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Abstract. Accurate data sets for material behavior model simulation are neces-

sary for realistic numerical simulation. The true material parameter’s identifica-

tion is still a difficult task. When the optimization process is combined with a 

finite element simulation, this is typically constrained by the computational 

time. In this study, a procedure for the identification of material parameters 

based on a hybrid approach is described. This methodology suggests a strategy 

for decreasing the computing cost by substituting the FEM simulations by an 

artificial neural network (ANN) model in the optimization loop. For this reason, 

a parametric study of the FE simulation is carried out to generate an ANN train-

ing database. A high-predictive-performance ANN model is also created by op-

timizing the hyperparameters. To quantify the conditioning of the inverse prob-

lem and to justify the replacement of the FE model with an ANN model, an 

identifiability analysis based on an identifiability indicator (I-index) is also pro-

posed. The classical characterization tensile test is used to apply this optimiza-

tion approach. Finally, numerical and experimental stress-strain tensile curves 

are compared to evaluate the effectiveness of this methodology. 

 

Keywords: Numerical simulation, Artificial Neural Networks, Parametric iden-

tification, Identifiability. 

1 Introduction 

Material parameter identification plays a crucial role in the field of engineering and 

science, allowing to analyze and predict the behavior of materials under various load-

ing conditions, which in turn leads to improved designs. Additionally, the material 

parameters identification can present various challenges that may affect accuracy and 

mailto:ramzi.benhmida@issatkr.u-kairouan.tn
mailto:fabrice.richard@univ-fcomte.fr


2 

efficacy. Therefore, the correct parameter identification is critical for producing relia-

ble numerical simulations that can impact real-life applications and decision-making. 

Finite element model updating (FEMU) is one of the most important techniques for 

improving and refining numerical models based on experimental data [1, 2]. Although 

FEMU has proven its effectiveness in various engineering applications, some limita-

tions exist, particularly regarding the computational cost for material parameter iden-

tification [3]. 

Artificial neural networks (ANNs) have revolutionized the field of material science, 

opening up new possibilities for material parameter identification thanks to their abil-

ity to model nonlinear relationships [4-6]. This innovative approach presents a signif-

icant reduction in computational cost compared to traditional methods. ANNs have 

demonstrated remarkable capabilities for solving complex problems and provide effi-

cient solutions by mimicking the processes within biological neural systems. ANNs 

can then replace computationally costly Finite Element Method (FEM) simulations in 

optimization loops. 

In the current study, the parameters of plastic behavior are determined from uniaxial 

tensile test using inverse analysis based on a hybrid optimization algorithm, combin-

ing genetic algorithms and LM algorithms. In the optimization loops, the ANN model 

is employed instead of finite element computations. To reflect the stability of the 

inverse problem solution and to justify the replacement of the FE model with an ANN 

model, an identifiability analysis is then carried out. 

Finally, the experimental stress-strain curve is compared with the numerical counter-

part as well as to the ANN model prediction in order to validate the identification 

methodology. 

2 Experimental setup 

Uniaxial tensile tests were carried out on flat copper alloy specimens annealed at 

450°C for 30min. The tests were conducted on an MTS testing machine with a cross-

head speed of 0.03 mm/s. The measurement of the specimen’s elongation ΔL was 

performed by a laser extensometer and the reaction force F is measured by the way of 

load cell of 1 kN. The used specimens have a rectangular section (0.21mm x 5mm) 

with an initial gage length equal to 15 mm. The specimens were elongated up to frac-

ture and the true stress–true strain curves were obtained. 

3 Numerical modelling of tensile test 

A finite element parametric model, programmed in MATLAB language, has been 

developed to numerically simulate the tensile tests. The LS-DYNA software with the 

explicit integration method is used to the numerical simulation. The specimen is 

meshed by 4-nodes quadrilateral shell element to decrease the computational time. 

For this test, the left boundary is fixed while the right boundary is moved in the x-

direction, as shown in Fig. 1. The total reaction force is calculated by summing all 

nodal forces in X-direction at the fixed end. 
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Fig. 1. Finite element modeling of the tensile test. 

The mechanical behavior of the copper alloy is considered through an elastic–plastic 

law with isotropic hardening. The generalized Hooke's law is used to describe the 

elastic behavior of the material. Here, the isotropic yield criterion of von Mises is 

used, and the plastic behavior is modelled by the isotropic hardening law (Voce’s 

law), as follows: 

�̇� = 𝑏(𝑄 − 𝑅)�̇�             (1) 

R and p indicate respectively the isotropic hardening variable and the equivalent plas-

tic strain. The parameters Q and b designate the asymptotic value and the exponent of 

the isotropic Voce’s law, respectively [7].  

For this material, the elastic parameters were obtained from ultrasonic characteriza-

tion. Finally, three parameters characterizing the plasticity mechanism should be iden-

tified. 

4 Artificial Neural Network model 

In this section, the artificial neural network (ANN) is used to predict the relationship 

between the material parameters and the true stress-strain curve. In particular, the 

inputs are the material parameters, and the outputs are the true stress-strain curves 

associated with these values. To achieved that, a set of numerical tensile tests ob-

tained from the FE parametric modeling is performed to generate an ANN training 

database. The feed forward neural network model (FFNN), which belongs to the class 

of multi-layer perceptron (MLP), is employed in this study. In the FFNN model, the 

neurons are completely interconnected and arranged in successive layers, mainly in-

put, hidden and output layers. In this ANN model, the sets of the weights and biases 

are adjusted by a scaled conjugate gradient backpropagation algorithm, where the 

error between the output values and the target responses is minimized during training 

phase. 

To obtain an ANN model with high predictive performance, it is necessary to opti-

mize some hyperparameters defining the architecture design of the model, namely the 

number of hidden layers, the number of neurons per hidden layer and the learning 

algorithm. Hence, the Bayesian optimization method (BOA) was used to tune the 

hyperparameters, which saves time and enhances the training model's performance 

[8]. Hyperparameters are extracted by minimising the objective function, which is the 

difference between the predicted and trained responses. Convergence occurs when the 

objective function reaches a predetermined value or reaches its maximum number of 

iterations. The flowchart of optimization hyperparameters is shown in Fig. 2.  
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Fig. 2. Hyperparameters optimization procedure. 

To validate the deep learning approach used to accurately predict the true stress strain 

tensile curves, a set of 324 simulations is performed to generate the database for ANN 

training according to the Taguchi orthogonal array approach (L=18), as described in 

[9]. 

Note that ANN performance analysis is evaluated using the correlation coefficient R 

and the mean square error (MSE). During the training period (Epoch), the MSE of 

training, validation, and testing data decrease continuously until a value of 0.08 with-

out any significant traces of overfitting, as shown in Fig 2. A good correlation, with a 

regression coefficient R close to one (R≈1), between target and predicted stress strain-

curves is demonstrated, as shown in Fig 4. The results show that the ANN model is 

well-generalized, indicating that it can be utilized as a substitute method for accurate-

ly predicting true tensile stresses. 
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Fig. 3. Performance plot of the ANN model. 

 
Fig. 4. ANN model regression plot. 

5 Identification methodology and Identifiability analysis 

In this section, the identification methodology and identifiability analysis of the mate-

rial parameters will be presented. An inverse problem is used for the parameter’s 

identification. The purpose of this inverse formulation is to find the material parame-

ters that minimize the gap between the numerical and experimental stress-strain 

curves of the tensile test. During the identification process, the material parameters 

are adjusted using a hybrid optimization algorithm that combines genetic and Leven-

berg-Marquardt (LM) optimization methods. The LM algorithm starts by using the 

best set of parameters provided by the genetic algorithm in order to achieve an opti-
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mal result. The numerical stress-strain curves used in the present identification meth-

od are predicted using the ANN model mentioned above since the ANN model re-

sponse is almost instantaneous, which considerably reduces the computational cost.  

In this study, the genetic algorithm uses 100 successive generations to find an initial 

solution, requiring 3030 simulations. This computation will take approximately 757.5 

hours, if the FE model is applied using a massively parallel processing (MPP) version 

of LS-DYNA with 8 processors. By using the ANN model to predict the numerical 

stress-strain curves, the online computation time is achieved in only 30 mn. Further-

more, the offline computation time, corresponding to the dataset preparation, takes 81 

hours. 

The proposed methodology was implemented in MIC2M developed by Richard [10]. 

The current identification procedure is presented in the flowchart given in Fig.5. 

 
Fig. 5. Flowchart of the identification procedure. 

The numerical stress predicted by FE and ANN models, using the identified plastic 

parameters, is compared in order to evaluate the ANN model robustness and validate 

the proposed identification approach, as given in Fig 6. 
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Fig. 6. Comparison of true stress-strain curves obtained by ANN and FE models. 

The maximum error is around 2.1% at the beginning of the tensile test then it de-

creases when the plastic strain accrues. Overall, the mean absolute percentage error 

(MAPE) is equal to 0.56%. Therefore, the optimized ANN model accurately forecasts 

the numerical stress, which confirms the ANN model's replacement of the FE model. 

 

The identifiability analysis based on an indicator is applied to quantify the condition-

ing of the inverse problem and to justify the substitution of the FEM by an ANN 

model for true-stress curve prediction. The present analysis reflects the stability of the 

inverse problem solution. As reported by Richard et al. [11], the measure of multicol-

linearity of the sensitivity functions of a set of parameters is a function of the ratio 

𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄ . 𝜆𝑚𝑎𝑥and 𝜆𝑚𝑖𝑛 are, respectively, the largest and smallest eigenvalue of the 

pseudo-Hessian matrix 𝑯 , defined from the sensitivity matrix. More details of the 

identifiability indicator can be found in [12]. An identifiability index of set of k pa-

rameters can be written as follows: 

𝐼𝑘 = log10 (
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
)             (2) 

Fig. 7 shows the measurement of identifiability index with respect to the tensile test 

strain using FE and ANN models. The identifiability indicator decreases to a value 

less than 3 when the tensile strain increases, revealing that the problem is well-posed. 

After the tensile test, the identifiability index stabilizes at a value less than 3 for FE 

and ANN models, confirming the ability to identify the set of parameters using the 

tensile test. 

 

Fig. 7. Identifiability index measurement during the tensile test. 

Fig. 8 shows a comparison between the experimental and the numerical true stress-

strain curves. A good agreement is observed between the stress-strain identified and 

the experimental one. 
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Fig. 8. Comparison of true stress-strain curves between EF modeling and experimentation. 

6 Conclusion 

In this work, a methodology for identifying material parameters based on a hybrid 

optimization algorithm, combining the genetic and the Levenberg-Marquardt algo-

rithms, and an ANN model is developed. 

The identifiability analysis, based on an indicator of multicollinearity, was conducted 

to estimate the reliability of the identified material parameters and to validate the 

conditioning of the inverse problem. This confirms that the artificial neural networks 

can then be used as an alternative way for stress-strain curve prediction with good 

accuracy. To validate the proposed identification strategy, the numerical simulation 

finding of the tensile test using the identified parameters and given in terms of stress-

strain curve is compared with the same results predicted by ANN model and meas-

ured experimentally. The parameters identified by inverse analysis showed good 

agreement compared with the experimental measurements. The proposed methodolo-

gy allows to reduce the computational cost of the optimization procedure. Future stud-

ies will focus on the extension of this method to try the identification of more com-

plex constitutive models from more complex experimental tests. 
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