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 A B S T R A C T

This paper follows a previous publication, where the so-called Advection Boundary Law lining 
an acoustic waveguide, in absence of mean flow, was studied in terms of its potentials for 
noise isolation and non-reciprocal propagation. The Advection Boundary Law is a special 
operator which can be synthesized on the boundary of a waveguide thanks to a programmable 
Electroacoustic Liner. This special boundary operator proved to achieve enhanced noise isolation 
with respect to classical local impedance. Moreover, it demonstrated to accomplish non-
reciprocal sound propagation along the waveguide, and the non-trivial passivity limits were 
assessed. Nevertheless, acoustic liners are meant to attenuate noise propagation in waveguides 
with airflow, such as heating and air-conditioning ventilation systems and aircraft turbofan 
engines. In particular, the new generation of Ultra-High-By-Pass-Ratio turbofans and the 
increasingly stringent regulations on aircraft noise pollution, require a significant breakthrough 
in the acoustic liner technology. This challenge was taken up by the SALUTE H2020 project, 
during which the experimental campaign reported in this paper was conducted. For the first 
time, the Advection Boundary Law interfacing an airflow is thoroughly analysed in terms of 
duct-modes and scattering simulations. The enhancement of isolation performances is confirmed 
also in presence of mean-flow. Moreover, for the first time, non-reciprocal propagation along the 
waveguide is achieved against the one naturally induced by the mean-flow. These results, along 
with the passivity limits, are discussed and confirmed by the experimental campaign, conducted 
on the CAIMAN test-bench of the Laboratory of Fluid Mechanics and Acoustics of the Ecole 
Centrale de Lyon. The tools and results provided in this paper should lead the implementation of 
the Advection Boundary Law for maximizing noise isolation or achieving non-reciprocal sound 
propagation along waveguides with airflow.

. Introduction

The noise transmission mitigation in waveguides by parietal acoustic treatment interests several industrial fields, like heating and 
ir-conditioning ventilation systems and aircraft turbofan engines.  Its main challenge is the need to provide noise attenuation along 
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the direction which is parallel to the surface where acoustic liner is applied (so called ‘‘grazing-incidence problem’’). This is necessary 
as the liner should have minimal impact on the aerodynamic flow going through the duct. The sufficient condition for the boundary 
to fully control the wave propagation in an acoustic domain is that every ray of the acoustic field interacts with the boundary [1]. 
Therefore, the solution to the full controllability problem of sound waves in the grazing incidence case is, mathematically speaking, 
unsolvable, but optimal impedances minimizing the transmitted sound can be looked for. The Cremer’s optimal impedances [2–4] 
are analytical solutions to the problem of maximizing the attenuation of specific duct-modes in an infinite waveguide. This problem 
is formulated in the frequency domain, and indeed, unfortunately, leads to non-real impedance operators, in the sense that their 
inverse Fourier transform does not produce a real function in the time domain (the reality condition [5] is unfulfilled). Therefore, 
the Cremer impedance can only be achieved at discrete frequencies [6,7]. Moreover, the optimality of Cremer’s impedance quickly 
weakens as the finite dimension of the liner is taken into account, and airflow becomes significant [4,8]. Meanwhile, from the 
seminal work of [9], the impedance control strategy has opened the doors towards boundary behaviours more sophisticated than 
locally reacting impedances. In [10–12], a generalized impedance has been studied, involving the spatial derivative of sound pressure: 
the so-called Advection Boundary Law (ABL). This has been the first step towards the study of non-local boundary operators (in 
time or in space [13]), and their potentials to overcome the classical local impedance behaviour to optimize noise isolation in 
grazing incidence. In particular, in [12], the physical interpretation of the ABL has been provided thanks to Dirichlet-to-Neumann 
(DtN) mapping [14], and a thorough numerical and experimental investigation demonstrated its potential to enhance noise isolation 
with respect to locally-reacting impedances of resonators and to achieve important non-reciprocal acoustic propagation (a highly 
desirable feature for many physical domains and applications [15]). The technology allowing to implement the ABL is the so-called 
Electroacoustic Liner (EL). The EL is made of an array of programmable Electroacoustic Resonators (ERs), each one composed of 4 
microphones (to retrieve the average sound pressure and its first spatial derivative) and a loudspeaker. Based upon the estimated 
pressure and its spatial derivative, the ABL generalized impedance operator is implemented by piloting the loudspeaker membrane 
velocity, driven by the controlled electrical current in the speaker coil. The control algorithm is designed by model-inversion [16], 
based upon the estimated mechanical dynamics of the loudspeaker, and has been recently extended to contemplate also nonlinear 
target dynamics at low excitation levels [17–21]. Such control architecture, first devised in [22], demonstrated its efficiency for 
both room-modes damping [22,23] and sound transmission mitigation in waveguides [24–35], despite the effect of time delay in 
the digital control, affecting the acoustical passivity margins [36]. Nevertheless, so far, the specific effect of the presence of an 
airflow upon the ABL, has never been fully investigated. Moreover, in order to protect the electroacoustic devices from the flow, the 
EL needs a layer, composed of a perforated plate and a wiremesh, allowing to separate, to a certain extent, the aerodynamics (in 
the duct) from the acoustics (on the EL). In Section 3, the duct mode analysis is conducted to preliminary assess the performances 
of the ABL lining an infinite waveguide, with airflow up to Mach 0.3. Then, in Section 4, the scattering performances of the ABL 
are simulated in a 2D waveguide. Then, the experimental validation is discussed in Section 5. Finally, in Section 6, a summary 
of the results is provided, along with the envisaged future developments. In each step of the present work, the impact of airflow 
upon the ABL acoustical passivity and performances, both in terms of noise isolation and non-reciprocal propagation, is highlighted. 
The enhancement of noise isolation with respect to local impedance resonators, is confirmed also in presence of airflow. Moreover, 
here, for the first time and contrary to previous works [37,38], the airflow is not exploited to induce the non-reciprocal propagation. 
Indeed, the non-reciprocity generated by the ABL, can either be reinforced or opposed by the presence of flow, depending upon 
the airflow direction: if the flow has the same direction as the synthetic boundary advection in the ABL, then the non-reciprocity 
is enhanced, while in case air is flowing in the opposite direction of the synthetic boundary advection speed, the non-reciprocity 
is weakened. In this paper, we also demonstrate, both numerically and experimentally, the unique achievement of the ABL in 
counteracting, and even reversing, the non-reciprocity naturally induced by the airflow.

To resume, the significance and novelty of the ABL stays in the possibility to enhance the attenuation of noise transmission 
with respect to classical local impedance approaches, also in presence of mean-flow. Moreover, the ABL achieves unprecedented 
non-reciprocal propagation features despite the presence of flow. 

2. Advection boundary law in open field

The theoretical conception of the ABL and its physical interpretation are already discussed in [12]. The generalized impedance 
Partial-Differential-Equation (PDE) of the ABL, writes: 

𝑍Loc(𝜕𝑡) ∗ 𝜕2𝑡 𝑢𝑛 = 𝜕𝑡𝑝 + 𝑈𝑏𝜕𝑥𝑝 on 𝜕𝛺, (1)

where 𝑍Loc(𝜕𝑡) is a general local impedance operator, ∗ is the convolution operation, 𝑢𝑛 is the outward normal displacement on the 
boundary 𝜕𝛺, 𝑝 is the sound pressure, 𝑈𝑏 is the synthetic advection speed, while 𝜕𝑡 is the Eulerien first time derivative and 𝜕𝑥 is the 
𝑥-derivative, with 𝑥 a tangential coordinate on 𝜕𝛺. In particular, 𝑍Loc(𝜕𝑡) is here considered as a single-degree-of-freedom (SDOF) 
resonator impedance.  Notice that the synthetic advection speed 𝑈𝑏 represents an artificial convection which can be synthesized 
by the EL. Indeed, from [12], we know that Eq. (1) is the DtN mapping [14] of a semi-infinite propagative domain 𝛺f ict , on the 
interface 𝜕𝛺 with the actual air domain 𝛺air . Such 𝛺f ict is characterized by a convection speed 𝑈𝑏 along 𝑥. Therefore, the ABL 
mimics the interface with an advected domain behind the surface where the ABL is applied. From this, it comes the label of ABL 
and the meaning of synthetic advection. Notice that such 𝑈𝑏 is not related to the grazing flow speed possibly present in the duct. 
The objective of this paper is, indeed, to verify the effect of a grazing flow over the performances of the ABL, i.e. to study the case 
of simultaneous presence of a synthetic boundary advection 𝑈 , and the convection induced by grazing air flow.
𝑏
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Fig. 1. ABL interfacing a semi-infinite domain with longitudinal airflow.

Notice that in Eq. (1), we preferred to express the ABL in terms of the normal displacement 𝑢𝑛, rather than in terms of the normal 
velocity 𝑣𝑛 (which was employed in [12]). This is so, because now we are interested in the ABL effect upon an 𝛺air traversed by an 
inviscid and irrotational mean-flow along 𝑥 of velocity 𝑈∞ and subsonic Mach 𝑀∞ = 𝑈∞∕𝑐0, with 𝑐0 the sound speed. Indeed, for 
an acoustic domain with tangential flow, according to Ingard-Myers [5,39,40], the continuity of normal velocity is replaced by the 
continuity of normal displacement at the interface 𝜕𝛺 as appropriate boundary condition (BC).

Observe that the ABL refers to a BC, which is artificially synthesized by the EL, and which is physically targeted at the interface 
between each ER and the air. On the other hand, the Ingard-Myers [5,39,40] BC is a simplified way to numerically model the effect 
of the boundary layer due to the presence of mean-flow, with all its limitations [8].

As in [12], our first 2D case study is the ABL interfacing a semi-infinite air domain 𝛺air = [−∞,∞]× [−∞, 0], this time traversed 
by a tangential flow 𝑈∞, as showed in Fig.  1. The treated boundary 𝜕𝛺 extends on all the 𝑥 axis.

A general time-harmonic (in the usual complex notation j𝜔𝑡) wave propagating in the semi-infinite domain 𝛺air at an angle 𝜃
with respect to the 𝑥 axis, has the form: 

�̄�𝑤(𝑡, 𝜔, 𝑥, 𝑦) = 𝑝0(𝜔)𝑒
j𝜔𝑡−j𝑘𝑥𝑥−j𝑘𝑦𝑦, (2)

where �̄�𝑤 is the complex representation of 𝑝𝑤 = Re{�̄�𝑤} and represents a general wave propagating in 𝛺air , while 𝑘𝑥 and 𝑘𝑦 are 
the 𝑥 and 𝑦 components of the wavenumber vector. By replacing Eq. (2), in the convected wave equation 𝐷2

𝑡 𝑝 = 𝑐20∇
2𝑝, where 

𝐷𝑡 = 𝜕𝑡 + 𝑈∞𝜕𝑥 is the Lagrangian (also called convected) time derivative, we obtain: 

𝑘𝑥 =
𝑘0 cos 𝜃

1 +𝑀∞ cos 𝜃
, (3a)

𝑘𝑦 =
𝑘0 sin 𝜃

1 +𝑀∞ cos 𝜃
, (3b)

where 𝑘0 = 𝜔∕𝑐0. We can now compute the reflection coefficient of the ABL in open-field with mean flow, starting from the definition 
of the incident time-harmonic sound field: 

�̄�𝑖(𝑡, 𝜔, 𝑥, 𝑦) = 𝑝𝑖0(𝜔)𝑒
j𝜔𝑡−j𝑘𝑥𝑥−j𝑘𝑦𝑦, (4)

where �̄�𝑖 is the complex representation of 𝑝𝑖 = Re{�̄�𝑖}, 𝑘𝑥 and 𝑘𝑦 are given by Eqs. (3a) and (3b) respectively, with 𝜃 = 𝜃𝑖 the 
incident angle of the plane wave on the boundary 𝜕𝛺. The reflected wave field is supposed to respect the classical Snell–Descartes 
law of refraction, according to which the reflected plane wave propagates with a specular angle with respect to the incident one, 
i.e. 𝜃𝑟 = −𝜃𝑖. Hence, the complex reflected wave from an ABL can be written as: 

�̄�𝑟(𝑡, 𝜔, 𝑥, 𝑦) = 𝑅(𝜔, 𝜃𝑖)𝑝𝑖0𝑒
j𝜔𝑡−j𝑘𝑥𝑥+j𝑘𝑦𝑦, (5)

with 𝑅 the reflection coefficient at the oblique incidence 𝜃𝑖.
In Eq. (6), the Euler equation of acoustics is projected along 𝑦, on the boundary 𝜕𝛺: 𝑦 = 0. 

− 𝜌0

(

j𝜔 + 𝑈∞𝜕𝑥

)2
�̄�𝑦(𝑡, 𝜔, 𝑥) = 𝜕𝑦�̄�(𝑡, 𝜔, 𝑥). (6)

The displacement �̄�𝑦 on 𝜕𝛺 is obtained by the ABL of Eq. (1) as: 

�̄�𝑦(𝑡, 𝜔, 𝑥) =
𝑌Loc(j𝜔)

(

j𝜔 + 𝑈𝑏𝜕𝑥

)

�̄�(𝑡, 𝜔, 𝑥), (7)

(j𝜔)2

3 



E. De Bono et al. Journal of Sound and Vibration 618 (2025) 119293 
Fig. 2. ABL absorption coefficient versus 𝜃𝑖, in open field, for 𝑀∞ = 0.15, 𝜂Loc = 1 and varying 𝑀𝑏 ≤ 0 (a) or 𝑀𝑏 ≥ 0 (b).

where 𝑌Loc = 1∕𝑍Loc and �̄� = �̄�𝑖 + �̄�𝑟. By replacing Eq. (7) in Eq. (6), we get: 

𝜕𝑦�̄�(𝑡, 𝜔, 𝑥) = −𝜌0

(

j𝜔 + 𝑈∞𝜕𝑥

)2 𝑌Loc(j𝜔)
(j𝜔)2

(

j𝜔 + 𝑈𝑏𝜕𝑥

)

�̄�(𝑡, 𝜔, 𝑥). (8)

Replacing Eqs. (4) and (5), in �̄� = �̄�𝑖 + �̄�𝑟, after some algebraic computation, we obtain: 

𝑅(𝜔, 𝜃𝑖) =
1 − 𝜂eff (j𝜔)

sin 𝜃𝑖(1+𝑀∞ cos 𝜃𝑖)

1 + 𝜂eff (j𝜔)
sin 𝜃𝑖(1+𝑀∞ cos 𝜃𝑖)

, (9)

where 𝜂eff  is defined as: 

𝜂eff (j𝜔,𝑀𝑏,𝑀∞, 𝜃𝑖) = 𝜂Loc(j𝜔)
(

1 −
𝑀𝑏 cos 𝜃𝑖

1 +𝑀∞ cos 𝜃𝑖

)

, (10)

where 𝑀𝑏 = 𝑈𝑏∕𝑐0  and 𝜂Loc(j𝜔) = 𝜌0𝑐0𝑌Loc(j𝜔). Observe that Eq. (9) is equivalent to the reflection coefficient obtained in [39] 
with a local normalized mobility coincident with the 𝜂eff  of Eq. (10). Observe also that, for 𝑀∞ = 0, Eq. (9) retrieves the reflection 
coefficient reported in [12] in absence of mean flow. Notice that 𝜂eff  depends also on 𝑀∞, 𝑀𝑏 and 𝜃𝑖. In particular, it is interesting 
to remark that for 𝑀𝑏 = −1 +𝑀∞, if 𝜃𝑖 → 0 then 𝜂eff → 2𝜂Loc, whereas if 𝜃𝑖 → 𝜋 then 𝜂eff → 0. Vice versa, for 𝑀𝑏 = 1 +𝑀∞, if 
𝜃𝑖 → 0 then 𝜂eff → 0, whereas if 𝜃𝑖 → 𝜋 then 𝜂eff → 2𝜂Loc. This result preliminarily demonstrates the non-reciprocal propagation in 
grazing incidence that the ABL can achieve in presence of mean-flow, as detailed in the next sections.

Based on 𝜂eff , we can write the absorption coefficient: 

𝛼(𝜔, 𝜃𝑖,𝑀∞,𝑀𝑏) =
4 Re{𝜂eff (j𝜔,𝜃𝑖 ,𝑀∞ ,𝑀𝑏)}

sin 𝜃𝑖(1+𝑀∞ cos 𝜃𝑖)

1 +
|

|

|

|

𝜂eff (j𝜔,𝜃𝑖 ,𝑀∞ ,𝑀𝑏)
sin 𝜃𝑖(1+𝑀∞ cos 𝜃𝑖)

|

|

|

|

2
(11)

From Eq. (11), we can apply the classical passivity condition for locally-reacting boundaries [5] to 𝜂eff (j𝜔, 𝜃𝑖𝑀∞,𝑀𝑏): 

Re
{

𝜂eff (j𝜔, 𝜃𝑖,𝑀𝑏)
}

≥ 0 i.e. Re
{

𝜂Loc(j𝜔)
}(

1 −
𝑀𝑏 cos 𝜃𝑖

1 +𝑀∞ cos 𝜃𝑖

)

≥ 0. (12)

Eq. (12) is valid for any 𝜃𝑖 ∈ (0, 𝜋), as long as Re{𝜂Loc(j𝜔)} ≥ 0 (the local impedance operator should be passive) and 
−1 +𝑀∞ ≤𝑀𝑏 ≤ 1∕1 +𝑀∞.

The ABL absorption coefficient versus the angle of incidence is plotted in Fig.  2 for 𝑀∞ = 0.15, 𝜂Loc = 1 and different values of 
𝑀𝑏. Notice that the passivity condition on 𝑀𝑏 reported above assures a positive 𝛼 at any angle of incidence, while moving away 
from the passivity region brings about a larger range of angles of incidence 𝜃𝑖 for which 𝛼 < 0. Moreover, for 𝑀𝑏 < −1 +𝑀∞, the 
loss of acoustical passivity happens only for 𝜋∕2 < 𝜃𝑖 < 𝜋 (see Fig.  2(a)), while for 𝑀𝑏 > 1+𝑀∞, the passivity loss happens only for 
0 < 𝜃𝑖 < 𝜋∕2. This means that the ABL can become non-passive only for waves propagating with sgn(𝑘𝑥) = sgn(𝑀𝑏). As mentioned 
in [12], the dependence upon the angle of incidence of ABL acoustical passivity is a unique feature of the ABL with respect to 
classical liners, also in case of mean-flow. This angle-of-incidence dependency of ABL acoustical passivity manifests in a duct-mode 
dependent stability, which is analysed the next section.

3. Duct modes analysis in 2D waveguide

After having defined the passivity condition of the ABL on a semi-infinite domain, let us investigate the passivity and attenuation 
performances into an acoustic waveguide with mean flow, starting from the duct mode analysis. The general formulation of the 
4 
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Fig. 3. Sketch of the 2D infinite waveguide with airflow, and upper side lined by the ABL.

Fig. 4. Stability regions of duct-modes in the (𝑐𝐸,𝑚, Im{𝑘𝑥,𝑚})-plane.

duct-mode eigen-problem in presence of mean flow is provided in Appendix  A, and is solved by Finite Elements (FEs). The FE mesh 
has been built sufficiently fine to have large number of elements in the cross section and accurately resolve for each duct-mode 
shape of interest. We consider a 2D duct of section width ℎ = 0.111 m, with only the upper wall lined by the ABL, as in Fig.  3. 
According to the assumption of duct mode eigen-solution: 

�̄�𝑚(𝑡, 𝜔, 𝑥, 𝑦) = 𝐴𝑚𝜓𝑚(𝑦, 𝜔)𝑒j𝜔𝑡−j𝑘𝑥,𝑚(𝜔)𝑥, (13)

the duct mode analysis consists in computing the duct-mode eigenvalues (𝑘𝑥,𝑚) and eigenvectors (𝜓𝑚), while 𝐴𝑚 can be normalized 
at will. The duct-mode representation of the acoustic field, gives the occasion to define the average modal acoustic intensity 𝐼𝑥,𝑚
along 𝑥 and the modal overall acoustic energy 𝐸tot,𝑚. From the conservation of acoustic energy in case of irrotational and isentropic 
flow [5,41,42], the energy propagation speed along 𝑥 of mode 𝑚 [41,42] can be defined as the ratio between 𝐼𝑥,𝑚 and 𝐸tot,𝑚. 
From [5,40], the local modal acoustic intensity vector writes: 

𝐈𝑚(𝜔, 𝑥, 𝑦) =
1
2
Re

{(

�̄�𝑚(𝜔, 𝑥, 𝑦) +𝐌∞ ⋅ �̄�𝑚(𝜔, 𝑥, 𝑦)𝜌0𝑐0
)∗(

�̄�𝑚(𝜔, 𝑥, 𝑦) +𝐌∞
�̄�𝑚(𝜔, 𝑥, 𝑦)
𝜌0𝑐0

)}

, (14)

where �̄�𝑚 = (�̄�𝑥,𝑚, �̄�𝑦,𝑚) is the modal acoustic velocity vector, 𝐌∞ = 𝐕∞∕𝑐0 = (𝑀∞, 0), and the superscript ∗ indicating the complex 
conjugate. The x-component of 𝐈𝑚 writes: 

𝐼𝑥,𝑚(𝜔, 𝑥, 𝑦) =
1
2
Re

{(

�̄�𝑚(𝜔, 𝑥, 𝑦) +𝑀∞�̄�𝑥,𝑚(𝜔, 𝑥, 𝑦)𝜌0𝑐0

)∗(

�̄�𝑥,𝑚(𝜔, 𝑥, 𝑦) +𝑀∞
�̄�𝑚(𝜔, 𝑥, 𝑦)
𝜌0𝑐0

)}

, (15)

The modal velocity along 𝑥, �̄�𝑥,𝑚, is obtained from the Euler equation of acoustics, projected along 𝑥: 

− 𝜌0(𝜕𝑡 + 𝑈∞𝜕𝑥)𝑣𝑥,𝑚 = 𝜕𝑥𝑝𝑚. (16)

By replacing Eq. (13) in Eq. (16), we obtain: 

�̄�𝑥,𝑚(𝜔, 𝑥, 𝑦) =
𝐴𝑚
𝜌0𝑐0

𝑘𝑥,𝑚
𝑘0 −𝑀∞𝑘𝑥,𝑚

𝜓𝑚(𝑦) 𝑒j𝜔𝑡−j𝑘𝑥,𝑚𝑥. (17)
5 
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Fig. 5. Spectra of the modal energy propagation speed 𝑐𝐸,𝑚 and group velocity in case of hard-walled waveguide, for plane wave 1− (a) and 1+ (b), with varying 
𝑀∞.

Replacing Eqs.  (13) and (17) in Eq. (15), and integrating over the cross-section, we get the average modal acoustic intensity 
along 𝑥: 

𝐼𝑥,𝑚(𝑥, 𝜔) =
|𝐴𝑚|

2

2ℎ𝜌0𝑐0
𝑒2Im{𝑘𝑥,𝑚}𝑥

[

Re
{ 𝑘𝑥,𝑚
𝑘0 −𝑀∞𝑘𝑥,𝑚

}

(1 +𝑀2
∞) +𝑀∞

|

|

|

|

𝑘𝑥,𝑚
𝑘0 −𝑀∞𝑘𝑥,𝑚

|

|

|

|

2
+𝑀∞

]

∫

ℎ

0
|𝜓𝑚(𝑦)|

2d𝑦. (18)

From [5,41], we obtain the average modal kinetic and potential energies, 𝐸kin,𝑚 and 𝐸pot,𝑚 respectively, as: 

𝐸kin,𝑚(𝑥, 𝜔) =
1
2ℎ ∫

ℎ

0
Re

{

1
2
𝜌0(�̄�∗𝑚 ⋅ �̄�𝑚) + �̄�∗𝑚𝑀∞

�̄�𝑥,𝑚
𝑐0

}

d𝑦

=
|𝐴𝑚|

2

2𝜌0𝑐20ℎ
𝑒2Im{𝑘𝑥,𝑚}𝑥

[ (

1
2
|

|

|

|

𝑘𝑥,𝑚
𝑘0 −𝑀∞𝑘𝑥,𝑚

|

|

|

|

2
+𝑀∞Re

{ 𝑘𝑥,𝑚
𝑘0 −𝑀∞𝑘𝑥,𝑚

})

∫

ℎ

0
|𝜓𝑚(𝑦)|

2d𝑦

+ 1
2|𝑘0 −𝑀∞𝑘𝑥,𝑚|

2 ∫

ℎ

0
|𝜕𝑦𝜓𝑚(𝑦)|

2d𝑦
]

(19)

𝐸pot,𝑚(𝑥, 𝜔) =
1

4𝜌0𝑐20ℎ
∫

ℎ

0
�̄�∗𝑚�̄�𝑚d𝑦 =

|𝐴𝑚|
2

4𝜌0𝑐20ℎ
𝑒2Im{𝑘𝑥,𝑚}𝑥

∫

ℎ

0
|𝜓𝑚(𝑦)|

2d𝑦 (20)

Assuming isentropic (or adiabatic) flow, then 𝐸tot,𝑚 = 𝐸kin,𝑚 + 𝐸pot,𝑚. Hence, from Eqs. (18), (19) and (20), we can retrieve the 
modal energy propagation speed along 𝑥, defined as: 

𝑐𝐸,𝑚(𝜔) =
𝐼𝑥,𝑚(𝑥, 𝜔)
𝐸tot,𝑚(𝑥, 𝜔)

=
𝐼𝑥,𝑚(𝑥, 𝜔)

𝐸kin,𝑚(𝑥, 𝜔) + 𝐸pot,𝑚(𝑥, 𝜔)
, (21)

where the 𝑥-dependency disappears in 𝑐𝐸,𝑚, because numerator and denominator share the same function of 𝑥: 𝑒2Im{𝑘𝑥,𝑚}𝑥. The sign 
of 𝑐𝐸,𝑚 will inform us about the direction of propagation of the acoustic mode 𝑚 (toward +𝑥 if positive). The Im{𝑘𝑥,𝑚} instead, gives 
the attenuation (or amplification) rate of the modal acoustic intensity along the duct mode 𝑥-propagation, as it can be seen from 
Eq. (18). For a lossless waveguide, the modal energy propagation speed 𝑐𝐸,𝑚 coincides with the group velocity Re{𝜕𝜔∕𝜕𝑘𝑥,𝑚} [42].

In Fig.  5, we show the variation of 𝑐𝐸,𝑚 and Re{𝜕𝜔∕𝜕𝑘𝑥,𝑚} with 𝑀∞ for the plane wave modes propagating towards −𝑥 (mode 
1−) and +𝑥 (mode 1+), in a hard-wall case. It is easy to verify that 𝑐𝐸,𝑚 ≡ Re{𝜕𝜔∕𝜕𝑘𝑥,𝑚}. The spectra are focused in the frequency 
range [200, 1450] Hz to comply with the limits employed in the experimental testing. Notice that the cut-on frequency of the 
first duct-mode higher than the plane wave, for a hard-walled waveguide of cross-section height 0.111 m, without mean-flow, is 
𝑓1 = 1545 Hz. The cut-on frequencies, in case of a hard-walled 2D waveguide with flow, are given by 𝑓𝑚 = 𝑚 𝑐0

2ℎ

√

1 −𝑀∞, with 𝑚
any positive integer [5].

In the following, we analyse the dispersion solutions in a waveguide lined only on the top by the ABL (as in Fig.  3), in presence 
of mean-flow, and in the plane wave regime of the corresponding hard-walled waveguide.

The local impedance component 𝜁Loc of the ABL is a SDOF resonator, which is also the case for most of the actual tunable liners, 
as the ERs. The mass and stiffness terms of 𝜁Loc are taken proportional to the acoustic mass and stiffness of the open-circuit ER 
prototype employed in the experimental test-bench of Section 5, while the resistance term is taken as a fraction of the characteristic 
air impedance 𝜌0𝑐0. This convention follows the one provided in [12]. Hence: 

𝜁Loc(j𝜔) =
1

(

𝑀𝑑 j𝜔 + 𝑅𝑑 +
𝐾𝑑

)

, (22)

𝜌0𝑐0 j𝜔
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Fig. 6. Spectra of the modal energy propagation speed 𝑐𝐸,𝑚 and Im{𝑘𝑥,𝑚} in case of ABL lining the top boundary of the waveguide with 𝑀𝑏 = 0, 𝜇𝑀 = 0.5, 
𝑓𝑑 = 600 Hz and 𝑟𝑑 = 1, and varying 𝑀∞ for mode 1− (a), and for mode 1+ (b).

Fig. 7. Duct-mode shapes in case of ABL lining the top boundary of the waveguide, with 𝑀𝑏 = 0, 𝜇𝑀 = 0.5 and 𝑟𝑑 = 1, for mode 1− (a) and 1+ (b) at 𝑓𝑑 = 600 Hz, 
with varying 𝑀∞.

Table 1
Thiele-Small parameters of the ER.
 Model parameters 𝑀0 𝑅0 𝐾0 𝐵𝑙∕𝑆𝑒  
 Units kg/m2 Pa s/m Pa/m Pa A−1  
 Values 0.401 199.48 6.07 × 106 1.25 × 103 

where 𝑅𝑑 = 𝑟𝑑𝜌0𝑐0 is the desired resistance, while the desired reactive components are defined as 𝑀𝑑 = 𝜇𝑀𝑀0 and 𝐾𝑑 = 𝜇𝐾𝐾0, with 
𝑀0 and 𝐾0 the acoustic mass and stiffness of the open-circuit ER prototype employed in the experimental test-bench of Section 5. 
Their values are reported in Table  1. The resonance frequency 𝑓𝑑 of 𝜁Loc can be varied by tuning either the stiffness 𝜇𝐾 or the mass 
𝜇𝑀  parameters, as 𝑓𝑑 = 𝑓0

√

𝜇𝐾∕𝜇𝑀 , with 𝑓0 being the resonance frequency of the open-circuit ER (619 Hz).
Fig.  6(a) shows the energy propagation speed along 𝑥 of mode 1−, along with Im{𝑘𝑥,1−}, in case of 𝜇𝑀 = 0.5, 𝑟𝑑 = 1, 𝑓𝑑 = 600 Hz, 

for three values of 𝑀∞. Notice how, by increasing 𝑀∞, the attenuation rate of the upstream propagating mode 1− increases. Fig. 
6(b) shows the same spectra but for mode 1+, showing a reduction of the attenuation rate with increasing 𝑀∞. Fig.  7 shows the 
duct-mode shape evolution of modes 1− and 1+ with 𝑀∞, at 𝑓𝑑 = 600 Hz. Each mode shape 𝑚 is normalized to its absolute maximum: 
max𝑦{|𝜓𝑚(𝑦)|}. It is evident how, the upstream propagating mode 1− gets more and more curved as 𝑀∞ increases, while the opposite 
happens for mode 1+. Indeed, the mean-flow tends to reduce the effect of the locally-reacting liner on the downstream propagating 
mode, which almost approaches a plane wave solution. This non-reciprocal behaviour is naturally induced by the presence of a 
mean-flow 𝑀 ≠ 0, in a waveguide lined by a locally-reacting liner. In this regard, it is significant to remind that, in [12], it 
∞
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Fig. 8. Spectra of the modal energy propagation speed 𝑐𝐸,𝑚 and Im{𝑘𝑥,𝑚}, in case of 𝑀∞ = 0 and ABL lining the top boundary of the waveguide with 𝜇𝑀 = 0.5, 
𝑟𝑑 = 1, and varying 𝑀𝑏, for mode 1− (a), and mode 1+ (b).

Fig. 9. Duct-mode shapes in case of 𝑀∞ = 0 and ABL lining the top boundary of the waveguide with 𝜇𝑀 = 0.5, 𝑟𝑑 = 1, and varying 𝑀𝑏, for mode 1− (a), and 
mode 1+ (b). at 𝑓𝑑 = 600 Hz.

was pointed out that, for what concerns duct modes, a boundary advection speed 𝑀𝑏 (without airflow) had similar effects as a 
mean-flow 𝑀∞ in a duct with locally-reacting liners: as 𝑀∞ favours the downstream propagation and mainly opposes the upstream 
one, analogous results are obtained if the mean-flow 𝑀∞ is replaced by a boundary advection speed 𝑀𝑏 on a duct lined by the ABL. 
This is evident by comparing Figs.  6 and 7, with Figs.  8 and 9. Indeed, Figs.  8 and 9 are the dispersion solutions of modes 1− and 
1+ in case of 𝑀∞ = 0 and varying 𝑀𝑏. From Figs.  8(b) and 9(b), notice the perfect non-reciprocal behaviour achieved for 𝑀𝑏 = −1, 
when mode 1− becomes a perfect plane wave while mode 1+ is significantly attenuated around 𝑓𝑑 . Instead, for 𝑀𝑏 = 1.5, mode 1+
becomes unstable (𝑐𝐼,1+  and Im{𝑘𝑥,1+} have the same sign, check Fig.  4), as known from [12].

So far, the ABL with 𝑀𝑏 ≠ 0, has never been confronted with the presence of a mean-flow 𝑀∞ ≠ 0. After having analysed the 
effect of 𝑀∞ in case of a purely locally-reactive liner (𝑀𝑏 = 0), and the effect of 𝑀𝑏 in absence of mean flow (𝑀∞ = 0), we can 
now study the effect of the combination of 𝑀∞ ≠ 0 and 𝑀𝑏 ≠ 0 upon the least attenuated duct modes.

Fig.  10 shows the enhancement of attenuation of modes 1+ and 1− around 𝑓𝑑 = 600 Hz, when an 𝑀𝑏 with opposite sign of 
𝑐𝐸,𝑚 is applied. This enhancement increases as higher is |𝑀𝑏|, and enlarges the bandwidth towards lower frequencies, though 𝑓𝑑 is 
unchanged. Notice the highly non-reciprocal behaviour around 𝑓𝑑 , when 𝑀𝑏 approaches 1+𝑀∞ or −1+𝑀∞. However, contrary to the 
case without mean-flow reported in [12], perfect non-reciprocity is never achievable, because 𝑘𝑥,1± = ±𝑘0∕(1±𝑀∞) and 𝜓1± (𝑦) = 1, 
are never solutions of the eigenvalue problem of Eq. (A.3). Fig.  10 also shows that, for certain values of 𝑀𝑏, the Im{𝑘𝑥,1±} changes 
its sign, leading to unstable duct-mode propagation. Fig.  11 shows the spectra of 𝑐𝐸,𝑚 and Im{𝑘𝑥,𝑚} in case of ABL lining the top 
boundary of the waveguide, in case of 𝑀∞ = 0.15, with 𝜇𝑀 = 0.5, 𝑓𝑑 = 600 Hz and 𝑟𝑑 = 1, and varying 𝑀𝑏 around the limit of stable 
propagation of mode 1− (a, b), and 1+ (c). Notice that the range of 𝑀𝑏 for acoustical passivity in open field [−1 +𝑀∞, 1 +𝑀∞], 
found in Section 2, gives a good estimation of the stability range of modes 1+ and 1−.
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Fig. 10. Spectra of the modal energy propagation speed 𝑐𝐸,𝑚 and Im{𝑘𝑥,𝑚} in case of ABL lining the top boundary of the waveguide, in case of 𝑀∞ = 0.15, with 
𝜇𝑀 = 0.5, 𝑓𝑑 = 600 Hz and 𝑟𝑑 = 1, and varying 𝑀𝑏, for mode 1− (a), and for mode 1+ (b). In dashed black the axis Im{𝑘𝑥,𝑚} = 0.

Fig. 11. Spectra of 𝑐𝐸,𝑚 and Im{𝑘𝑥,𝑚} in case of ABL lining the top boundary of the waveguide, in case of 𝑀∞ = 0.15, with 𝜇𝑀 = 0.5, 𝑓𝑑 = 600 Hz and 𝑟𝑑 = 1, 
and varying 𝑀𝑏 around the limit of stable propagation of mode 1− (a), and 1+ (c). In (b), a zoom around the zero level of Im{𝑘𝑥,1− }. In dashed black the axis 
Im{𝑘𝑥,𝑚} = 0.

Fig. 12. Lining segment and scattering coefficients definition in a 2D waveguide lined on the upper side by the ABL.

4. Scattering simulations in 2D waveguide

In this section the ABL is analysed in terms of scattering performances in the plane wave regime of a 2D hard-walled waveguide 
of section ℎ = 0.111 m, lined on the upper boundary for a length of 0.25 m. The waveguide domain is modelled by a convected wave 
9 
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Fig. 13. Scattering coefficients in a 2D waveguide of cross section width ℎ = 0.111 m with lined segment of length 𝐿 = 0.25 m, lined on top by the ABL with 
𝑟𝑑 = 1, 𝜇𝑀 = 0.5, 𝑓𝑑 = 600 Hz, 𝑀𝑏 = 0, and varying 𝑀∞.

equation, with an inviscid and irrotational background mean-flow of 𝑀∞ < 1 as in Section 3. The scattering problem is illustrated 
in Fig.  12, where the reflection 𝑅𝑔 and transmission 𝑇𝑔 coefficients are defined for incident field directed toward either +𝑥 or −𝑥. 
The subscript 𝑔 is employed to differentiate the present grazing incidence from the oblique incidence scattering of Section 2. The 
ABL is applied continuously on the boundary of the waveguide in the lined segment. The scattering matrix is defined in Eq. (23) 
for the plane wave regime of a hard-walled duct. 

[

𝑝+down
𝑝−up

]

=

[

𝑇 +
𝑔 𝑅−

𝑔
𝑅+
𝑔 𝑇 −

𝑔

][

𝑝+up
𝑝−down

]

. (23)

The superscript signs + or − in Eq. (23), indicate the direction of propagation of the incident plane wave (toward either +𝑥 or 
−𝑥). The results in terms of scattering matrix coefficients, have been obtained by FE simulations in COMSOL Multiphysics. As in the 
duct mode analysis, the FE mesh has been built sufficiently fine to fully resolve both longitudinal and transversal pressure fields up 
to 𝑓𝑚𝑎𝑥 = 1.45 kHz. The scattering coefficients 𝑇 ±

𝑔  and 𝑅±
𝑔  are computed, by exciting first the left and then the right termination. 

The scattering performances are presented in terms of power scattering coefficients for both positive and negative propagation. The 
power scattering coefficients are defined from the power balance [43] which, in case of plane waves, reduces to: 

1 = 𝛼±𝑔 + |𝑇 ±
𝑔 |

2 + |𝑅±
𝑔 |

2, (24)

where 𝛼𝑔 is the absorption coefficient in grazing incidence. From |𝑇 ±
𝑔 |

2, it is possible to compute the Transmission Loss (𝑇𝐿±
𝑔 )𝐿𝑖𝑛𝑒𝑟 =

10 log10(1∕|𝑇 ±
𝑔 |

2), and the Insertion Loss 𝐼𝐿±
𝑔 = (𝑇𝐿±

𝑔 )𝐿𝑖𝑛𝑒𝑟 − (𝑇𝐿±
𝑔 )𝑅𝑖𝑔𝑖𝑑 . As (𝑇𝐿±

𝑔 )𝑅𝑖𝑔𝑖𝑑 = 0 in simulations, 𝐼𝐿±
𝑔 = (𝑇𝐿±

𝑔 )𝐿𝑖𝑛𝑒𝑟.
Fig.  13 shows the power scattering coefficients in case of 𝑟𝑑 = 1, 𝜇𝑀 = 0.5, 𝑀𝑏 = 0, in case of three different 𝑀∞. Notice how 

the 𝐼𝐿±
𝑔  follows the same trends as the Im{𝑘𝑥,1±} of Fig.  6. The tight correlation between 𝐼𝐿±

𝑔  and Im{𝑘𝑥,1±} is evident also in Fig. 
14 (to be compared with Fig.  8), where 𝑀∞ = 0 and 𝑀𝑏 is varied. Hence, by looking at Figs.  13 and 14, the analogous effect of 
varying 𝑀∞ and 𝑀𝑏 upon the isolation performances is confirmed also in terms of scattering coefficients.

From Fig.  14(b), we remark that, the presence of a synthetic advection speed 𝑀𝑏 > 0, leads to higher 𝐼𝐿−
𝑔  compared to the 

classical local impedance (𝑀𝑏 = 0), both in peak and bandwidth of efficient noise isolation. The optimization of the ABL is out of 
the scope of the present paper. Nevertheless, Appendix  B presents a brief comparison of the isolation performances obtained by the 
ABL and the classical benchmark of the Cremer impedance, demonstrating, once again, the potentiality of the ABL to go beyond 
the state-of-art.

The effect of varying 𝑀𝑏 in presence of a 𝑀∞ ≠ 0 is showed in Fig.  15. First of all, we notice the fear agreement between 
the Im{𝑘𝑥,1−} (Im{𝑘𝑥,1+}) of Fig.  10(a) (Fig.  10(b)), and the 𝐼𝐿−

𝑔  (𝐼𝐿+
𝑔 ) of Fig.  15(b) (Fig.  15(a)), confirming the tight correlation 

of isolation, non-reciprocity and passivity in the plane wave regime, with the dispersion solutions of the least attenuated duct 
modes, even in presence of a mean-flow 𝑀∞ ≠ 0. As far as isolation performances are concerned, increasing |𝑀𝑏| in opposite sign 
with respect to the direction of propagation meant to be attenuated, improves isolation. About non-reciprocity, it is evident how for 
𝑀𝑏 = 1 (𝑀𝑏 = −1), which is close to 1+𝑀∞ (1−𝑀∞), we obtain very good transmission towards +𝑥 (−𝑥) while high isolation towards 
−𝑥 (+𝑥). Concerning acoustical passivity, we can still detect that 𝐼𝐿+

𝑔  and 𝛼+𝑔  (𝐼𝐿−
𝑔  and 𝛼−𝑔 ) are negative for 𝑀𝑏 = 1.5 (𝑀𝑏 = −1

and 𝑀𝑏 = −1.5), in full coherence with the duct-mode simulations of Fig.  10. Nevertheless, we also notice some behaviours which 
are not predicted by the least-attenuated duct-mode simulations, therefore probably relating to the participation of higher-order 
duct-modes at the left and right interfaces of the lined segment with the rigid portions of the duct. For example, |𝑅+

𝑔 | is higher than 
1 in the frequency range between 910 and 1075 Hz, for 𝑀 = −1.5, hence leading to an 𝛼− < 0 in the same frequency band. A full 
𝑏 𝑔

10 



E. De Bono et al. Journal of Sound and Vibration 618 (2025) 119293 
Fig. 14. Scattering coefficients in case of 𝑀∞ = 0, with ABL parameters 𝑟𝑑 = 1, 𝜇𝑀 = 0.5, 𝑓𝑑 = 600 Hz, and varying 𝑀𝑏.

Fig. 15. Scattering coefficients in case of 𝑀∞ = 0.15, with ABL parameters 𝑟𝑑 = 1, 𝜇𝑀 = 0.5, 𝑓𝑑 = 600 Hz, and varying 𝑀𝑏.

understanding of such occurrence would require a detailed mode-matching analysis for the scattering evaluation, which is beyond 
the scope of the present paper. Nevertheless, we can speculate that 𝑀𝑏 = −1.5 is much beyond the stability limit of mode 1− (which 
is between 𝑀𝑏 = −0.86 and 𝑀𝑏 = −0.87 as showed in Fig.  11), therefore entailing a significant Im{𝑘𝑥,1−} < 0, as showed in Fig. 
10(a). This means that even a small participation of mode 1− in the backward reflection at the left interface between the rigid and 
lined segments, can induce a high reflection coefficient. Another unexpected result is 𝛼+𝑔  becoming slightly negative for frequencies 
lower than 360 Hz, in case of 𝑀𝑏 = −1 and −1.5. This time, the negative 𝛼+𝑔  is not accompanied by either 𝐼𝐿+

𝑔 < 0 or |𝑅+
𝑔 | > 1, but 

is the combination of reflected and transmitted energy which overcomes the incident one, therefore leading to an 𝛼+𝑔 < 0, according 
to Eq. (24). Notice that these specific passivity issues were not encountered in [12], where no mean-flow was considered. Moreover, 
these unexpected behaviours at some frequencies, only happen when 𝑀∞ and 𝑀𝑏 have opposite signs, which might also suggest 
the impact of introducing a negative boundary convection upon a positively convected air-domain, which might introduce surface 
waves. A full analysis of these special behaviours is not required at this stage. In fact, the contact between the boundary convection 
introduced by the ABL, and the convected air-domain, is not featured in the actual experimental setup presented in Section 5, where 
a wiremesh, supported by a perforated plate, separate the convected air-domain from the EL interface.

The 2D simulations reported in the present section and in Section 3, highlight the potentialities of the ABL in terms of noise 
isolation and non-reciprocal propagation also in presence of airflow. These results give us sufficient confidence to experimentally 
implement the ABL in an actual convected waveguide, as done in the following section.
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Fig. 16. CAIMAN wind tunnel available at the LMFA of ECL: Entire view (a), with downstream anechoic termination and silencer (b), internal view of the 
pneumatic sources (c) applied both upstream and downstream the lined segment, convergent flow-inlet and the attached upstream anechoic termination (d).

Fig. 17. Schematics of the CAIMAN test-rig.

Fig. 18. Lined segment of the waveguide (a), with the EL applied on top, upstream and downstream microphones for the scattering evaluation; in (b) a photo 
of the EL and in (c) the EL covered by wiremesh.

5. Experimental results

In this section, the ABL is experimentally tested on an array of 5 ER prototypes lining the central segment of a waveguide with 
rectangular cross-section of size 0.111×0.07 m. The waveguide is the CAIMAN wind-tunnel [44] of the LMFA in the ECL, illustrated 
in Fig.  16a. In Fig.  16b and c, the downstream and upstream terminations are focused, with their exponential shape to minimize 
reflections. The upstream termination is preceded by the convergent flow-inlet, while the downstream termination is followed by 
a silencer to minimize the noise radiated outside. The pneumatic sources are placed into two boxes, as showed in Fig.  16c, both 
upstream and downstream the lined segment and sufficiently far from the microphones for neglecting evanescent waves (according 
to [45]). The overall geometry of the test-bench is resumed in the schematics of Fig.  17. The lined segment is focused in Fig.  18a. The 
EL composed of 5 ERs is showed in Fig.  18b without the covering wiremesh, and in Fig.  18c with the frontal wiremesh (supported 
by a perforated plate) needed in order to protect the ERs from the flow. The acoustic properties describing the wiremesh as a porous 
medium [46] are detailed in Table  2 as reported in [7], referring to the wiremesh I130, and its thickness is 0.151 mm.

The photo in Fig.  19a shows the front side of the ER, equipped by a loudspeaker and 4 surrounding microphones (A, B, C and 
D), to retrieve an estimation of the pressure �̂� and its x-derivative �̂�𝑥𝑝 on the speaker diaphragm. The control strategy is unchanged 
with respect to [12], but is resumed here for sake of clarity. It is based on model-inversion [16,36] and employs the loudspeaker 
12 
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Fig. 19. ER prototype frontal (a) and rear (b) views, and schematics of the control architecture (c).

Table 2
Model parameters of the ER.
 Wiremesh parameters Flow resistivity Porosity Tortuosity Viscous length Thermal length 
 Units rayls/m = Pa s/m2 − − − −  
 Values 2.7 × 106 0.4 1.3 0.2 1  

Thiele-Small SDOF model [47] reported in Eq. (25), in terms of the Laplace variable 𝑠: 

𝑍0(𝑠)�̄�(𝑠) = �̄�(𝑠) − 𝐵𝑙
𝑆𝑒
𝑖(𝑠). (25)

In Eq. (25), �̄�(𝑠) and �̄�(𝑠) are the acoustic pressure and velocity, respectively, on the speaker diaphragm, 𝑖(𝑠) is the electrical 
current in the speaker coil, 𝑍0(𝑠) = 𝑀0𝑠 + 𝑅0 + 𝐾0∕𝑠 is the acoustical impedance of the loudspeaker in open circuit, with 𝑀0, 𝑅0
and 𝐾0 the corresponding acoustical mass, resistance and stiffness. The electrical current 𝑖(𝑠) is multiplied by the force factor 𝐵𝑙 to 
get the electromagnetic force, and divided by the effective area 𝑆𝑒 to retrieve an equivalent pressure. Observe that the impedance 
description of Eq. (25) is a lumped-element model, which is reliable as long as the wavelength of the acoustic field is sufficiently 
larger than the size of the speaker diaphragm. This is true for any local impedance modelling. The upper frequency of validity of 
the lumped-element assumption is much beyond the frequency range of validity of the SDOF loudspeaker-model, which lies around 
the first speaker mode (around 600 Hz). Therefore, both the lumped-element assumption and the SDOF model are valid around the 
principal resonance of the ERs.

The ABL is implemented by defining the electrical current 𝑖(𝑠) as in Eq. (26): 
𝑖(𝑠) = 𝐻Loc(𝑠) ̂̄𝑝(𝑠) +𝐻grad(𝑠)�̂�𝑥�̄�(𝑠), (26)

where ̂̄𝑝(𝑠) and 𝜕𝑥�̄�(𝑠) are the estimated local pressure and its x-derivative on each speaker diaphragm, in the Laplace domain. The 
local sound pressure is estimated by averaging the four microphones’ signals �̂� = (𝑝𝐴 + 𝑝𝐵 + 𝑝𝐶 + 𝑝𝐷)∕4, while the x-derivative is 
estimated by a first-order finite difference �̂�𝑥𝑝 =

(

(𝑝𝐶 + 𝑝𝐷) − (𝑝𝐴 + 𝑝𝐵)
)

∕𝛥𝑥, with 𝛥𝑥 the distance between the microphones before 
(A, B) and after (C, D) each ER speaker, along the 𝑥-direction.

The transfer functions 𝐻Loc(𝑠) and 𝐻grad(𝑠) are obtained by equating the velocity of the speaker diaphragm �̄� to 𝑠�̄�𝑦, where �̄�𝑦
the normal displacement given by Eq. (7) with 𝑠 = j𝜔. Hence, we get the expressions in the Laplace space of 𝐻Loc and 𝐻grad, in Eqs. 
(27) and (28), respectively. 

𝐻Loc(𝑠) =
𝑆𝑒
𝐵𝑙

(

1 −
𝑍0(𝑠)
𝑍Loc(𝑠)

)

, (27)

𝐻grad(𝑠) = −
𝑆𝑒
𝐵𝑙

𝑍0(𝑠)
𝑍Loc(𝑠)

𝑈𝑏
𝑠
𝐹ℎ𝑝(𝑠), (28)

where 𝐹ℎ𝑝(𝑠) in 𝐻grad(𝑠) is a high-pass filter necessary in order for 𝐻grad(j𝜔) not to become infinite for 𝜔 → 0. The Thiele-Small 
parameters appearing in Eq. (25), and listed in Table  1, are identified by acoustic measurements, as described in [48]. Further 
details upon such control strategy can be found in [17,36].

Each ER is controlled autonomously, and the control architecture is illustrated in Fig.  19c: the signals �̂� and �̂�𝑥𝑝 on the speaker 
diaphragm, after being digitally converted by the Analogue-Digital-Converter (ADC), are fed into a programmable digital signal 
processor (DSP) where the output of the control is computed at each time step. The Howland current pump [49] allows to enforce 
the electrical current 𝑖 in the speaker coil independently of the voltage at the loudspeaker terminals. It consists of an operational 
13 
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Fig. 20. Effect of wiremesh on the scattering coefficient, in case of 𝑀∞ = 0, and ABL with 𝑀𝑏 = 0, 𝑟𝑑 = 1, 𝜇𝑀 = 0.5, and 𝑓𝑑 = 𝑓0.

Fig. 21. Experimental scattering coefficients, in case of ABL parameters 𝑟𝑑 = 0.25, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0 Hz, and 𝑀𝑏 = 0, and with varying 𝑀∞.

amplifier, two input resistors 𝑅𝑖, two feedback resistors 𝑅𝑓 , and a current sense resistor 𝑅𝑠. The resistance 𝑅𝑑 and capacitance 
𝐶𝑓  constitutes the compensation circuit to ensure stability with the grounded load [50]. The digital processing instructions are 
downloaded on the embedded microprocessor (shown in Fig.  19b) from an external interface communicating directly with the user 
laptop, where the desired control law is defined.

The four scattering coefficients have been estimated according to the two-source method [51]. The excitation signal for the 
acoustic sources is a band-limited white-noise in case of 𝑀∞ = 0, or pure tones (by frequency steps of 25 Hz) in case of 𝑀∞ ≠ 0 (in 
order to maximize the signal-to-noise ratio). In both cases, the frequency spectrum covered by the excitation signals is between 200 
to 1450 Hz. The high frequency limit assures to be sufficiently below the cut-on frequency of the first higher duct-mode (1545 Hz), 
while the low frequency limit is to avoid the impact of structural vibrations in the acoustic pressure measurements. The scattering 
coefficients are plotted along with the ones measured in the benchmark configuration, where the liner is replaced by a rigid wall. The 
inevitable dissipation of the rigid benchmark appears as very low values of reflection and absorption coefficients. The Insertion Loss 
is obtained by subtracting the Transmission Loss of the lined configuration from the one measured in the rigid reference, therefore 
the Insertion Loss of the rigid benchmark is identically equal to zero.

Fig.  20 shows the effect of the wiremesh on the scattering coefficients, in case of 𝑀∞ = 0 and ABL with 𝑟𝑑 = 1, 𝜇𝑀 = 0.5, 
𝑓𝑑 = 𝑓0 and 𝑀𝑏 = 0. The effect of the wiremesh is to slightly decrease the Insertion Loss peak (of about 1 dB), to mildly shift its 
frequency towards lower values, and slightly enlarge the corresponding bandwidth. These effects can be modelled, in a first order 
approximation, by a small increase of the resistance of an equivalent liner comprising both EL and wiremesh. Indeed, an increase 
of resistance in the ABL leads to a reduction of the peak and a slight increase of the efficient 𝐼𝐿  bandwidth, as showed both 
𝑔
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Fig. 22. Experimental scattering coefficients, in case of 𝑀∞ = 0.15, and with ABL parameters 𝑟𝑑 = 0.25, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0, and varying 𝑀𝑏.

Fig. 23. Experimental scattering coefficients, in case of 𝑀∞ = 0.3, and with ABL parameters 𝑟𝑑 = 0.25, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0, and varying 𝑀𝑏.

numerically and experimentally in [12]. Nevertheless, a full numerical modelling of the experimental setup, comprising EL and 
wiremesh, is provided and validated in Appendix  C.

Fig.  21 shows the scattering coefficients measured with ABL synthesized on the EL, with 𝑀𝑏 = 0, 𝑟𝑑 = 0.25 and 𝜇𝑀 = 0.5, in 
case of varying 𝑀∞. The three different flow Mach numbers are reached by properly setting the rotational speed of the CAIMAN 
flow-generating fan [44], and measured by hot-wire anemometer. The trends featured by the Insertion Losses follow coherently 
the ones expected by both 2D scattering simulations (check Fig.  13) and 2D duct-mode analyses (check the Im{𝑘𝑥,1±} of Fig.  6). 
It is evident the natural non-reciprocal behaviour induced by the mean-flow: higher 𝑀∞ enhances noise isolation of the locally-
reacting EL for upstream propagation (the 𝐼𝐿−

𝑔  peak increases from 8.5 dB at 𝑀∞ = 0, to 13.4 dB at 𝑀∞ = 0.3), while favouring 
downstream transmission (𝐼𝐿+

𝑔  peak decreases from 8.5 dB at 𝑀∞ = 0, to 4.3 dB at 𝑀∞ = 0.3). Fig.  22 shows the effect of 
varying 𝑀𝑏 when 𝑀∞ = 0.15, with 𝑟𝑑 = 0.25, 𝜇𝑀 = 0.5 and 𝑓𝑑 = 𝑓0. As expected by 2D duct-mode dispersion solutions (Fig. 
10) and 2D scattering simulations (Fig.  15), increasing |𝑀𝑏| with opposite sign with respect to the direction to isolate, augments 
the corresponding Insertion Loss, despite the mean-flow. In particular, the 𝐼𝐿+

𝑔  peak can be increased from 6.3 dB for 𝑀𝑏 = 0 to 
9 dB for 𝑀𝑏 = −2, while the 𝐼𝐿−

𝑔  peak can be increased from 9.4 dB for 𝑀𝑏 = 0 to 16.6 dB for 𝑀𝑏 = 2.
Notice that, for 𝑀𝑏 = −1 the simulations predicted a non-passive behaviour of the ABL (Im{𝑘𝑥,1−} changing sign in Fig.  10(a), 

while 𝐼𝐿−
𝑔  and 𝛼−𝑔  becoming negative in Fig.  15(b)). This is not detected by the experimental scattering curves and is mainly due to 

the presence of the wiremesh which adds dissipation in the system, therefore increasing the passivity margins of the ABL. However, 
for 𝑀𝑏 = ±2, the non-passivity of the ABL is still manifested slightly above 𝑓𝑑 . Observe that the physiological uncertainties in the 
loudspeaker model and the time delay of the digital control, prevents the speaker own dynamics to be fully cancelled out by the 
model-inversion controller. This is responsible of the slight oscillation in frequency of 𝐼𝐿+

𝑔  (𝐼𝐿−
𝑔 ) and 𝛼+𝑔  (𝛼−𝑔 ) for 𝑀𝑏 = −2 (𝑀𝑏 = 2) 

around resonance (see [12,36]). Fig.  23 shows the same scattering coefficients obtained in case of 𝑀 = 0.3 with varying 𝑀 . First 
∞ 𝑏
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Fig. 24. Experimental Insertion Losses, in case of 𝑀∞ = 0.15 (a) and 𝑀∞ = 0.3 (b), with ABL parameters 𝑟𝑑 = 0.25, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0, and 𝑀𝑏 = ±2.

of all, notice that, contrary to the case of 𝑀∞ = 0.15, reducing 𝑀𝑏 below −0.5 does not lead to any significant increase in 𝐼𝐿+
𝑔 , 

whose peak does not overcome 5 dB, compared to the 4.3 dB reached in case of 𝑀𝑏 = 0. Indeed, as 𝑀∞ augments, it is increasingly 
harder to oppose the natural reduction of the downstream isolation capability of the liner induced by airflow.

On the other hand, looking at 𝐼𝐿−
𝑔 , the ABL isolation is helped by higher 𝑀∞. Indeed, introducing an 𝑀𝑏 > 0 allows to increase 

the 𝐼𝐿−
𝑔  peak from 10.8 dB for 𝑀𝑏 = 0, to more than 16 dB for 𝑀𝑏 = 1. Observe that, increasing 𝑀𝑏 from 1 to 2, leads to a 

reduction of the 𝐼𝐿−
𝑔  peak, suggesting the presence of an optimal value of 𝑀𝑏, which should take into account both the EL and 

the specific wiremesh. A detailed 3D model is provided and validated in Appendix  C, for future optimization purposes. As far as 
passivity is concerned, notice that in case of 𝑀∞ = 0.3, an 𝑀𝑏 = 2 no longer entails a negative 𝐼𝐿+

𝑔  and 𝛼+𝑔 . Indeed, coherently with 
the discussion in the previous sections, the upper limit on 𝑀𝑏 for the ABL acoustical passivity, should increase with 𝑀∞.

Finally, Fig.  24 highlights the non-reciprocal behaviour experimentally accomplished by the ABL. The Insertion Loss correspond-
ing to the two directions of noise transmission are compared for a fixed 𝑀𝑏. If upstream transmission must be avoided, 𝑀𝑏 is 
chosen equal to 2, while an 𝑀𝑏 = −2 is selected to oppose downstream transmission. The reason why we have chosen such 𝑀𝑏
values is that they allowed to achieve highest non-reciprocal propagation while retaining sufficient acoustical passivity. Because of 
the natural non-reciprocity induced by the mean-flow, it is clear that higher non-reciprocal propagation is obtained when upstream 
transmission must be opposed, with (𝐼𝐿−

𝑔 − 𝐼𝐿+
𝑔 ) reaching a peak of 15 dB around 𝑓0 and staying above 5 dB between 500 and 

675 Hz. Nevertheless, if the downstream transmission is meant to be contrasted, the ABL is still capable to reverse the natural 
non-reciprocity induced by the mean-flow for 𝑀∞ = 0.15, with (𝐼𝐿+

𝑔 − 𝐼𝐿−
𝑔 ) reaching a peak of 7.5 dB and staying above 4 dB 

between 550 Hz and 650 Hz. A non-reciprocal device which does not exploit the mean-flow (as instead done in [37,38]), but, on 
the contrary, is capable to induce a non-reciprocal propagation in the opposite sense with respect to the one naturally induced by 
airflow, is unprecedented to the best of authors’ knowledge. However, as already remarked in Fig.  23(a), the efficiency of the liner, 
and hence of the ABL, is very much weakened at 𝑀∞ = 0.3, for which the targeted non-reciprocal propagation when 𝑀𝑏 = −2 is 
only mildly achieved in a narrow bandwidth above 𝑓𝑑 (see Fig.  24(b)), and reversed for frequencies below 𝑓𝑑 . On the other hand, if 
upstream isolation is targeted with 𝑀𝑏 = 2, (𝐼𝐿−

𝑔 −𝐼𝐿
+
𝑔 ) features a peak of about 13 dB and stays above 6 dB from 475 Hz to 675 Hz. 

The reduction of non-reciprocal performances with 𝑀∞, when sign(𝑀𝑏) = −sign(𝑀∞), is physically understandable, as the synthetic 
advection works only on the boundary, while the mean-flow impact the entire waveguide cross-section. In order to counteract the 
flow effect, higher synthetic advection speeds should be implemented. Nevertheless, the presence of the wiremesh also limits the 
potentials of the ABL, which cannot overcome the highest isolation achieved for an optimal 𝑀𝑏.

In this section, the ABL potentials have been experimentally validated against airflows of Mach 0.15 and 0.3. We demonstrated 
that also in presence of flow, the ABL is still capable of enhancing the isolation of locally-reacting operators. No significant passivity 
issues have been observed, also thanks to the frontal wiremesh which enlarges the acoustical passivity margins (similarly to the 
porous layer applied in [36]). On the other hand, the presence of the wiremesh limits the potentials of the synthetic boundary 
advection. Hence, for optimizing the liner performances, the presence of the wiremesh should be taken into account. This is out of 
the scope of the present paper, which aims at demonstrating the ABL potentialities in presence of flow, reserving the optimization 
stage for specific purposes to a dedicated future work. In Appendix  C though, a 3D model including the wiremesh, is validated against 
the measured scattering coefficients and provides an useful tool for future optimizations. Finally, we experimentally demonstrated 
that the ABL can oppose, and even reverse, the natural non-reciprocity induced by the airflow at sufficiently low Mach numbers. 
This result is unprecedented in the vast literature of non-reciprocal devices [15].
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6. Conclusions

This paper demonstrates the potentials of the Advection Boundary Law operator synthesized on the upper boundary of a 
waveguide with subsonic mean-flow, in terms of both noise isolation and non-reciprocal propagation, in the plane wave regime. This 
study starts with the analytical evaluation of the Advection Boundary Law performances in open-field (Section 2), which provides 
important guidelines for the acoustical passivity limits of such special boundary operator. Then, we provide the duct-mode dispersion 
solutions in a 2D infinite waveguide (Section 3), and the scattering simulations of the corresponding 2D lined segment (Section 4). 
The scattering performances are highly correlated with the dispersion solutions. Both types of simulations illustrate the similarity 
between the effect of a mean-flow in the waveguide, and the ABL influence on the least attenuated duct-modes and, therefore, on 
the scattering performances in the plane wave regime. Introducing a synthetic boundary advection against the direction of incoming 
noise, allows to improve the noise isolation in that direction, also in presence of mean-flow. Such simulations have allowed to gain 
sufficient confidence for the experimental implementation of Section 5, in the CAIMAN wind-tunnel, available in the Laboratory 
of Fluid Mechanics and Acoustics of the Ecole Centrale de Lyon. We have resumed the control strategy employed to synthesize 
the Advection Boundary Law on the Electroacoustic Liner, which is covered by a frontal wiremesh in order to protect it from the 
flow. After having evaluated the effect of such wiremesh in the measured scattering coefficients, we have provided the scattering 
performances of the Advection Boundary Law confronted with mean-flows of Mach 0.15 and 0.3. In both cases, the synthetic 
boundary advection allows to improve the isolation in the direction opposite to the artificial boundary advection speed. Nevertheless, 
increasing the flow speed weakens the downstream isolation performances. Moreover, the presence of the frontal wiremesh entails an 
optimal value of the synthetic boundary advection speed. As non-reciprocal propagation is concerned, the Advection Boundary Law 
has demonstrated to be able to counteract the natural non-reciprocal effect induced by the flow. Nevertheless, as Mach reaches 0.3, 
the non-reciprocity induced by the Advection Boundary Law targeting higher isolation in the downstream direction, is significantly 
reduced. However, for sufficiently low Mach numbers (such as 0.15), the Advection Boundary Law has demonstrated to be able 
to reverse the natural non-reciprocal propagation induced by the mean-flow. A device which does not exploit mean-flow to favour 
its non-reciprocal isolation performances, has never been conceived before, to the best of the authors’ knowledge, and represent a 
unique achievement of the Advection Boundary Law. Finally, in Appendix  C, a 3D model of the waveguide is provided, including 
the wiremesh, which could be exploited for future optimization studies. The next step of this research will concern the Advection 
Boundary Law confronting with complex multi-modal sound fields, which are more representative of those actually excited in 
turbofan engines.
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Appendix A. Duct modes problem formulation

Consider a 2D infinite duct of constant cross-section ℎ along 𝑦 (as in Fig.  3) with treated boundary at 𝑦 = 0 of normal 𝐧 ≡ �̂�, with 
�̂� the unit vector along 𝑦. Assuming a time-harmonic sound field in the usual complex notation (+j𝜔𝑡) in the duct, the convected 
wave equation reduces to the convected Helmholtz equation: 

∇2�̄� = (j𝑘0 +𝑀∞𝜕𝑥)2�̄�. (A.1)

Such sound field must also satisfy the ABL on 𝑦 = 0, given by Eq. (8). The solution to this problem can be written as: 

�̄�(𝑡, 𝜔, 𝑥, 𝑦) = 𝑒j𝜔𝑡
∞
∑

𝐴𝑚𝜓𝑚(𝜔, 𝑦)𝑒−j𝑘𝑥,𝑚(𝜔)𝑥, (A.2)

𝑚=0
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Fig. B.1. Comparison between the ABL and the Cremer impedance both in terms of dispersion solutions (a), and scattering coefficients (b), in a 2D waveguide.

where 𝜓𝑚(𝑦), the so-called duct modes, solutions of the eigenvalue problem:

𝜕2𝑦𝜓𝑚(𝜔, 𝑦) =
(

−𝑘20 + 2𝑀∞𝑘0𝑘𝑥,𝑚 + (1 −𝑀2
∞)

)

𝜓𝑚(𝜔, 𝑦) for y ∈ [0, ℎ] (A.3a)

𝜕𝑦𝜓𝑚(𝜔, 𝑦) = −j𝑘0𝜂Loc

[

1 − (𝑀𝑏 + 2𝑀∞)
𝑘𝑥,𝑚
𝑘0

+ (𝑀2
∞ + 2𝑀∞𝑀𝑏)

(𝑘𝑥,𝑚
𝑘0

)2
−𝑀2

∞𝑀𝑏

(𝑘𝑥,𝑚
𝑘0

)3]

𝜓𝑚(𝜔, 𝑦) for 𝑦 = 0, (A.3b)

where the eigenfunctions are the duct-mode shapes 𝜓𝑚(𝜔, 𝑦) and the eigenvalues are the wavenumbers 𝑘𝑥,𝑚. Observe that Eq. (A.3a) 
is obtained by replacing Eq. (A.2) in Eq. (A.1), while Eq. (A.3b) is obtained by replacing Eq. (A.2) in Eq. (8). Notice that, for 𝑀∞ = 0, 
we retrieve the eigenvalue problem of duct modes in absence of mean flow, reported in [12]. Observe also that a mean-flow 𝑀∞ ≠ 0, 
or an ABL with 𝑀𝑏 ≠ 0, brings about the presence of the eigenvalue 𝑘𝑥,𝑚 also in the BC. Solutions for such eigenvalue problem can 
be found by Finite Elements (FEs), where the BC of Eq. (A.3b) is assimilated in the weak formulation of Eqs. (A.3), in an analogous 
way as reported in Appendix A of [12].

Appendix B. Comparison with Cremer impedance

In this Appendix, the ABL is compared to a local SDOF impedance tuned on the Cremer one [2,3] at a target frequency. The 
tuning of the local SDOF impedance is obtained by imposing the 𝜁Loc of Eq. (22), equal to the Cremer normalized impedance: 

𝜁cre(𝜔) = (𝑎cre − j𝑏cre)
𝑘0ℎ
𝜋
, (B.1)

with 𝑎cre = 0.929 and 𝑏cre = 0.744, from [5]. Hence, by imposing 𝜁Loc = 𝜁cre at a target frequency 𝑓𝑡 = 520 Hz, we obtain the following 
parameters for 𝜁Loc: 

𝑓𝑑 = 𝑓𝑡

√

1 +
𝜌0𝑏creℎ
𝜋𝜇𝑀𝑀0

(B.2a)

𝑟𝑑 = 𝑎cre
2𝑓𝑡ℎ
𝑐0

. (B.2b)

Hence, for any choice of 𝜇𝑀 , it is possible to find the 𝑓𝑑 (and hence the 𝜇𝐾 from 𝑓𝑑 = 𝑓0
√

𝜇𝐾∕𝜇𝑀 ) and 𝑟𝑑 from Eqs. (B.2) and 
(B.2b), such that 𝜁Loc = 𝜁cre at 𝑓𝑡.

Remind that the normalized Cremer impedance 𝜁Loc of Eq. (B.1), if applied on one side of a 2D infinite waveguide, provides the 
coalescence of 𝑘𝑥,1 and 𝑘𝑥,2 [2,3], with the duct modes numbered from the least attenuated one (which is mode 1) in ascending 
order, as done in Section 3. This means that 𝜁Cre provides the highest attenuation of mode 1, i.e. the maximum value of |Im{𝑘𝑥,1}|, 
assuring the highest transmission loss in an infinite waveguide.

In Fig.  B.1, we compare the performances of the 𝜁cre, with the 𝜁Loc tuned on 𝜁cre at 𝑓𝑡, and with the ABL with a 𝑀𝑏 = 0.5 and 
𝑟𝑑 = 0.25. Fig.  B.1(a) compares the three impedances in terms of dispersion solutions of mode 1− (employing the same indicators as 
in Section 3), while Fig.  B.1(b) shows the corresponding scattering coefficients. Notice that 𝜁cre provides the highest |Im{𝑘𝑥,1−}| at 
all frequencies, reached by 𝜁Loc at 𝑓𝑡 = 520 Hz. Nevertheless, the ABL is capable to improve the 𝐼𝐿−

𝑔  at 𝑓𝑡 and enlarge the bandwidth 
of highest isolation, thanks to a significant increase of the backward reflection |𝑅−

𝑔 |
2. Indeed, in a duct with finite dimension, the 

mode-merging design method fails to provide the highest 𝑇𝐿𝑔 [52], due to the effect of backward reflection. A detailed discussion 
about the optimality of the Cremer impedance and its relationship with real operators (such as SDOF resonators or the ABL itself) 
is out of the scope of the present paper. Nevertheless, Fig.  B.1 provides an opening about this topic.
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Fig. C.1. 3D model for scattering simulations.

Fig. C.2. Comparison between the 3D simulations and the experimental results, in case of 𝑀∞ = 0, with ABL parameters 𝑟𝑑 = 1, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0, without 
wiremesh (a) and with wiremesh (b).

Appendix C. Scattering simulations in 3D waveguide

In this section, we provide a 3D numerical model which is more representative of the actual lined segment applied in the CAIMAN 
test-rig. Fig.  C.1a shows the 3D waveguide geometry along with the definition of the first column of the scattering matrix of Eq. (23). 
Fig.  C.1b zooms on the lined segment. Notice that the ABL is applied on the circles representing the ERs’ speakers, by imposing 
the normal displacement given by Eq. (7). Each ER cell is separated by rigid internal walls, and is facing an air-gap of about 5 mm 
between the ERs’ speakers and the wiremesh. The inviscid and irrotational mean-flow along 𝑥 is defined in the entire waveguide, 
except in the domain representing the wiremesh and the adjacent air-gaps. This approximation serves to simulate the separation, 
the wiremesh is supposed to achieve, between the convected air-domain from the one facing the EL. A vortex sheet internal BC is 
applied at the interface of the wiremesh with the convected air domain, assuring the continuity of the normal stress (the pressure) 
and the normal displacement, while allowing for a jump in the tangential component of the total velocity. The wiremesh domain 
is modelled by defining the effective sound speed and density from the Johnson–Champoux–Allard (JCA) model [46] based upon 
the parameters listed in Table  2. Observe that the perforated plate supporting the wiremesh has large perforations which allow, at 
a first stage, to consider the plate as acoustically transparent.

The scattering problem is solved in frequency domain by FEs in COMSOL. Figs.  C.2 to C.4 show the comparison of the scattering 
coefficients obtained by the 3D simulations and by experimental measurements in the actual CAIMAN test-rig. In particular, we 
validate the 3D numerical model against the effect of wiremesh (Fig.  C.2), the effect of 𝑀∞ (Fig.  C.3) and the effect of 𝑀𝑏 (Fig. 
C.4). Fig.  C.2 compares the 3D simulations with the experiments for 𝑀∞ = 0, with ABL parameters 𝑟𝑑 = 1, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0, 
in case of no wiremesh (Fig.  C.2a) and with wiremesh (Fig.  C.2b). Notice that the shape of the Insertion Losses is well captured 
by the 3D model, especially around resonance. The experimental absorption coefficients deviate from the numerical ones below 
and after resonance. This is so, because of the natural dissipation present in the physical system. The experimental reflection 
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Fig. C.3. Experimental Insertion Losses, in case of varying 𝑀∞, with ABL parameters 𝑟𝑑 = 0.25, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0, and 𝑀𝑏 = 0.

Fig. C.4. Comparison between experiments and 3D simulations, in terms of the coefficients of the second column of the scattering matrix of Eq. (23), in case 
of 𝑀∞ = 0.15, with ABL parameters 𝑟𝑑 = 0.25, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0, and 𝑀𝑏 = 1 (a) or 𝑀𝑏 = 2 (b).

coefficients’ spectra feature additional oscillations in frequency compared to the numerical ones. However, considering the scale of 
the power reflection coefficient, these errors do not significantly impact the isolation levels. Fig.  C.3 shows the comparison between 
3D simulations and measurements in case of ABL with 𝑀𝑏 = 0, 𝑟𝑑 = 0.25, 𝜇𝑀 = 0.5, 𝑓𝑑 = 𝑓0 and varying 𝑀∞. The increase of 𝐼𝐿−

𝑔
with 𝑀∞ is very well captured. Some discrepancy, instead, can be noticed on the 𝐼𝐿+

𝑔  plots, especially in case of 𝑀∞ = 0.3. At 
higher 𝑀∞, the 𝐼𝐿+

𝑔  is reduced, therefore even errors below 1 dB become more evident. Nevertheless, we should keep in mind the 
large simplifications involved in the modelling of both the air-domain (inviscid and irrotational fluid) and the ERs. Moreover, the 
experimental campaign was conducted in different days, which presented different environmental conditions (such as temperature 
and humidity) which significantly impact the mechanical properties of the ERs’ speakers [53]. This adds up to the inevitable model 
uncertainties, such as also time-delay [36] of the digital controller. However, it is interesting to notice that, for 𝑀∞ = 0.3, the 3D 
simulations are able to capture also the oscillations of 𝐼𝐿+

𝑔  in the high frequencies. Finally, in Fig.  C.4 the comparison between 
3D simulations and experiments is reported in case of 𝑀∞ = 0.15 and ABL with 𝑀𝑏 = 1 (Fig.  C.4a) and 𝑀𝑏 = 2 (Fig.  C.4b). As 
in Fig.  C.2, the largest percentage errors appear in the reflection coefficients, especially close to 𝑓𝑑 , despite the general trends of 
measurements are satisfactorily captured by simulations. Once again, the small absolute errors in |𝑅−

𝑔 |
2 do not impact significantly 

the isolation levels.
This 3D model might be exploited in future studies, by including the wiremesh effect for the optimization of the boundary 

operator synthesized on the EL.
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