across different
abstraction levels. The recent evolution of SysML
into SysML v2 (Object Management Group (OMGQG),
2024) introduces significant enhancements in terms of
precision, expressiveness, modularity, and the flexi-
bility of its graphical and textual representations, aim-
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ing to address the growing complexity of modern
CPS design (Friedenthal, 2023). However, SysML
v2 lacks the execution semantics necessary to specify
and analyze structured interactions formally. In par-
ticular, it does not natively support synchronization
and communication mechanisms, which are essential
for modeling the coordinated execution of CPS com-
ponents.

Among the formal languages specialized in inter-
action verification, the Behavior, Interaction, Priority
(BIP) framework (Basu et al., 2006) provides a strong
semantic foundation for modeling, composing, and
analyzing component interactions. However, BIP is
not designed as a system-level modeling language and
lacks support for high-level features such as multi-
view modeling, requirement traceability, standardized
graphical notation, and MBSE tool integration.

Conversely, SysML v2 excels in these areas, offer-
ing a rich modeling environment for system structure,
requirements, and multi-view architecture, but it does
not define execution semantics for interactions.

To bridge this gap, we propose a combined ap-
proach that leverages both strengths. Our method uses
a dedicated subset of constructs to define the interac-
tions structurally within SysML v2. It transforms the
resulting model into BIP, where the execution seman-



tics of these interactions are formally defined. This
enables the generation of executable models, facilitat-
ing rigorous verification while maintaining compati-
bility with MBSE practices.

In summary, this paper makes the following contribu-
tions:

* We define a structured subset of SysML v2
constructs, including explicit interaction mecha-
nisms, to precisely model synchronous and asyn-
chronous interactions in CPS.

* We introduce a systematic transformation process
to map SysML v2 models to the Behavior, Inter-
action, Priority (BIP) framework, ensuring pre-
cise execution semantics and enabling verification
without intermediate steps.

* We validate the effectiveness and applicability
of our proposed approach through a detailed
case study involving swarm drone coordination,
demonstrating the detection and resolution of ex-
ecution issues such as potential deadlocks.

The remainder of this paper is structured as fol-
lows. Section [2] reviews related work and highlights
the limitations of existing methods. Section[3|presents
the necessary background on SysML v2 and BIP. Sec-
tion [4| describes our structured interaction modeling
approach. Section [ elaborates on the systematic
transformation process from SysML v2 to BIP, high-
lighting its verification capabilities. Section [f] illus-
trates our approach through a case study on swarm
drone coordination. Finally, Section [/| summarizes
our contributions and outlines future research direc-
tions.

2 Related Work

Ensuring the correctness of the SysML model has
been a long-standing challenge. Given that SysML
does not provide execution semantics, several studies
have investigated integrating SysML with formal ver-
ification tools to enable rigorous system analysis. The
work of (Molnar et al., 2024) explores the feasibility
of linking SysML v2 models with verification tech-
niques. However, while these approaches improve the
validation of system properties, they lack support for
explicit execution semantics of interactions, particu-
larly mechanisms such as multi-component synchro-
nization and prioritized communication.

One significant effort in integrating SysML with
BIP was the work of (Nussbaumer and Kieliger,
2017), which developed a bidirectional transforma-
tion between SysML v1 and BIP for visualization and

editing. This method allowed BIP models to be repre-
sented within SysML using custom UML profiles and
stereotypes. However, this work primarily focused
on structural mappings rather than execution seman-
tics, meaning that key interaction mechanisms such as
broadcast or rendez-vous were not explicitly modeled
within SysML. Additionally, this approach was based
on SysML vl, which lacks the enhanced expressive-
ness and formal semantics introduced in SysML v2.

Although transformation efforts aim to enable for-
mal execution semantics, other research has focused
on verifying the structural consistency of interactions
in SysML models. The work of (Khelifati et al., ) ver-
ifies the static semantic of SysML interactions within
Internal Block Diagrams (IBDs). This approach en-
sures that SysML models conform to well-defined
structural constraints, preventing issues such as mis-
connected ports or inconsistent interfaces. However,
static verification alone does not analyze how interac-
tions dynamically evolve during execution. Our ap-
proach bridges this gap by mapping SysML v2 mod-
els to a formally executable framework like BIP.

Another line of research has explored constraint-
based verification to specify and analyze interactions
in SysML. The work of (Tannoury et al., 2022al) intro-
duces SysReo, which combines SysML with Reo and
OCL to define and verify system interactions using
constraint automata. An extension of this approach is
presented by (Tannoury et al., 2022b)), where SysM-
L/MARTE is used to model real-time constraints,
making it particularly suitable for automotive CPS. In
contrast to Reo, BIP offers a more comprehensive for-
mal framework that supports compositional modeling
and direct execution semantics, eliminating the need
for automata-based translations and external formal
encodings.

Beyond SysML-based approaches, research has
also explored the relationship between BIP and Reo
as coordination models for system interactions. The
work of (Dokter et al., 2015) establishes a formal
mapping from BIP (without priority) to Reo, demon-
strating how constraint-based verification techniques
can be applied to BIP models. This transformation
allows for reasoning about BIP interactions within
Reo’s formal framework. However, this approach
does not leverage system-level modeling languages
such as SysML.

In contrast to these approaches, we propose a
method that defines a structured subset of SysML v2
constructs to model structured interactions explicitly.
By mapping these models into BIP, execution seman-
tics are introduced, enabling both formal execution
and verification. This integration ensures a seamless
transition from system-level modeling to executable



analysis without requiring additional transformation
steps or external model-checking frameworks.

3 Background

This section introduces the fundamental elements of
SysML v2 and BIP relevant to our approach. We fo-
cus only on the constructs required to define struc-
tured interactions and facilitate their transformation
into a formal verification framework.

3.1 SysML v2: Essential Constructs for
Interaction Modeling

SysML v2 provides a structured framework for mod-
eling Cyber-Physical Systems, offering improved
modularity, richer semantics, and textual representa-
tions. It defines key constructs for specifying system
components, their interactions, and behaviors, includ-

ing:

Port Definition (port def) Define interaction
points between system components, specifying data
flow and communication constraints. Listing [I| de-
fines a SysML v2 port as an interaction point between
system components.

Listing 1: Example of a Port Definition in SysML v2

port def CommandPort {
in receivedCommand

String;}

Part Definition (part def) Represent a system
component, encapsulating ports and internal behavior.
Listing [2| represents a reusable component type that
exposes interaction ports.

Listing 2: Example of a Part Definition in SysML v2

part def Controller {

port commandIn CommandPort; }

State Definition (state def) Capture the differ-
ent operational modes of a component. They include
a set of states and transitions that describe how the
component evolves over time, as illustrated in List-

ing[3]

Listing 3: Example of a State Definition in SysML v2

state def ControllerStates {

state Idle; state Active;

transition Idle_to_Active
first Idle

accept receivedCommand wvia commandIn
then Active;}

Connections (connection def) Define inter-
actions between components. Listing [4] presents an
example of a connection def in SysML v2

Listing 4: Example of a Connection in SysML v2

connection def Synchronization {
end controller CommandPort;
end actuator CommandPort;
flow controller.receivedCommand
to actuator.receivedCommand; }

3.2 BIP: A Framework for Interaction
and Formal Verification

The Behavior, Interaction, Priority (BIP) framework
provides a rigorous component-based approach to
model and verify CPS. It introduces three main lay-
ers: Behavior, Interaction, and Priority, each serving
a distinct role in defining system execution semantics.

Behavior (Atomic Components) The Behavior
layer encapsulates the state-based dynamics of the
components using atomic components, or atoms.
Each atom defines internal states and transitions be-
tween them. Listing[5]illustrates an example of a BIP
atomic component that models a simple Controller
with two states, Idle and Active, and a transition trig-
gered by receiving a command.

Listing 5: Example of an Atomic Component in BIP

atom type Controller () {

export port CommandPort_t commandIn;
place Idle, Active;

initial to Idle;

on commandIn from Idle to Active do {
printf ("Controller _activated.\n");}}

Interaction (Connectors) Connectors define syn-
chronization and communication between multiple
components. In BIP, connectors specify how com-
ponents interact by enabling or enforcing simultane-
ous execution of multiple ports. Listing [6] shows a
Rendez-vous connector, which ensures that two com-
ponents (¢ and a) are executed synchronously

Listing 6: Example of a Rendez-vous Connector in BIP

connector type Synchronization (
CommandPort_t ¢, CommandPort_t a) {
define c aj}




In contrast, a Broadcast connector allows one
component to communicate with multiple receivers
without requiring them to be available simultane-
ously. In BIP, an apostrophe ( ’ ) after a port name
in the ‘define‘ statement specifies that the port is a
trigger, meaning that its activation initiates the inter-
action. Listing[7]illustrates an example of a Broadcast
connector.

Listing 7: Example of a Broadcast Connector in BIP

connector type Broadcast (
BroadcastPort_t sender,
CommandPort_t recl, CommandPort_t
rec2, CommandPort_t rec3) {
define sender’ recl rec2 rec3;
on sender recl rec2 rec3 down {
recl.commandSignal=sender.
commandSignal;
rec2.commandSignal=sender.
commandSignal;
rec3.commandSignal=sender.
commandSignal;}
on sender receiverl down {
recl.commandSignal=sender.
commandSignal; }}

In this example, the apostrophe () after ‘sender*
in the ‘define‘ statement indicates that ‘sender is the
trigger, meaning that its activation initiates the in-
teraction. The ‘down‘ statement ensures that when
‘sender is activated, its command signal is propa-
gated to all receivers, allowing them to receive the
message simultaneously.

Priority The Priority layer allows specifying ex-
ecution order between interactions when multiple
are possible, ensuring deterministic system behavior.
However, this paper does not focus on priority mech-
anisms.

The next section presents our approach for defin-
ing structured interactions in SysML v2 and mapping
them to BIP.

4 Proposed Approach

SysML v2 models the structural architecture of
Cyber-Physical Systems (CPS) using components,
ports, and their connections. Interactions are spec-
ified via connection definitions, with semantics in-
ferred from structure. However, it lacks execution se-
mantics, limiting its ability to analyze dynamic be-
haviors like synchronization or asynchronous com-
munication.

To address this, we define a subset of SysML
v2 constructs—port, part, state, and connection

definitions—for modeling structured interactions.
These models are then transformed into BIP, where
connectors define formal execution semantics. This
enables verification while preserving SysML model-
ing conventions.

We focus on two interaction types: Rendez-vous
for strict synchronization, and Broadcast for one-to-
many communication.

Rendez-vous interactions model strict synchro-
nization between multiple components, requiring all
participants to reach a common execution point be-
fore proceeding. In our approach, this type of interac-
tion is first specified structurally in SysML v2 using
a connection definition that links multiple ports, as
shown in Listing 8]

Listing 8: Rendez-vous Interaction in SysML v2

connection def RendezVous {

end pl SyncPort;
end p?2 SyncPort;
end p3 SyncPort;}

This structural specification is then mapped to a
BIP connector that enforces the same synchronization
semantics at execution time. The equivalent BIP def-
inition is shown in Listing[9] where all involved ports
must participate for the interaction to be executed.

Listing 9: Rendez-vous Connector in BIP

connector type RendezVous (SyncPort_t
pl, SyncPort_t p2, SyncPort_t p3)
{
define pl p2 p3; }

Broadcast interactions represent asynchronous
one-to-many communication, where a sender trans-
mits information to multiple receivers, not all of
which are required to participate simultaneously. In
our approach, such interactions are first modeled
structurally in SysML v2 using a connection defini-
tion with optional constraints on participant readiness.
A basic example is shown in Listing [T0]

Listing 10: Broadcast Interaction in SysML v2

connection def Broadcast {
end sender BroadcastPort;

end receiverl CommandPort;
end receiver?2 CommandPort;
end receiver3 CommandPort;

constraint {sender.isReady}

flow sender.Signal to receiverl.
Signal;

flow sender.Signal to receiver2.
Signal;

flow sender.Signal to receiver3.
Signal;}

This specification is mapped into a BIP connector



where the sender acts as a trigger, initiating the inter-
action. The BIP equivalent is presented in Listing [T T]
where all receivers participate when available.

Listing 11: Broadcast Connector in BIP

connector type Broadcast (

BroadcastPort_t sender,

CommandPort_t receiverl,

CommandPort_t receiver2,

CommandPort_t receiver3) {

define sender’ receiverl receiver?2
receiver3;

on sender receiverl receiver?
receiver3 down ({

receiverl.Signal = sender.
Signal;

receiver2.Signal = sender.
Signal;

receiver3.Signal = sender.
Signal;}}

In more complex scenarios, broadcast interactions
in SysML v2 may include multiple constraints, each
specifying a valid subset of receivers based on readi-
ness conditions. Listing [I2]illustrates this case.

Listing 12: Broadcast Interaction with multiple Constraints
in SysML v2

connection def Broadcast {

end sender BroadcastPort;

end receiverl CommandPort;

end receiver?2 CommandPort;

constraint {sender.isReady and
receiverl.isReady and
receiver2.isReady}

flow sender.Signal to receiverl.
Signal;

flow sender.Signal to receiver2.
Signal;

constraint {sender.isReady and
receiverl.isReady}

flow sender.Signal to receiverl.
Signal;

constraint {sender.isReady and
receiver2.isReady}

flow sender.Signal to receiver2.
Signal;

These alternative conditions are translated into
BIP as conditional interaction patterns using on state-
ments, ensuring structured execution based on dy-
namic availability, as shown in Listing[T3]

Listing 13: Broadcast Connector with Multiple Constraints
in BIP

connector type Broadcast (
BroadcastPort_t sender,
CommandPort_t receiverl,
CommandPort_t receiver2) {

define sender’ receiverl receiver2;

on sender receiverl receiver2 down {
receiverl.Signal = sender.Signal;
receiver2.Signal = sender.Signal;}

on sender receiverl down {
receiverl.Signal = sender.Signal;}

on sender receiver?2 down {
receiver2.Signal = sender.Signal

it}

This mapping from structural constraints in
SysML v2 to conditional interactions in BIP pre-
serves the intended communication flexibility while
enabling formal execution semantics. The next sec-
tion elaborates the transformation workflow that sup-
ports this mapping.

5 Model Transformation from
SysML v2 to BIP

We map structured SysML v2 constructs to their
BIP equivalents to enable formal verification. This
transformation connects system-level modeling to ex-
ecutable semantics while preserving the structure and
behavior of interactions. It supports both synchronous
and asynchronous patterns and provides a foundation
for rigorous analysis.

The transformation consists of three stages: ex-
tracting SysML v2 elements (ports, parts, states, con-
nections), applying rule-based mappings, and gener-
ating an executable BIP model. Algorithm I]summa-
rizes the structural, behavioral, and interaction map-
pings.

Ports are translated into BIP port types, while
components with internal states become BIP atoms
composed of places and transitions. If multiple tran-
sitions share the same source and target states, they
are merged using conditional guards to preserve be-
havioral distinctions.

Connections are mapped to BIP connectors, with
the trigger port identified by an apostrophe (" ). Con-
straints are converted into on conditions, and flow
statements into down blocks to manage data propa-
gation and enforce synchronization semantics.

Though currently manual, the transformation pro-
cess lays a foundation for automation, thanks to the
structured and semantically precise nature of SysML
v2. The SysML v2 API enables systematic extrac-
tion of model elements (parts, ports, states), allowing
transformation rules to be applied programmatically.
Integrated with BIP toolchains, this would support the
automatic generation of executable BIP models.

Such automation enhances scalability and reduces
modeling effort while preserving correctness and
traceability. It also strengthens the link between high-



Algorithm 1 Transformation from SysML v2 to BIP

Require: SysML v2 model Mgyy1,
Ensure: Equivalent BIP model Mp;p
1: Parse Mgyspy to extract essential elements:
2: Identify all port def, part def, state def, and
connection def
3: Extract transitions from state def
4: Identify constraints and their associated flow state-
ments
. Initialize an empty BIP model Mprp
: for each port def in Mgy do
Map to a BIP port type with corresponding at-
tributes
8: Add the mapped BIP port type to Mprp
9: end for
10: for each part def containing a state def do

QoW

11: Create a BIP atom type corresponding to the
SysML part

12: for each state def in the part do

13: for each state in the state def do

14: Create a BIP place representing the state

15: end for

16: Convert transitions into BIP transitions

17: end for

18: Add the BIP atom type to Mpjp

19: end for

20: for each connection def in Mgy do

21: Create a BIP connector type with the corre-
sponding ports

22: Identify the port that appears in all constraints and
designate it as the trigger port (apostrophe (’))

23: for each constraint in the connection do

24 Extract the constraint and translate it into a BIP
on condition

25: Identify the corresponding flow statements

26: Group the flow statements under the corre-

sponding on condition in the down section

27: end for

28: Add each constructed BIP connector type to
Mpip

29: end for

30: Transform the System Composition

31: Identify the top-level part that contains other parts

32: Map itto a BIP compound type

33: Add each BIP compound type to Mpp

34: for each contained part instance do

35: Add the corresponding BIP atom type to Mprp

36: end for

37: for each connection def inside the system composi-
tion do

38: Add the corresponding BIP connector type to
Mpip

39: end for

40: return Mp;p

level SysML v2 modeling and the formal execution
and verification capabilities of the BIP framework.

6 Case Study: Swarm Drone
Coordination with SysML v2 and
BIP

Swarm drone coordination is an essential challenge
in autonomous flight systems, where multiple drones
must execute synchronized maneuvers while main-
taining strict communication and interaction con-
straints. This case study focuses on the formal mod-
eling and verification of a swarm drone system using
SysML v2 and BIP, ensuring correct coordination and
synchronization of drones.

The system consists of a command station that is-
sues flight commands and a swarm of three drones
that receive and execute the commands. Two inter-
action mechanisms govern communication: a broad-
cast mechanism, where the command station sends
commands to all drones simultaneously, and a rendez-
vous synchronization, where all drones synchronize
before resetting to their initial state.

6.1 SysML v2 Model

The swarm drone coordination system is modeled
in SysML v2, capturing the structure, behavior, and
interactions between the command station and the
drones. The model includes port definitions for com-
mand transmission and synchronization, part defini-
tions representing system components, state machines
defining operational states and transitions, connec-
tion definitions establishing interactions, and a sys-
tem composition assembling all components into the
Drone Swarm system. The complete textual speci-
fication of this SysML v2 model is presented in the

Listing[T4]

Listing 14: Complete SysML v2 Model for Swarm Drone
Coordination

package DroneSwarm {
private import ScalarValues::*;
port def CommandPort ({
in attribute commandSignal
String ;
attribute isReady = true ;}
port def BroadcastPort {
out attribute commandSignal
String ;
attribute isReady = true;}
port def RendezVousPort { }
part def Drone {
port commandIn CommandPort;
port rendezVous RendezVousPort;
attribute commandSignal String ;
state def DroneStates {
entry; then Idle;
state Idle; state Ready;




state Flying; state Formation;
transition ’'Idle-Ready’
first Idle accept signal
String wia commandIn
then Ready {commandSignal = "
Ready";}
transition ’'Ready-Flying’
first Ready
accept signal
commandIn
then Flying {commandSignal =
InAir";}
transition 'Flying-Formation’
first Flying
accept signal
commandIn
then Formation {commandSignal
= "InFormation";}
transition 'Formation-Idle’
first Formation
accept signal
rendezVous
then Idle;} }
part def StationDeCommande {
port stationCommand
BroadcastPort;
state def StationStates ({
attribute phase Integer = 0;

String wvia

String wvia

String via

attribute compteur Integer
0;

attribute maxCycles Integer =
10;

state Active; state Stop;
entry; then Active;
transition ’'Active-Start’
first Active
accept Signal String via
stationCommand

if phase == 0 and compteur <
maxCycles
then Active {
phase = 1;
compteur = compteur + 1;}

transition 'Active-Takeoff’
first Active
accept Signal String wvia
stationCommand

if phase == 1 and compteur <
maxCycles
then Active {
phase = 2;
compteur = compteur + 1;}

transition ’'Active-Formation’
first Active
accept Signal String via
stationCommand

if phase == 2 and compteur <
maxCycles
then Active {
phase = 0;
compteur = compteur + 1; }

transition 'Active-Stop’

first Active
if compteur >= maxCycles
then Stop; }}
connection def Broadcast {
end sender BroadcastPort;

end receiverl CommandPort;
end receiver?2 CommandPort;
end receiver3 CommandPort;

constraint{sender.isReady and
receiverl.isReady and
receiver2.isReady and
receiver3.isReady}

flow sender.commandSignal to
receiverl.commandSignal;

flow sender.commandSignal to
receiver2.commandSignal;

flow sender.commandSignal to
receiver3.commandSignal;

constraint{sender.isReady and
receiverl.isReady}

flow sender.commandSignal to
receiverl.commandSignal; }

connection def RendezVous {

end dl RendezVousPort;
end d2 RendezVousPort;
end d3 RendezVousPort; }

part DroneSwarm {

part station StationDeCommande;

part dl Drone;
part d2 Drone;
part d3 Drone;

connection leaderCommand
Broadcast connect (station.
stationCommand, dl.commandIn,
d2.commandIn, d3.commandIn);

connection rendezvousSync
RendezVous connect (dl.
rendezVous, d2.rendezVous, d3.
rendezVous);} }

Figure [I] provides the complete assembly of the
swarm drone system components.

DroneSwarm

station: StationDeCommande

Acomemit nzGoNBrRETMERAIEP0s! magdla: CommandPort

L JL J

. J

Figure 1: Swarm System Composition in SysML v2

6.2 BIP Model

The BIP model for swarm drone coordination was
generated following the algorithm proposed in Sec-
tion 5] This transformation systematically maps



SysML v2 constructs into their BIP equivalents, en-
suring structural and behavioral consistency while
preserving interaction semantics. To enhance the
analysis of execution processes, additional trace mes-
sages were incorporated into the BIP model. These
messages allow us to observe the evolution of system
states. The complete BIP model representation of the
system is shown in Listing T3}

Listing 15: Complete BIP Model for Swarm Drone Coordi-
nation

@cpp (include="stdio.h")
package Dronell
extern function printf(string, int)
port type CommandPort_t (string
commandSignal)
port type BroadcastPort_t (string
commandSignal)
port type RendezVousPort_t ()
atom type Drone (int id)
data string commandSignal
export port CommandPort_t
commandIn (commandSignal)
export port RendezVousPort_t
rendezVous ()
place Idle, Ready, Flying,
Formation
initial to Idle do {
commandSignal = "";}
on commandIn from Idle to Ready do
{
commandSignal = "Ready";
printf ("Drone_%d_is _,Ready\n", id
)i}
on commandIn from Ready to Flying

do {
commandSignal = "InAir";
printf ("Drone_%d _is_Flying\n",
id);}

on commandIn from Flying to
Formation do {
commandSignal = "InFormation";
printf ("Drone_%d_is_in_Formation
\n", id);}
on rendezVous from Formation to
Idle do {
printf ("Drone_%d_resets_from,
Formation_to_Idle\n", id);}
end
atom type StationDeCommande ()
data string commandSignal
data int phase
data int compteur
data int maxCycles
export port BroadcastPort_t
broadcastCommand (commandSignal
)
place Active, Stop
initial to Active do {
phase = 0; compteur = 0;
maxCycles = 4;

commandSignal = "";}
on broadcastCommand from Active to
Active provided (compteur <
maxCycles) do {
if (phase == 0) then
commandSignal = "Start"; phase
= 1;
else if (phase == 1) then
commandSignal = "Takeoff";
phase = 2;
else if (phase == 2) then
commandSignal = "Formation

n.
7

phase = 0;
fi fi fi
compteur = compteur + 1;
printf ("Station:_Sending_%s_
Command\n", commandSignal);
}
internal from Active to Stop
provided (compteur >=
maxCycles) do {
printf ("Station:_Max_cycles,,
reached. Stopping.\n", 0); }

end
connector type Broadcast (
BroadcastPort_t sender,
CommandPort_t receiverl,
CommandPort_t receiver?2,
CommandPort_t receiver3)
define sender’ receiverl receiver2
receiver3
on sender receiverl receiver?2

receiver3 down { receiverl.
commandSignal = sender.
commandSignal;
receiver2.commandSignal = sender
.commandSignal;
receiver3.commandSignal = sender

.commandSignal; }
on sender receiverl down {
receiverl.commandSignal = sender.
commandSignal;}
end
connector type RendezVous (
RendezVousPort_t dil,
RendezVousPort_t d2,
RendezVousPort_t d3)
define dl d2 d3
end
compound type DroneSwarm ()
component StationDeCommande station
()
component Drone dl (1)
component Drone d2 (2)
component Drone d3 (3)
connector Broadcast leaderCommand (
station.broadcastCommand, dl.
commandIn, d2.commandIn, d3.
commandIn)
connector RendezVous rendezvousSync
(dl.rendezVous, d2.rendezVous,




d3.rendezVous)
end
end

6.3 Execution and Results

The BIP model was executed to validate the correct
operation of the swarm drone coordination system.
The execution trace, illustrated in Figure @, demon-
strates interactions between the command station and
the drones, confirming structured command dissemi-
nation and synchronized execution. Initially, the com-
mand station successfully broadcasts a Start com-
mand, causing all drones to transition from Idle to
Ready. Subsequent commands systematically move
them through the Flying and Formation states, as
defined by the initial SysML v2 specification (List-
ing @ When the drones reach the Formation state,
they synchronize through the rendez-vous connec-
tor, ensuring coordinated execution before resetting
to Idle. The broadcast connector facilitates simul-
taneous dissemination of commands, thus maintain-
ing synchronization and consistent transitions among
drones.

Despite these structured transitions, the initial ex-
ecution results indicated that after completing a pre-
defined number of cycles, the system entered an un-
intended deadlock state. Specifically, the deadlock
emerged in state #5, where the station reached its
stopping condition. Due to the absence of additional
valid transitions, the system reached a state in which
no further interactions were possible, resulting in a
deadlock.

To address and illustrate the potential resolution
of this deadlock, we modified the SysML model of
the command station by removing the stopping condi-
tion, thus enabling continuous cyclic operations. The
revised StationDeCommande SysML v2 specification
is presented in Listing The BIP model generated
from this modified SysML v2 specification is corre-
spondingly presented in Listing [I'7]

Listing 16: Modified Command Station Definition in
SysML v2 (without stopping condition)

part def StationDeCommande {
port stationCommand:BroadcastPort;
state def StationStates {
attribute phase Integer = 0;
state Active; entry; then Active;
transition 'Active-Start’
first Active
accept Signal String via
stationCommand
then Active { phase = 1; }
transition 'Active-Takeoff’
first Active

Station: Sending ete Command

Drone 1 is Ready

Drone 2 is Ready

Drone 3 is Ready

[BIP ENGINE]: state #1: 1 interaction:

[BIP ENGINE]: [0] ROOT.leaderCommand: statid
commandSignal=Ready;)

[BIP ENGINE]: -> choose [0] ROOT.leaderCommand
mmandIn(commandSignal=Ready;)

Station: Sending (xe Command

Drone 1 is Flying

Drone 2 is Flying

Drone 3 is Flying

[BIP ENGINE]: state #2: 1 interaction:

[BIP ENGINE]: [0] ROOT.leaderCommand: statid

n(commandSignal=InAir;)

[BIP ENGINE]: -> choose [0] ROOT.leaderCommand
commandIn(commandSignal=InAir;)

Station: Sending (te Command

Drone 1 is in Formation

Drone 2 is in Formation

Drone 3 is in Formation

[BIP ENGINE]: state #3: 2 interactions:

[BIP ENGINE]: [0] ROOT.leaderCommand:

[BIP ENGINE]: [1] ROOT.rendezvousSync: d1.rd
[BIP ENGINE]: -> choose [1] ROOT.rendezvousSy
Drone 1 resets from Formation to Idle

Drone 2 resets from Formation to Idle

Drone 3 resets from Formation to Idle

[BIP ENGINE]: state #4: 1 interaction:

[BIP ENGINE]: [0] ROOT.leaderCommand: statid
;) d3.commandIn(commandSignal=InFormation;)
[BIP ENGINE]: -> choose [@] ROOT.leaderCommand
ormation;) d3.commandIn(commandSignal=InFormaf
Station: Sendingee Command

Station: Max cycles reached. Stopping.

Drone 1 is Ready

Drone 2 is Ready

Drone 3 is Ready

[BIP ENGINE]: state #5: deadlock!

Figure 2: Execution trace of the BIP model showing drone
state transitions.

accept Signal String via
stationCommand

then Active { phase = 2; }

transition ’'Active-Formation’

first Active

accept Signal String via
stationCommand

then Active {phase = 0;}}}

The resulting BIP model, presented in Listing
eliminates the stopping condition of the command sta-
tion and ensures continuous operation, thus removing
the conditions that previously led to the deadlock.

Listing 17: Modified BIP Model for Continuous Execution

atom type StationDeCommande ()
data string commandSignal
data int phase
export port BroadcastPort_t
broadcastCommand (commandSignal)
place Active
initial to Active do { phase = 0;
commandSignal = ""; }




on broadcastCommand from Active to
Active do {

if (phase == 0) then
commandSignal = "Start";
phase = 1;
else if (phase == 1) then
commandSignal = "Takeoff";
phase = 2;
else if (phase == 2) then
commandSignal = "Formation";

phase = 0; fi fi fi
printf ("Station: ,Sending_%s_
Command\n", commandSignal) ;}
end

After executing this modified model, the deadlock
situation no longer arises. Instead, the system con-
tinuously cycles through the predefined states (Idle,
Ready, Flying, and Formation) without interrup-
tion, demonstrating the correctness and robustness
of the structured interactions modeled. This modifi-
cation highlights the flexibility and effectiveness of
our structured approach in diagnosing and resolving
interaction-related issues such as deadlocks.

7 Conclusion

This paper presented an approach for modeling struc-
tured interactions in Cyber-Physical Systems (CPS)
by defining a structured subset of SysML v2. This
subset introduces Rendez-vous and Broadcast con-
nectors to explicitly capture synchronous and asyn-
chronous interactions, enabling their transformation
into the Behavior, Interaction, Priority (BIP) frame-
work for formal execution and analysis.

The transformation process systematically maps
SysML v2 models into BIP while preserving struc-
tural integrity and interaction semantics. A case study
on swarm drone coordination validated the approach,
demonstrating its ability to model multi-agent inter-
actions and verify synchronization properties through
BIP-based execution. The results confirmed that the
method supports structured execution, enables the de-
tection and resolution of deadlocks, and ensures inter-
action correctness.

While effective, the current approach has certain
limitations. The transformation does not yet sup-
port all BIP constructs, such as hierarchical priori-
ties and composite connectors, and remains a manual
process that requires user intervention. Future work
will extend the transformation to support these ad-
vanced constructs, integrate time-aware interactions,
and automate the mapping through model-to-model
transformations. Furthermore, incorporating an incre-
mental verification strategy using tools like D-Finder

2 (Bensalem et al., 201 1)) could enable early detection
of inconsistencies. Enhancing automation, scalability,
and coverage will further consolidate the integration
of SysML v2 and BIP for robust CPS modeling and
formal verification.
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