Fuzzy Requirements Verification in SysML v2: Direct Modeling and

Keywords:

Abstract:

Scenario-Based Analysis for Cyber-physical systems

Adel Khelifati' @2, Malika Boukala-Toualalen'@® and Ahmed Hammad?®¢
' Faculty of Computer Science, USTHB university, Algiers, Algeria

2FEMTO-ST Institute, UMR CNRS 6174, Besangon, France
{akhelifati, mioualalen} @usthb.dz, ahmed.hammad @ femto-st.fr

SysML v2, Fuzzy logic, Soft requirements

Cyber-physical systems (CPS) often involve vague or qualitative requirements such as comfort or energy effi-
ciency, which are difficult to verify using the crisp Boolean logic traditionally employed in Systems Modeling
Language v2 (SysML v2). This paper introduces an approach for modeling and verifying fuzzy requirements
directly within SysML v2 without modifying its metamodel or relying on external tools. Fuzzy semantics are
encoded using native constructs such as calculation definitions, requirements, and constraints, with satisfac-
tion degrees computed via trapezoidal membership functions and evaluated using the native expression evalu-
ation mechanism provided by the modeling environment. We illustrate the effectiveness and feasibility of our
expression-based fuzzy verification approach using a smart building Heating, Ventilation, and Air Condition-
ing (HVAC) system example and clearly show how the modeling is achieved in standard SysML v2 notation.
Furthermore, to extend verification capability under variability and uncertainty, we introduce a complemen-
tary external transformation of expression-based model elements into Python scripts to perform scenario-based
evaluation. A batch-based exploration method is then presented to systematically analyze fuzzy requirement
satisfaction under different runtime conditions, offering insights into system robustness and design-space anal-

ysis.

1 Introduction

Cyber-physical systems (CPS) are increasingly preva-
lent in modern engineering, encompassing systems
that tightly couple software components with physi-
cal processes. They are critical in intelligent trans-
portation, energy management, aerospace, industrial
automation, and smart buildings. These systems
must satisfy a broad spectrum of functional and
non-functional requirements, including safety, perfor-
mance, reliability, and more qualitative aspects such
as comfort, usability, or energy efficiency. Many of
these requirements are inherently imprecise, context-
dependent, or subjective. For instance, a “comfort-
able temperature” or ”low power usage” is not strictly
defined but varies across users, contexts, and opera-
tional conditions.

Model-Based Systems Engineering (MBSE) pro-
vides a framework to manage the complexity of CPS

https://orcid.org/0009-0006-4522-8123
@ https://orcid.org/0000-0002-8713-4997
¢ https://orcid.org/0000-0003-3739-1650

by enabling formalized system specification, trace-
ability, and early-stage analysis. ~Within MBSE,
the Systems Modeling Language (SysML) (Object
Management Group (OMG), 2012), maintained by
the Object Management Group (OMG), has become
a widely adopted standard. The recent evolution
to SysML v2 (Object Management Group (OMG),
2024) introduces significant improvements in seman-
tic precision, modularity, and expressiveness, along
with a formal textual syntax that supports native ex-
pression evaluation and analysis.

However, despite these advancements, exist-
ing verification mechanisms in SysML v2 remain
grounded in classical Boolean logic. Requirements
are typically evaluated as either completely satisfied
or entirely violated. This binary interpretation is in-
sufficient when dealing with soft requirements, where
partial compliance is expected and acceptable. Con-
sequently, system engineers are limited in their ability
to express and evaluate degrees of satisfaction, lead-
ing to a potential mismatch between stakeholder ex-
pectations and formal system verification.

To address this limitation, we propose an ap-

proach that integrates fuzzy logic (Zadeh, 1965) into
SysML v2 models for the expression-based specifi-
cation and evaluation of fuzzy requirements. Our
method leverages only native elements of SysML v2,
such as calc def, requirement, attribute, and
constraint to define fuzzy semantics, without mod-
ifying the metamodel. Using trapezoidal membership
functions, we compute satisfaction degrees as real
values in the range [0, 1], enabling fine-grained verifi-
cation of vague or context-sensitive requirements di-
rectly within the model. Standard constraint mecha-
nisms can assert these satisfaction degrees, providing
partial, traceable, and explainable verification.

In addition to in-model verification, we extend our
approach with a complementary batch-based analysis
mechanism. This extension allows engineers to ex-
plore how fuzzy requirement satisfaction evolves un-
der varying operational scenarios, such as changes in
environmental conditions or system usage patterns.
While our core method operates entirely within the
SysML v2 environment, the batch extension exports
model elements involving expressions to an exter-
nal Python script that simulates multiple configura-
tions and assesses robustness through statistical anal-
ysis. This two-tiered process combines the rigor of
expression-based modeling with the flexibility of sce-
nario exploration.

The main contributions of this paper are as fol-
lows:

* We propose an approach to model and verify
fuzzy requirements in SysML v2 using only na-
tive constructs and expression evaluation capabil-
ities.

* We validate the method through a case study in-
volving a smart building HVAC system, where
comfort and energy-related requirements are eval-
vated under uncertainty.

* We propose a batch-based extension to simu-
late scenario variability and assess the robustness
of fuzzy requirement satisfaction across multiple
configurations.

The remainder of the paper is organized as
follows: Section 2 introduces key concepts from
SysML v2 and fuzzy logic. Section 3 presents related
work on fuzzy modeling and verification in system
design. Section 4 describes our modeling and veri-
fication method in detail and illustrates it through a
case study. Section 5 details the batch-based scenario
exploration. Finally, Section 6 concludes the paper
and outlines directions for future research.

2 Background

This section introduces the fundamentals of
SysML v2 and fuzzy logic relevant to our approach.

2.1 SysML v2 and Constraint
Evaluation

SysML v2 (Object Management Group (OMG),
2024) provides standardized constructs for the speci-
fication, structuring, and symbolic evaluation of com-
plex system models. Our approach utilizes core
constructs including part def, part, requirement,
calc def, constraint, and satisfy relationships.

Part Definitions and Usages. System com-
ponents are defined using the part def construct,
which specifies structural attributes such as physical
properties or system parameters (Listing 1). Con-
crete instances of these components are created using
part, with attribute values defined by the keyword
ref (Listing 2).

Listing 1: Example of part def

part def A {
attribute x: Real;}

Listing 2: Example of part usage

part a: A {
ref x = 5.0;}

Requirements. Requirements are declared using
the requirement construct, which may include a tex-
tual description (doc), attributes, and embedded con-
straints (Listing 3).

Listing 3: Example of a requirement

requirement rl {
doc /# The value of x shall remain
below a fixed limit =/
attribute limit: Real = 10.0;
constraint { a.x < limit }}

Calculation Definitions. Reusable computational
functions are defined using calc def (Listing 4) and
invoked throughout the model (Listing 5).

Listing 4: Calculation definition (calc def)

calc def add ¢{
in a: Real;
in b: Real;
return r: Real;
a + b}

Listing 5: Calling a defined calculation

attribute sum: Real = add (3.0, 2.0);

Satisfaction Links (satisfy). The satisfy re-
lationship explicitly links system components (part)
to their corresponding requirements, ensuring trace-
ability and verification (Listing 6).

Listing 6: Linking a part to a requirement

satisfy rl by a; ‘

Constraints and Their Evaluation. Constraints
formally specify conditions that must be fulfilled by
the model elements. Constraints can be defined glob-
ally or locally within elements.

Consider the example in Listing 7, where a con-
straint evaluates whether the sum of two attributes re-
mains below a certain threshold using a calculation
definition.

Listing 7: Complete constraint evaluation example

package addPackage {
private import ScalarValues::*;
calc def add {
in a: Real;
in b: Real;
return r: Real;
a + b }
part def A {
attribute x: Real;
attribute y: Real; }
part a: A {
ref x = 5.0;
ref vy = 6.0; }
requirement rl
doc /+ The sum of x and y shall
remain below a fixed limit
*/
attribute limit: Real = 10.0;
constraint { add(a.x, a.y) <
limit } }

}

Initially, with attributes set to x = 5.0 and y = 6.0,
the evaluation proceeds as:

add(5.0,6.0)=11.0 = 11.0< 10.0 (false)

This evaluation step is illustrated in Figure 1 (af-
ter evaluation), confirming that the constraint is not
satisfied due to the sum exceeding the threshold.

These SysML v2 constructs provide a robust and
structured foundation for specifying and evaluating
requirements in complex systems, facilitating subse-
quent integration with fuzzy logic in our proposed ap-
proach.

2.2 Fuzzy Logic

Fuzzy logic, introduced by Zadeh in 1965 (Zadeh,
1965), extends classical logic by allowing truth values

addPackage \

«parts
azA

a b

R ra—
add

references
=5.0

y=60

* wsatisfyn
<

-
B

«requirements

«part defs
A

doc
attributes The value of x shall remain below a fixed
limit
x: Real attributes
limit: Real = 10.0

wconstraints

operator expressions
{add (a.x, a.y) < limit } = false

S S—
r

Figure 1: SysML v2 constraint evaluated to false, since
5.0+6.0>10.0.

to range continuously between 0 and 1. It is particu-
larly well-suited for representing qualitative, vague,
or imprecise requirements, such as “low energy con-
sumption” or “comfortable temperature,” which can-
not be captured effectively by crisp Boolean logic.

Fuzzy reasoning relies on membership functions
to determine the degree to which a given input sat-
isfies a fuzzy concept. Several types of member-
ship functions exist, including triangular, trapezoidal,
Gaussian, and sigmoid functions, each offering differ-
ent modeling flexibility and complexity.

In this paper, we focus on the trapezoidal mem-
bership function due to its simplicity and widespread
use in engineering applications. This function is de-
fined by four parameters (a, b, c,d) and evaluated at a
specific input value x, returning a satisfaction degree
u(x) between 0 and 1, as presented in Equation 1.

0 ifx<aorx>d
=4 jfa<x<b
—) b-a 1 1
HO=97" tp<r<e M
=X ifc<x<d

3 Related Work

Fuzzy requirements modeling was first explored by
Bubenko et al. (Bubenko et al., 1994) and Liu and
Yen (Liu, 1998), who emphasized the use of fuzzy
sets to represent qualitative and imprecise stakeholder
requirements. Their work focused on capturing vague
notions such as “low cost” or “easy to use,” and
formalizing them through membership functions and
trade-off analysis. These early contributions aimed
to support requirements elicitation and refinement but
did not offer executable or verifiable models.
Building on this foundation, Baresi et al. (Baresi

et al., 2010) introduced FLAGS, an extension of the
KAOS goal modeling framework that incorporates
fuzzy and adaptive goals to support runtime require-
ment satisfaction and dynamic adaptation. While
FLAGS enables partial satisfaction tracking and goal
reconfiguration, it primarily addresses high-level goal
modeling and lacks support for direct verification
within design models.

Fuzzy logic has also been applied in extensions
of the Unified Modeling Language (UML). Ma et
al. (Ma et al., 2012) proposed fuzzy class diagrams by
introducing fuzzy classes, attributes, and relationships
to handle uncertainty in data models. Their approach
facilitates conceptual modeling under imprecision but
does not target operational constraints or verification.
Similarly, Han et al. (Han et al., 2014; Han et al.,
2016) proposed the FAME UML profile for model-
ing fuzzy self-adaptive systems using stereotypes and
views for fuzzy control loops. However, FAME fo-
cuses on adaptation logic rather than integrating fuzzy
verification directly into design models.

Recent frameworks such as PERSA (Dioni-
sioParaiba and Martins,), which combines fuzzy
logic with the NFR-Framework, and the conceptual
model proposed by Egesoy and Giizel (Egesoy and
Giizel, 2021) demonstrate the relevance of fuzzy tech-
niques for managing soft and adaptive requirements.
Nonetheless, both approaches remain conceptual or
external to standard modeling environments, offer-
ing little to no integration with modeling tools like
SysML or UML.

In the context of Product Lifecycle Management
(PLM), Taratoukhine and Yadgarova (Taratuknin
and Yadgarova, 2015) applied fuzzy logic to syn-
thesize product configurations from imprecise cus-
tomer needs. Although effective in its domain, this
work remains domain-specific and disconnected from
general-purpose system modeling languages.

Within Model-Based Systems Engineering
(MBSE), fuzzy logic has been used to support
architectural evaluations under uncertainty. Dagli et
al. (Dagli et al., 2009) introduced a fuzzy reasoning
approach to explore architectural alternatives by com-
bining fuzzy associative memories with evolutionary
algorithms. While this approach is powerful for early
design exploration, it does not focus on requirements
verification nor leverage modeling standards such as
SysML.

Yoo and Lee (Yoo and Lee, 2019) proposed inte-
grating SysML parametric diagrams with MATLAB
and the Analytic Hierarchy Process (AHP) to assess
maintainability using fuzzy values. Their approach
highlights the benefit of combining modeling and
fuzzy analysis but requires tool coupling and exter-

nal processing, limiting the cohesion and reusability
of the model.

In addition to in-model evaluation, some ap-
proaches rely on external tools for scenario simula-
tion or robustness analysis. For example, Yoo and
Lee (Yoo and Lee, 2019) use MATLAB to simulate
different maintainability scenarios. Other approaches
may rely on co-simulation frameworks or script-based
tools to evaluate system behavior under uncertainty.
However, these techniques often involve heavy inte-
gration effort or custom toolchains.

In summary, existing approaches for modeling
and verifying fuzzy requirements generally fall into
one of the following categories: conceptual meth-
ods without execution support, metamodel extensions
in UML, external fuzzy reasoning tools, or hybrid
frameworks requiring tool integration. Very few so-
lutions enable traceable verification of fuzzy require-
ments directly within a standard system modeling lan-
guage.

In response to these limitations, we propose an ap-
proach that supports the direct modeling and evalu-
ation of fuzzy requirements within SysML v2. Our
method avoids metamodel extensions, relies solely
on native language constructs, and provides quanti-
tative and traceable verification through expression-
based evaluation within the modeling environment.
To further enhance the analysis capabilities under
variability and uncertainty, we also propose an ex-
ternal lightweight extension for scenario-based explo-
ration.

4 Direct Verification of Fuzzy
Requirements in SysML v2

In this section, we present our approach for modeling
and verifying fuzzy requirements directly within the
SysML v2 modeling environment using only native
constructs. To demonstrate the feasibility and effec-
tiveness of our method, we apply it to a representative
case study involving a smart building HVAC (Heat-
ing, Ventilation, and Air Conditioning) system.

4.1 Modeling Fuzzy Requirements with
Native SysML v2 Constructs

Our approach leverages core SysML v2 constructs,
including calculation definitions (calc def), require-
ments, attributes, and constraints. This ensures full
compliance with the SysML v2 metamodel, while en-
abling expression-based evaluation of fuzzy seman-
tics within the model. Satisfaction degrees are com-

puted using trapezoidal membership functions ex-
pressed through standard calculation logic.

4.1.1 Trapezoidal Membership Function
Implementation

We implement the fuzzy semantics using a trape-
zoidal membership function, chosen for its simplicity
and interpretability in engineering applications. The
function is encoded as a reusable calc def, shown in
Listing 8.

Listing 8: Trapezoidal Membership Function

calc def trapezoid {

in x: Real;
in a: Real;
in b: Real;
in c: Real;

in d: Real;

return r: Real;

if x < aor x >d ? 0

if x > a and x < b ? ((x - a) / (b
- a))

if x >= b and x <= ¢ ? 1

if x > cand x < d ? ((d - x) / (d

if x > d ? 0 }

This definition can be reused to define fuzzy
satisfaction degrees for various attributes across the
model.

4.1.2 Generic Fuzzy Requirement Specification

Fuzzy requirements are modeled using standard
requirement blocks, enhanced with attributes that
compute satisfaction degrees using the trapezoidal
function. Constraints are then applied to evaluate
whether the degree meets a minimum acceptable
threshold, as shown in Listings 9, 10, and 11.

Listing 9: Generic Fuzzy Requirement

requirement simpleReq {

doc /+ The value shall be

approximately between 6 and 8.
*/

attribute val: Real = 7.5;

attribute mu: Real = trapezoid(val
, 5.0, 6.0, 8.0, 9.0);

assert constraint {
mu > 0.6 } }

Listing 10: System Element Definition

part def SystemElement {
attribute input: Real; }
part p: SystemElement {
ref input = 7.5; }

Listing 11: Linking Requirement and Part

satisfy simpleReq by p;

This modeling pattern is fully evaluatable within
SysML v2, relying exclusively on expression evalua-
tion through native constraint logic.

4.2 HVAC System Case Study

To demonstrate our approach, we model a smart
building HVAC (Heating, Ventilation, and Air Con-
ditioning) system tasked with ensuring both thermal
comfort and energy efficiency. These are two inher-
ently vague and context-sensitive requirements. The
HVAC system must maintain an indoor temperature
that is perceived as comfortable by occupants, while
minimizing energy consumption. These objectives
are naturally formulated as fuzzy requirements, re-
flecting user preferences and operational tolerances.

4.2.1 SysML v2 Model of HVAC System

The system is modeled in SysML v2 using the follow-
ing structure:

* Apart def block defines the HVAC system with
attributes for temperature and power.

* Two fuzzy requirements are created: one for com-
fort, and one for power efficiency.

 Satisfaction degrees are computed using trape-
zoidal membership functions, with thresholds
specified via constraints.

The parameters used for the trapezoidal functions
are summarized in Table 1.

Table 1: Trapezoidal Parameters for HVAC Fuzzy Require-
ments

Requirement Trapezoidal parameters
Thermal Comfort | (18,22,24,29) °C
Energy Efficiency | (0,100,200,300) Watts

Listing 12 shows the full model definition.

Listing 12: HVAC SysML v2 Model

part def HvacSystem ({
attribute temperature: Real;
attribute power: Real; }
part hvac: HvacSystem {
ref temperature = 27.0;
ref power = 227.5;}
requirement comfortReq {
doc /# The ambient temperature
shall be comfortable. #*/
attribute mu_comfort : Real =
trapezoid (hvac.temperature,
18.0, 22.0, 24.0, 29.0);

assert constraint
ComfortConstraint { mu_comfort
> 0.6 } }
requirement powerReqg
doc /* The power usage shall
remain reasonably low. */
attribute nmu_power : Real =
trapezoid (hvac.power, 0.0,
100.0, 200.0, 300.0);
assert constraint PowerConstraint
{ mu_power > 0.6 } }
satisfy comfortReg by hvac;
satisfy powerReg by hvac;

Figures 2 present the model after expression eval-
uation.

4.2.2 Evaluation and Discussion

Following the expression-based evaluation in
SysML v2, the computed satisfaction degrees for the
HVAC system are as follows:

* Comfort satisfaction degree: ucomforr = 0.4 (re-
quirement not satisfied).

* Energy satisfaction degree: ppower = 0.725 (re-
quirement satisfied).

These results indicate that the current temperature
lies outside the defined fuzzy comfort zone, whereas
energy consumption remains within the acceptable
fuzzy interval. This kind of partial satisfaction feed-
back, where some requirements are met to a certain
degree, and others are not, is particularly valuable
during the early design stages. It enables engineers
to reason about soft requirements with a finer granu-
larity than binary logic allows and to iteratively refine
system parameters or membership thresholds.

More broadly, this case study illustrates that
SysML v2 can be effectively used to model and verify
fuzzy requirements using only native constructs. Our
approach requires no metamodel extensions or exter-
nal engines. Instead, it relies on the language’s built-
in expression evaluation capabilities to provide a fully
integrated and interpretable verification process.

Using fuzzy satisfaction degrees within SysML v2
offers practical benefits, including early detection of
requirement mismatches, enhanced traceability and
explainability through quantitative insights, and im-
proved maintainability via modular updates. Over-
all, our approach enriches SysML v2’s expressive-
ness, enabling quantitative reasoning over soft re-
quirements without deviating from the standard lan-
guage specification.

S Batch-Based Scenario Exploration

While our proposed approach enables the evalua-
tion of fuzzy constraints directly within a SysML v2
model using expression-based constructs, Cyber-
Physical Systems (CPS) often operate in inherently
dynamic and uncertain environments. For example,
temperature and energy usage in a smart building may
vary due to changes in weather, occupancy, or user
behavior. Verifying a single configuration, although
valuable, remains insufficient to assess how the sys-
tem performs across a spectrum of real-world situa-
tions.

To address this limitation, we introduce a
lightweight batch-based extension that supports the
evaluation of fuzzy requirement satisfaction under
multiple runtime conditions. This allows engineers to
observe how the system responds to input fluctuations
and to reason about robustness and sensitivity during
early-stage design.

Although SysML v2 provides powerful
expression-based modeling capabilities, it does
not natively support scenario generation or statistical
analysis. However, its precise structure and reusable
expressions can be exported to an executable lan-
guage. In our case, we transform the trapezoidal
membership function and requirement logic into
Python code. This transformation is non-intrusive
and preserves the semantics of the original model.

5.1 Scenario Generation in Python

We define three scenarios reflecting environmental
variability: S1 (mild and stable conditions), S2 (same
average as S1, higher variability), and S3 (stressful
conditions with elevated temperature and energy us-
age).

Each scenario generates a set of temperature
and power consumption values by sampling from
a normal (Gaussian) distribution using the function
np.random.normal (mean, std, size),producing
size samples (10 in our case) with an approximate
mean of mean and variability controlled by std.

A small standard deviation (e.g., 1) simulates sta-
ble or predictable environmental conditions, while a
larger standard deviation (e.g., 3) represents scenar-
ios with greater variability or uncertainty. Listing 13
presents the complete Python script used for generat-
ing and evaluating these scenarios.

Listing 13: Python script for evaluating fuzzy requirements
across multiple scenarios.

import numpy as np
Trapezoidal membership function
def trapezoid(a, b, ¢, d, x):

hvac: HvacSystem

- ’«satisfyx RS \xsa(isfy»
-
~

comfortable.

"
- .
I k \-‘
«requirements («requirements
cumf;rtReq powerReq
oc
The ambient temperature shall be doc

Energy efficiency satisfaction degree based
on power usage

attributes
mu_comfort: Real = trapezoid (

hvac.temperature, 18.0, 22.0, 24.0, 29.0) ~
0.4

'
«references|

4
«references

power temperature
[

arttributes
mu_power: Real = trapezoid (hvac.power,
0.0, 100.0, 200.0, 300.0) = 0.725

v

«assert constraints
ComfortConstraint

-

‘ operator expressions
{ mu_comfort > 0.6 } = false

. G

-
«assert constraints
powerConstraint

| operator expressions
{ mu_power > 0.6 } = true

Figure 2: SysML v2 Model After Evaluation (Computed Satisfaction Degrees)

if x <= a or x >= d:

return 0.0

mu_enerqgy)

elif a < x < b:
return (x - a) / (b - a)
elif b <= x <= c: return 1.0
elif ¢ < x < d:
return (d - x) / (d - ¢)
else: return 0.0
Membership functions for fuzzy
requirements
def comfort_membership (temp):

return trapezoid (18, 22, 24, 28, temp
)
def energy_membership (power):
return trapezoid (0,100,200,300, power

)
Scenario definitions
scenarios = {
"S1":{"description":"Mild_,and_stable"

4

"temp": np.random.normal (23,
1, 10),
"power": np.random.normal (120,
10, 10), 1},

"S2":{"description":
variance",

"Same_mean, _more,,

"temp": np.random.normal (23,
3, 10),

"power": np.random.normal (120,
30, 10), 1},

"S3":{"description"

n
’

:"Stress_,condition

"temp": np.random.normal (27,
1, 10),
"power": np.random.normal (250,
15, 10), 1},}

Evaluate satisfaction degrees
for name, scenario in scenarios.items
():
mu_comfort = [comfort_membership (t
) for t in scenario["temp"]]
mu_energy = [energy_membership (p)
for p in scenario["power"]]
scenario["avg_comfort"] = np.mean (
mu_comfort)

scenario["avg_energy"] = np.mean (

Output results
for name, s in scenarios.items () :
print (" {name} - _{s[’description’]}"
)
print (f"__Avg_Comfort: {s[’
avg_comfort’]:.3£f}")
print (f"__Avg_Energy: . {s![’
avg_energy’]1:.3f}")

5.2 Results and Interpretation

Figure 3 illustrates the average satisfaction degrees
computed for each scenario.

Fuzzy Satisfaction Degrees Across Batch Scenarios

1.00 1.00 Comfort
1.0 mm Energy Efficiency
0.93

1]
5 0.8
O
a
c
o
E 0.6
& 0.51
B
©
K 0.38
0.4 2
o
g 0.26

0.2

0.0 n -

S1: Mild S2: Fluctuating S3: Hot

Figure 3: Average fuzzy satisfaction degrees across batch-
generated scenarios.

The results reveal that under S1 (stable condi-
tions), both requirements are well satisfied, indicating
robustness. In S2, increased variability leads to lower
satisfaction, especially for comfort. Under S3 (stress-
ful conditions), satisfaction levels drop significantly,
showing the system’s limits in extreme scenarios.

This analysis reveals behavioral trends that cannot
be captured by static Boolean verification. Design-
ers can detect system limitations, improve parameter
ranges, or tune satisfaction thresholds accordingly.

5.3 Discussion

The batch-based evaluation enhances SysML v2 with
variability-aware analysis, allowing robustness as-
sessment under uncertainty, sensitivity exploration to
identify critical inputs, and flexible design-space ex-
ploration without modifying the core model. Al-
though the scenario evaluation is performed exter-
nally, the transformation is lightweight and preserves
model semantics. This hybrid architecture bridges
the gap between structural modeling and dynamic
runtime reasoning, offering a scalable and practical
method for validating fuzzy requirements across di-
verse CPS environments.

6 Conclusion

This paper introduced a model-based verification ap-
proach for Cyber-Physical Systems (CPS) that sup-
ports specifying and evaluating vague or imprecise
requirements such as comfort or energy efficiency us-
ing fuzzy logic directly within the standard SysML v2
language. Unlike existing approaches that rely on
metamodel extensions or external reasoning tools, our
method leverages native SysML v2 constructs, in-
cluding calculation definitions, attributes, constraints,
and requirements, to encode fuzzy semantics in a
lightweight and compliant manner.

We demonstrated the feasibility of our approach
through a case study of a smart building HVAC sys-
tem, where fuzzy satisfaction degrees were evaluated
using trapezoidal membership functions and standard
constraint mechanisms. This allows for continuous,
explainable, and traceable verification of soft require-
ments, moving beyond the limitations of Boolean
logic. Our method thus supports early-stage analysis,
enabling engineers to reason about partial compliance
and explore trade-offs under uncertainty.

To complement the in-model evaluation, we pro-
posed a batch-based scenario analysis that exports key
model logic to Python. This external extension allows
system evaluation under diverse operating conditions
using randomized scenarios, offering insights into
system robustness, variability sensitivity, and perfor-
mance boundaries.

In future work, we plan to extend the method to
support composite fuzzy constraints involving mul-
tiple interacting variables and apply the approach to
larger, more complex CPS domains to evaluate its
scalability and applicability across diverse engineer-
ing contexts.

REFERENCES

Baresi, L., Pasquale, L., and Spoletini, P. (2010). Fuzzy
goals for requirements-driven adaptation. In 2010
18th IEEE international requirements engineering
conference, pages 125-134. IEEE.

Bubenko, J., Rolland, C., Loucopoulos, P., and DeAn-
tonellis, V. (1994). Facilitating” fuzzy to formal” re-
quirements modelling. In Proceedings of IEEE In-
ternational Conference on Requirements Engineering,
pages 154-157. IEEE.

Dagli, C. H., Singh, A., DAUBY, J. P, and Wang, R.
(2009). Smart systems architecting: computational in-
telligence applied to trade space exploration and sys-
tem design. In Systems Research Forum, volume 3,
pages 101-119. World Scientific.

DionisioParaiba, J. and Martins, L. E. G. A proposal of re-
quirements specification process for adaptive systems
based on fuzzy logic and nfr-framework.

Egesoy, A. and Giizel, A. (2021). Fuzzy logic support for
requirements engineering. [International Journal of
Innovative Research in Computer Science & Technol-
0gy, 9(2):14-21.

Han, D., Yang, Q., and Xing, J. (2014). Extending uml for
the modeling of fuzzy self-adaptive software systems.
In The 26th Chinese Control and Decision Conference
(2014 CCDC), pages 2400-2406. IEEE.

Han, D., Yang, Q., Xing, J., Li, J., and Wang, H. (2016).
Fame: A uml-based framework for modeling fuzzy
self-adaptive software. Information and Software
Technology, 76:118-134.

Liu, X. F. (1998). Fuzzy requirements. [EEE Potentials,
17(2):24-26.

Ma, Z. M., Yan, L., and Zhang, F. (2012). Modeling fuzzy
information in uml class diagrams and object-oriented
database models. Fuzzy Sets and Systems, 186(1):26—
46.

Object Management Group (OMG) (2012). OMG Systems
Modeling Language SysML. Technical report.

Object Management Group (OMG) (2024).
Systems Modeling Language (SysML)
v2 Beta 2 Specification: Language.

www.omg.org/spec/SysML/2.0/Beta2/Language/PDF.
Accessed Mars 2025.

Taratuknin, V. and Yadgarova, Y. (2015). A fuzzy logic
approach for product configuration and requirements
management. In 2015 Annual Conference of the
North American Fuzzy Information Processing Soci-
ety (NAFIPS) held jointly with 2015 5th World Confer-
ence on Soft Computing (WConSC), pages 1-5. IEEE.

Yoo, Y.-Y. and Lee, J.-C. (2019). The improvement of main-
tainability evaluation method at system level using
system component information and fuzzy technique.
Journal of the Korea Academia-Industrial coopera-
tion Society, 20(3):100-109.

Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338-353.

