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Abstract—The degradation of energy storage systems,
including batteries, proton exchange membrane fuel cells,
and electrolyzers, presents a critical challenge to their
long-term reliability and efficiency. This study addresses
the prediction of Remaining Useful Life by selecting a
robust state-of-health indicator tailored to each system.
A novel data-driven prognostic approach is proposed,
leveraging Long Short-Term Memory neural networks to
capture temporal dependencies and nonlinear degradation
trends. The recurrent neural network model demonstrates
versatility, adapting to both electrochemical storage and
hydrogen-based systems by effectively learning from di-
verse datasets. Results highlight the method’s capability
to generalize across technologies, enabling accurate degra-
dation predictions and offering significant insights into
performance management.

I. INTRODUCTION

With the development of intermittent renewable en-
ergies, the need for energy storage is growing [1]. Bat-
teries and hydrogen storage offer flexible, decentralized
solutions that are suitable for various applications, from
mobility to stationary applications. Nevertheless, this
approach has its share of drawbacks. Indeed, it is well-
known that the electrical characteristics (capacity or
power) of batteries deteriorate with operation [2]. Sim-
ilarly, the proton exchange membrane (PEM) fuel cells

and PEM electrolyzers needed for hydrogen-electricity
conversion are seeing their power characteristics degrade
over time [3][4]. Such damage can have serious conse-
quences for the operation of a system using these storage
components, since they may no longer be able to fulfill
their role. This is the reason why diagnostic methods
have recently been developed to quantify ageing. There
are several different diagnostic approaches, depending on
the system under study, but it is nevertheless common
to seek to represent ageing in terms of a single indicator
called state-of-health (SOH) [5][6]. Having this SOH
indicator then allows to implement energy management
strategies (EMS) that integrate the knowledge of the
SOH to be more tolerant to ageing, on two different
layers. Firstly, quantifying degradations allows for EMS
to take into account the change in behavior and conse-
quently have suited requirements. This is a rather reactive
approach. On the other hand, EMS can also aim to reduce
the ageing, in what would be a proactive approach. This
proactive approach would be better if information about
the potential SOH evolution in the future were to be
known. It is in this context that prognostics are developed
in the field of electrical storage components. Its aim is
to predict future behavior of these elements, in order
to adapt the power distribution between them. However,
prognostic methods are usually applied to individual
systems and often rely on simplistic techniques, such
as linear extrapolation. In this context, a new method
applicable to all storage systems would provide a unified
approach for multi-source applications. Additionally, it
could enable more accurate predictions by accounting
for higher profile complexity. These are the primary
objectives and key contributions of this work.

In that context, this paper will first present a short clar-
ification of the SOH definitions. This will be followed
by the adapted prognostics methodology, which should



be suitable to predict future behaviors of both batteries
and hydrogen storage systems.

II. STATE-OF-HEALTH DEFINITIONS

To quantify ageing of storage components, state-of-
health is first defined for each of them.

A. Batteries

The most common battery health indicators are ca-
pacity, and internal resistance. Internal resistance is a
parameter directly correlated with the power the battery
can deliver [5]. In this work, the capacity will be chosen
as it is the most common one and can be used in most
applications. Therefore the SOH is defined by :
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where C'(t) represents the battery capacity in Ah at time
t, and Cy is its initial capacity in Ah.

B. Fuel cells & Electrolyzers

Fuel cells and electrolyzers are similar systems, as
they have akin electrical behaviors (analogous polar-
ization curves with activation, ohmic and concentration
losses), and they both see their power characteristics
deteriorate as they are used. Several indicators can be
used to assess the loss of power, mainly the output
voltage [7][8] and the internal resistance [9][10]. Ageing
tests of fuel cells also demonstrated a modification of
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Fig. 1: Fuel cell power polarization curves during its
lifetime

the polarization curve over time, that can be linked to
the model of eq.2.
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where V; is the stack voltage [V], n is the number of
cells in series, Fy is the open-circuit voltage of a cell
[V], Ry is its resistance [€2], 7 is the cell current [A],
which is positive when hydrogen is consumed, S is the
electrode surface [m?], Jo and j; are its activation and
limiting current densities [A/m?] respectively, and A is
the activation loss constant [V/K], j;, is the residual
current density [A/m?] and B is the concentration loss
constant [V/K][11]. Here, « is the parameter that rep-
resents the ageing of a fuel cell during its life, and can
be proportionally linked to the maximum power of the
stack (Fig. 1)[12]. The SOH for fuel cells will therefore
be defined as follows :

2

a(t)
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with ag,r, being the o value when the system reached
its end-of-life. The rest of this work is made under the
assumption that this SOH definition can be extended to
the electrolyzers, as the equivalent voltage model (eq.
2) can be reversed for them and allows for a realistic
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Fig. 2: Electrolyzer power polarization curves during its
lifetime



polarization curve (see eq. 4 and fig. 2)[13].

iy
Vi :n(E0+R0(1+a)i+ATln<S .‘”")

Jo
i
+BThn|1-—25
Jro(l — a))

Here the parameters have the same signification as in eq.
2, but now relative to the electrolyzer. The current is now
considered to be positive when hydrogen is produced. It
is worth noting that the focus of this work is made on the
prognostic method, and that any timeserie could be used
as input of the to be presented prognostics algorithm.

“

III. PROGNOSTICS APPROACH

As the SOH of the different components have been
defined, it is now assumed that the data about past SOH
values are available and presented via a simple timeserie.
If the diagnostic approach allows for the quantification
of uncertainties, the mean data will be considered as
the timeserie. There are several methods to obtain these
SOH, such as electrochemical impedance spectroscopy
(EIS) or current pulses for batteries [14][15][16], or
filtering methods for fuel cells and electrolyzers [12][17].

A. State-of-the-art and algorithm choice

There are several methods that exist for SOH prog-
nostic applications. They will aim to extrapolate ageing
data from the SOH timeserie that is given as input. The
first methods are the so-called model-based methods,
which are therefore dependent on the system under study.
They exist for various electrical systems, where they
are mainly based on filtering algorithms [18]—[21]. The
model-based methods offer several benefits, as they are
often fast and quite simple to implement. However, they
depend obviously largely on the system models they
use, and therefore lack generality. The so-called data-
driven methods allow to overcome these difficulties, but
come at the cost of computation time. Among data-
driven approaches, recurrent neural networks (RNNs) are
the most common structures for applications to health
state prediction in electrical energy storage components.
The three main approaches among RNNs are Echo-
State-Network (ESN)[22][23], Long Short-Term Mem-
ory (LSTM)[24][25] and transformers [26][27]. They
can generally be classified in ascending order of com-
plexity, with ESNs being the least heavyweight and
least advanced structures, and transformers being the
most complex structures, which are still for the moment
the least used for health status prognostic applications.

LSTMs is adopted in this work for their enhanced perfor-
mance compared with ESNs, and for the greater relative
maturity of this technology compared to transformers
[28][29].

B. LSTM & Monte-Carlo dropout for prognostics

LSTM RNNs represent a powerful and sophisticated
class of deep learning models. Their appeal lies in
their ability to effectively process sequential data,
such as sequences of text or timeseries in our case,
while retaining long-term information. In contrast
to traditional RNNs, LSTMs incorporate memory
regulation mechanisms, enabling the gradient vanishing
problem to be solved and long-term dependencies
in sequences to be learned. To achieve this, LSTM
networks are made of several cells which use two
internal states, represented in Fig.3. The “cell” state
represents the network’s long-term memory, while the
“hidden” state represents short-term memory. Both
states interact with the input vector and each other. The
output vector is then computed using the current hidden
and cell states. The interest of LSTMs also lies in their
ability to model complex temporal dependencies and
capture patterns on different time scales. This makes
them especially suitable for timeseries prediction. In
addition, LSTMs are capable of autonomously learning
hierarchical and abstract representations of sequential
data, enabling them to make accurate predictions even
in noisy or poorly structured environments, as it is the
case in diagnostic approaches for estimating the health
status of storage systems.
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Fig. 3: Illustration of a LSTM cell



1) LSTM for timeseries prediction: A classic
timeserie takes the form of a vector of n sequential
data, the order of which is crucial. It is then common to
separate this time series into a training part followed by
a test part. This approach makes it possible to train the
algorithm on the first part of the data and then check
the neural network’s correct prediction. It is common
that the training data corresponds to the first 90% of
the data, while the test data corresponds to the last 10%
[30]. With this training set, it is useful to sequence it
in order to create several input/output pairs for training
purposes. Here, the inputs will correspond to sequences
of data included in the training data. The length of
these sequences (as a fraction of the total training data)
will then be a crucial hyperparameter in the behavior
of the neural network. The output corresponding to
this sequence will then be the first value following
this sequence. Data sequencing is summarized in Fig.4,
where the 7' parameter determines the length of the
sequence.

2) Algorithm hyperparameters: Next, the classical
stochastic gradient descent method was used, with the
optimization algorithm Adaptive Moment Estimation
(adam), which is a standard method for this type of
application. The loss function used was mean-squared
error, which is also a standard approach. Then there
are several hyperparameters that are crucial to the al-
gorithm’s operation:

* Initial data sampling affects prediction accuracy.
Resampling with larger time steps reduces training
time but may overlook short-term effects, useful
for long-term predictions.

* The number of epochs, representing the number of
times the training data is presented to the model,
determines training duration. Too few may hinder
convergence, while too many can lead to
overfitting.

¢ Batch size, defining the number of data samples

Data = {z1,22,...,ZN}

Test data ~ 10% Data

Input = {Zk, Thi1,- - -, ThiT}

Training data ~ 90% Data

Sequencing

Output = {x741} = {yx}

Fig. 4: Training data sequencing

processed simultaneously during each iteration,
also impacts learning speed. Larger batches may
converge faster but risk local minima; smaller
batches offer variability but may slow training.

* Sequence length, a percentage of training data,
defines the temporal scope of each iteration.
Longer sequences capture complex dependencies
but increase computation time, while shorter ones
may miss intricate patterns.

* Finally, the number of LSTM layers determines
network depth, enhancing modeling but requiring
more data and risking overfitting if not regularized.

In order to adjust these hyperparameters, it is possible
to slice the training data even more finely to create
a training set and a validation set. The presence of
this validation set makes it possible to evaluate the
loss function on these data during training, in order
to identify any overfitting. Hyperparameters are then
chosen such that the loss function on the validation set
is minimized. All simulations are ran on Spyder® using
Python.

3) Statistical approach using Monte Carlo Dropout:
In the context of time series prediction, traditional ap-
proaches often rely on deterministic models, providing
single predictions without explicit consideration of the
associated uncertainty. However, these methods often
ignore the natural variability and uncertainty inherent
in temporal data, limiting their ability to provide a
comprehensive assessment of predictions.
In this context, a statistical approach that explicitly incor-
porates uncertainty into predictions is highly desirable.
The introduction of Monte Carlo Dropout stems from
this need to estimate uncertainty in time series predic-
tions in a statistically robust way. This approach is based
on the idea of dropout, a regularization method that con-
sists of randomly deactivating certain neuron links during
the training of a neural network. By applying the dropout
stochastically during the prediction phase, Monte Carlo
Dropout generates a set of stochastic predictions. By
repeating this process a large number of times, it is
possible to collect a distribution of predictions, enabling
the uncertainty associated with each predicted point to
be estimated.
This approach offers a valuable statistical perspective
by providing confidence intervals and probabilistic es-
timates, enabling a more comprehensive and reliable as-
sessment of time series predictions. In this work, dropout
is controlled via the recurrent_dropout parameter
of the tensorflow library, which has the effect of
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randomly resetting (with a probability corresponding to
its corresponding frequency) the connections between
LSTM layers. This corresponds to randomly ignoring
recurring connections between LSTM cells, and applies
to the “cell” and “hidden” links in Fig.3. A schematic
diagram of how dropout is used in this context is given
in Fig.5.

C. Results

As for the results, several timeseries have been used
as input to assess the versatility of the algorithm. A first
timeserie from an open dataset of 18650 NMC battery
degradation has been used for the prognostics applied to
batteries [31].
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The small local capacity increases can be explained by
various noise factors in the acquisition (or rest times,
temperature changes...) and are not considered signifi-
cant. A second timeserie for fuel cells and electrolyzers
has been manually generated to depict the evolution of
the o parameter. The detail of this generation can be
found in work [32]. A third timeserie made from a simple
growing sine wave with added noise is also included to
evaluate the network’s generalization capacity (Fig. 6).
All these three timeseries have been served as inputs
for the neural network. The hyperparameters are set as
described in section III-B2, which resulted in a sequence
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Fig. 6: SOH timeseries used as input for LSTM prediction ((a) battery capacity, (b) FC/ELY alpha 1, (c) FC/ELY
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comprising 2/3 of the training data and a sampling
time that yielded approximately 800 data points per
timeseries, representing a compromise between long-
term vision and accounting for local variations. A total
of 100 different networks for Monte-Carlo dropout are
used with a dropout parameter of 0.2. The results for
the capacity are presented in Fig.7, while the results for
the two « profiles are respectively shown in Fig.8 and 9.
On each figure, the prediction is first presented, with
its corresponding confidence interval provided by the
Monte-Carlo dropout. A comparison with the test data
is also provided, along with the RMSE demonstrating
the closeness between the prediction and the reality. All
three predictions have great similarities with the data,
assessing the effectiveness of the neural network. The
fact that the network performed well on these three types
of series confirmed its generalization capacity. From this
study, it is then possible to obtain the Remaining-Useful-
Life (RUL) of the considered systems, by comparing
the projected evolution of the SOHs with the end-of-
life (EOL) criteria. The confidence interval can also be
used for the RUL study, and a 95% lower bound can be
deduced. It is however impossible to get a RUL upper
bound from this projection, as the confidence interval
starts to increase (for the capacity) or decrease (for the )
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when the prediction starts, therefore never crossing the
EOL threshold. This marks a limitation of this approach.

IV. CONCLUSION

In this paper, a novel versatile approach for the prog-
nostics of energy storage systems has been presented.
This prognostics approach is based on the extrapolation
of states-of-health (SOHs) timeseries, in order to derive
a remaining useful life (RUL) parameter. This work is
made with the aim of building an ageing tolerant energy
management strategy. The SOHs of the energy storage
components were first introduced, using a novel indicator
for the hydrogen storage systems that was yet to be
used through extrapolation. The recurrent neural network
approach was then presented through a brief state-of-
the-art, and the Long Short-Term Memory (LSTM) al-
gorithm was adopted as the best compromise between
performance and reliability. Monte-Carlo dropout was
used as a way to quantify uncertainties, and results
on three different timeseries were then presented. The
algorithm’s ability to adapt to each timeserie showed
its versatility, and therefore its relevance in prognostics
for various energy storage systems. This paper aims
to be completed by further work on advanced energy
management strategies that would take into account



the evolution of the SOHs for predictive maintenance
applications.
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