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Abstract: We demonstrate that centroid-based clustering of normalized intensity profiles is 

able to successfully isolate different classes of pulses associated with physically distinct 

regimes of nonlinear and dispersive fiber propagation. Remarkable for its simplicity, this 

approach shows how only temporal intensity profiles reveal sufficient similarities to allow 

physical classification of different propagation behavior. 
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1. Introduction 

Machine learning techniques have seen rapid and impressive development in the field of 

ultrafast photonics in the last 5 years [1-3]. A particular area that has especially benefited from this work 

is the study of nonlinear dynamics in optical waveguides, where different machine learning techniques 

have been applied to the study of output waveform properties [4-7], supercontinuum evolution maps [8, 

9], extreme event emergence [10] and the dynamics of four-wave mixing [11, 12]. The methods used in 

this work have been varied, including simple feedforward neural network architectures [4, 10-12], 

recurrent neural networks [8] convolutional networks [5] and more complex combinations of different 

deep learning algorithms [5, 7]. Other work has used physics-informed methods to solve the underlying 

propagation equations [13], inverse-problem methods for prediction [4, 6, 12], sparse regression to 

discover dynamical models from data  [14, 15], and dominant-balance methods to automate detection 

of dominant physics during nonlinear evolution [16-18]. 

 In this paper, we report a further application of machine learning methods in nonlinear fiber 

optics, using simple clustering techniques to analyze and classify intensity profiles resulting from a 

range of propagation scenarios.  Specifically, we show that simple centroid-based clustering, such as the 

widely used K-means algorithm [19, 20], can successfully reveal patterns during higher-order soliton 

and wavebreaking evolution dynamics, and can also distinguish normal and anomalous dispersion-

regime dynamics in specific regimes of propagation. These results reveal that clustering provides a 

complementary tool to existing analytical and numerical methods to automatically highlight patterns 

and similarities between different regimes of evolution, potentially yielding new insights into the 

underlying physics. Moreover, although motivated by the study of dynamics in optical fiber propagation, 

our analysis is based on an ideal nonlinear Schrödinger equation model, so that our results can be readily 

extended to other fields such as atom optics, hydrodynamics and plasma physics. 

2. Propagation model and methods 

We consider propagation in optical fiber described by the dimensional nonlinear Schrödinger 

equation (NLSE) [21]: 
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where ( , )t z  is the complex pulse envelope,   and 2  are respectively the nonlinear and dispersion 

coefficients, z  and t  are respectively the propagation distance and comoving time. We define nonlinear 

and dispersive lengths as 01/NLL P=  and 
2

0 2/DL T =  respectively, where 0P  and 0T are the peak 

power and temporal width of a hyperbolic secant input pulse ( )
0

1/2
0( ,0) sech / .t P t T =  Loss and noise 

are neglected.  The NLSE in normalized form is then given by:  
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where / Dz L = , 0/t T = , and
2 /D NLN L L= defines the soliton number N . The normalized input pulse 

is ( )( , ) sech .u   =  

 Our aim here is to use centroid-based clustering to differentiate different regimes of nonlinear 

and dispersive pulse propagation, based solely on analyzing temporal intensity profiles

( ) ( )
2

, , .I u   =  We stress that this is a severe constraint because we have no access to the temporal 

phase of the pulse or any spectral information.  To generate large data sets of intensity profiles, we 

perform numerical simulations to solve the NLSE [21] for different initial conditions by randomly 

scanning N  over the range 1–5 (continuously i.e. not only integer values), and at different propagation 

distances by extracting ( ),I   at distances  over the range 0.0–2.5. We generated 5000 independent 

numerical simulations for both normal ( 2 0  ) and anomalous ( 2 0  ) dispersion regime propagation. 

Given the temporal symmetry of our initial conditions and the fact we are in an ideal NLSE model, the 

temporal intensity profiles are always symmetric,and so we can restrict ourselves to performing 

clustering for only positive-valued    i.e. for ( )0,I   . Considering the intensity profile in this way 

allows us to characterize the structure of the intensity profiles in terms of their computed kurtosis as we 

describe below.  Our simulations used 8192 temporal grid points, but for improved clustering 

performance, we downsample the 4096 positive time points to 171 points, using a nonuniform sampling 

procedure to ensure that we capture both broad envelope and short compressed features in the intensity 

profiles.  And as we describe below, we introduce a normalized intensity profile 

( ) ( ) ( )max, , /nI I I    =  with maxI  is the maximum intensity at a given  .  

 We first present some general results in Fig. 1, showing three typical examples of normalized 

intensity profiles under three different propagation conditions: (blue) 20.8, 4.1, 1)sgn(N = = −= ; (red) 

21, 2.6, s 1)gn(N = = +=  ; (yellow) 21.5, 2.9, 1)sgn(N = = −= . The profiles are plotted for positive 

times ( 0  ) and illustrate the large qualitative differences between pulse profiles arising from 

propagation under different conditions, with shapes ranging from highly compressed pulses with 

subpulses associated with soliton evolution (blue), to highly flattened pulse envelopes associated with 

high power normal dispersion propagation dynamics (red) [21, 22]. 

The two sets of 5000 temporal intensity profiles sampled over 171 points serve as unlabeled 

data of the clustering algorithm. Note that we have also calculated from the intensity profiles the 

temporal moments of order two and four to characterize the intensity profile through its root mean square 



(rms) temporal width   and its kurtosis  [23]. We recall here that the rms duration and the kurtosis of 

a hyperbolic secant pulse are 0.907 and 4.2 respectively.   

 

 

 

 

 

Figure 1: Examples of three normalized intensity profiles used as inputs for clustering. These 

profiles result from the propagation of a hyperbolic secant pulse under the following conditions: 

(blue) 20.8, 4.1, 1)sgn(N = = −= ; (red) 21, 2.6, s 1)gn(N = = +=  ; (yellow) 

21.5, 2.9, 1)sgn(N = = −=  

 

 

The clustering method we used is the K-means approach, which is often regarded as the most popular 

and widely used algorithm. Whereas K-means clustering has been implemented in the context of optical 

telecommunication to mitigate non-linear distortions of phase-coherent transmissions [24, 25], to the 

best of our knowledge it has never been exploited to get insights on the nonlinear dynamics. K-means 

is a centroid-based algorithm where the user must first define the required number of clusters. In our 

case, we choose between 2-4 clusters as we describe below. Then, centroids are randomly created based 

on the number of clusters and the distance between data points, and each centroid is calculated so that 

each data point can be assigned to the nearest centroid. The mean of the centroid is recalculated based 

on all the assigned data points, and this will change the position of the centroid. The process is iterated 

until it converges and each data is linked to a single cluster. 

  



3. Clustering for anomalous dispersion regime dynamics 

We begin by considering the clustering behavior for intensity profiles generated from soliton 

dynamics in the fiber anomalous dispersion regime. We consider 5000 intensity profiles scanning N 

over the range 1–5 and  over the range 0.0–2.5 as input to the K-means algorithm. To illustrate how 

simple clustering can identify different dynamical characteristics, we first present results when 

partitioning into only 2 clusters and considering as input the non-normalized profiles ( )I  . Fig. 2(a1) 

displays these results by plotting the ( )2 ,N   pair associated with each profile, but assigning a different 

color depending on the cluster into which the profile is sorted. This clearly shows a periodic band 

structure in the ( )2 ,N   plane, but to gain more insight, we plot in Fig. 2(a2) a three-dimensional plot 

where the clustered profiles are plotted in terms of their root-mean-squared (rms) duration  , their 

kurtosis    and their peak intensity maxI . It is clear from this plot that the main separation between the 

clusters arises from the difference in profile intensities, allowing us to conclude that the bands in Fig. 

2(a1) are identifying different stages of periodic temporal expansion and compression. 

 To consider how clustering can identify more general pulse shape characteristics in addition to 

peak intensity, Fig. 2(b1) and Fig. 2(b2) show results using normalized intensity profiles ( )nI  as input. 

Fig. 2(b1) shows a similar band structure in the ( )2 ,N   plane although the bands are wider. Again, the 

clusters can be readily attributed to different stages of pulse evolution, with the red cluster linked to 

stages of noticeable compression and significant deviation from the input profile, and the blue color to 

stages where there is only moderate change with respect to the input profile. This is particularly the case 

for short propagation distances where the dominance of the nonlinear regime (self-phase modulation) 

does not affect the temporal intensity profile [18]. Similarly, the blue regime dominates for areas with 

low nonlinearity and for values of 1N  where the pulse preserves its shape or can even be stationary 

in the case of the fundamental soliton [21]. We also recognize the special conditions corresponding to 

integers values of N  and propagation distances of / 2 = (the black crosses in the ( )2 ,N   plane) 

associated with perfect soliton recurrence to its initial state [26]. Fig. 2(b2) separates the clusters in 

terms of computed temporal duration and kurtosis, with the projection in the rms/kurtosis ( ),   plane 

showing that the different regions strongly overlap. This highlights how an approach using the 

normalized profile is not equivalent to an approach considering only the temporal moments of the pulses. 

 

 

 



 

 

 

 

Figure 2 : Clustering into two sets of temporal intensity profiles generated for propagation in the 

anomalous dispersion regime. Panels (a) and (b) show results using non-normalized profiles ( )I   and 

normalized profiles ( )nI  respectively. Panels a1 and b1 display clusters according to normalized 

propagation distance   and the soliton number N . The crosses indicate the parameters leading to ideal 

periodic recovery of the initial intensity profile. Panels a2 and b2 display clusters according to their rms 

duration   and kurtosis    as well as their peak power maxI  for the non-normalized dataset. The black 

dashed line is a visual guideline for the properties of the input pulse. 

  



 

We now discuss how this clustering behaviour changes when the number of clusters for 

partitioning is increased to 3. Results of this new clustering for the normalized profiles ( )nI   are shown 

in Fig. 3(a1). We again see a band structure in the ( )2 ,N   plane, with the blue regions again 

corresponding to intensity profiles that have experienced little variation with propagation. This cluster 

region is similar to that in the 2 cluster results in Fig. 2(b1). However, when selecting 3 clusters, the 

single cluster in Fig. 2(b1) (corresponding to pulses that underwent significant evolution in their 

intensity profiles) now splits into two subsets.  And we see in Fig. 3(a2) that in the rms/kurtosis ( ),   

plane, these clusters are superimposed to a large degree so that clustering in terms of these features is 

insufficient to separate the different behaviours. 

To better understand the physical characteristics that are being selected and associated with 

these different clusters, Fig. 3(b1) and (b2) plots the longitudinal evolution of the intensity profile of 

pulses of soliton order 4N =  and 5N = , respectively, accompanied by the variations of the rms duration 

and kurtosis in panels (c1) and (c2) respectively. We now see that the red bands in the ( )2 ,N   plane in 

Fig. 3(b1) correspond to the zones undergoing maximum temporal compression, while the yellow bands 

correspond to the zone where the pulse has temporally-spit into several subpulses with intensity at 0 =  

that tends to vanish. This is confirmed by also showing on panel (a1) with the dashed curve, the empirical 

equation giving the distance c  leading to the maximum compression as a function of the soliton number  

[27, 28]:  

 1/c N  (3) 

Using the recurrence conditions and the longitudinal symmetry of the evolution achieved for integer 

values of N , one can note that that the corresponding points (black triangles) are well contained within 

the second cluster. 

  



 

 

Figure 3 : Clustering into three sets of the normalized temporal intensity profiles generated upon 

propagation in the anomalous regime of dispersion. (a1) Clusters according to the normalized 

propagation distance   and the solitonic number N . The dashed black line marks the positions of the 

compression stages approximated by Eq. (3) and the black triangles highlight the parameters leading to 

other marked compression for an integer value of N .  Dashed blue and green lines label N  = 4 and 5, 

respectively. The blue and green triangles mark positions of the compressed pulses, while the blue and 

green diamonds – the split pulses’ positions.   (a2) Clusters according to their rms duration   and their 

kurtosis  . The black dashed line is a visual guideline for the properties of the input pulse. (b) 

Longitudinal evolution of the normalized intensity profile for N  = 4 and 5 (panels b1 and b2 

respectively). (c) Longitudinal evolution of c1: the corresponding rms duration   and c2:kurtosis  .  

  



4. Clustering for normal dispersion regime dynamics 

Pulse evolution in the normal dispersion regime differs drastically from the anomalous case. 

Instead of periodic evolution dynamics and temporal localization associated with soliton effects, the 

interaction between the Kerr nonlinearity and normal dispersion is marked by effects such as optical 

wavebreaking, self-similar propagation, and temporal broadening [29, 30]. We study here the clustering 

of intensity profiles associated with normal dispersion propagation using the same approach as above, 

with 5000 intensity profiles scanning N  over the range 1–5 and   over the range 0.0–2.5, except that 

now we take ( )2sgn 0  , and the input parameter N  is no longer interpreted as a soliton number. 

Clustering into three clusters as shown in Fig. 4(a1) leads to the isolation of three successive 

stages of dynamics associated with well-known characteristics of nonlinear and dispersive propagation 

[21]. The blue cluster, where the rms duration of the pulse does not vary significantly, corresponds to 

the initial propagation regime when the spectral broadening and chirp induced by the nonlinearity has 

not yet translated into significant temporal broadening. However, the shape of the temporal profile does 

change in this regime, as can be observed in the significant drop of the kurtosis [31]  apparent from Fig. 

4(a2).  The boundary between the blue and red clusters can be associated with a known analytical result 

that estimates the distance WB  after which wave-breaking occurs for a hyperbolic secant pulse [29, 30]  
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3 1

2 1
WB

N
 =

+
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which is plotted as the solid line in Fig. 4(a1). Although strictly speaking accurate only for large N , the 

trend is nonetheless remarkably consistent with the results of the clustering. In the red cluster, the pulse 

undergoes both temporal broadening and change in shape, representing a transition stage before the 

pulse shape tends to evolve much less, with intensity profiles in the yellow cluster showing little 

variation in kurtosis while still undergoing temporal broadening. This stage of evolution is well-

understood, associated with the temporal profile taking on the same shape as the pulse spectrum (the 

dispersive Fourier transform or “spectron” regime [22, 32-34]). 

 Finally in this section, we note that in contrast to the case of anomalous dispersion regime 

propagation where the clusters are mixed in the ( ),   plane, the clusters are much betted isolated for 

normal dispersion regime propagation. In this context, it is interesting to consider whether direct 

clustering according to the rms duration and kurtosis could reveal a similar picture. These results are 

plotted in panels (b) of Fig. 4. However, whilst the trends in Fig. 4(b2) are consistent with the discussion 

of the dynamics from ( )2 ,N   clustering, the borders between the clusters cannot be readily associated 

with the wave-breaking condition which is again plotted as the solid line in Fig. 4(b1).  



 

 

 

 

 

 

  

 

Figure 4: Clustering into three sets for pulses generated during propagation in the normal dispersion 

regime. Fig. 4(a) plots the clustering results in terms of the normalized intensity profile whilst Fig. 4(b) 

plots the results in terms of   and   properties. Panels a1 and b1 plot the clusters according to the 

normalized propagation distance   and the number N . The black line marks the wave-breaking 

condition (Eq. (4)). Panels a2 and b2 plot the clusters according to their rms duration   and their 

kurtosis  . 

  



5. Clustering profiles for both anomalous and normal dispersion regime dynamics 

We now evaluate the performance of the clustering algorithm when input data combines 

intensity profiles arising from both anomalous and normal dispersion regime propagation. That is, we 

now input 10,000 profiles into the algorithm combining intensity profiles arising from soliton dynamics 

as well as normal dispersion broadening and wave breaking. In Fig. 5 panels (a), (b), (c), we show results 

of this clustering into two, three, and four clusters respectively.   

We first consider the results in Fig. 5(a1) where we plot how the two clusters (red and blue, 

plotted in the ( )2 ,N   plane) sort the intensity profiles relative to the known values of dispersion 

2s n( 1g ) =   in which they were generated.  The classification shows that based only on the output 

normalized intensity profile, it is possible to infer to a large extent the dispersion regime in which pulse 

propagation took place. However, the classification is not perfect and for short propagation distances, 

some profiles known to arise from normal dispersion regime propagation are sorted into the same blue 

cluster associated primarily with soliton-like profiles in the anomalous dispersion regime. However, this 

can be readily understood because these are profiles associated with the initial stages of normal 

dispersion propagation (below the wave breaking distance) where the combination of dispersion and 

nonlinearity is not yet sufficient to lead to major variation in the temporal pulse duration. In fact, we can 

see from Fig. 5(a2) where the clusters are plotted in the ( ),   plane that the algorithm selects different 

characteristics of the pulse profiles that follow distinct branches: one in which the duration changes little 

but the pulse kurtosis is significantly modified (blue); and another where the pulse shape changes little 

but its duration significantly changes (red).  

When classifying into three and four clusters, it is essentially within the anomalous dispersion 

regime that we see additional cluster structure appear. Indeed, as can be seen in Fig. 5(b1) and (b2), 

moving to three clusters leads to the identification of intensity profiles linked to periodic soliton 

compression dynamics, as discussed in section 3.2. For four clusters as shown in Fig. 5(c1) and (c2), it 

is once again in the anomalous dispersion regime that new structure emerges, which in this case 

corresponds to the typical splitting of the higher soliton pulse into multiple subpulses.  In this regard, it 

is also of interest to explicitly plot the centroids of the four clusters in Fig. 6(a), and because the centroid 

does not actually result from any physical propagation, we also plot in Fig. 6(b) the normalized intensity 

profiles of the pulse in the dataset that is the closest to each centroid. This provides additional insights 

into the typical profiles each cluster and confirms our physical discussion above. Cluster 1 is associated 

with profiles close to the initial pulse, typical of low propagation distances or parameters leading to a 

recurrence of the initial higher-order solitonic condition. The second cluster corresponds to pulse 

evolution beyond the wave-breaking distance where the pulse has experienced strong temporal 

broadening and reshaping towards a flattened profile. The third centroid corresponds to a significantly 



compressed profile whereas the last centroid is typical of the splitting of the higher order soliton into 

two subpulses. 

 

 

 

Figure 5: Clustering of the temporal intensity profiles generated upon propagation in the normal and 

anomalous regimes of dispersion. Figures 5(a), (b), (c) show results according to the different number 

of clusters: 2, 3 and 4 respectively. Panels a1,b1,c1 are clusters displayed according to the normalized 

propagation distance   , the number  N  and the dispersion regime (sign(2)). The black line marks the 

wave-breaking condition (Eq. (4)). Panels a2, b2, c2 are the clusters plotted according to their rms 

duration   and their kurtosis  . The black dashed line is a visual guideline for the properties of the 

input pulse. 

 



 

Figure 6 : (a) Centroids of the four clusters. (b) Normalized temporal intensity profiles in our dataset 

that are the closest to each centroid. The black curve is the input condition. 

 

 

6. Conclusions 

The major result of this work has been to show that centroid-based clustering of normalized 

intensity profiles can successfully isolate different classes of pulses associated with physically distinct 

regimes of nonlinear and dispersive fiber propagation. Remarkable for its simplicity, this approach 

shows how only temporal intensity profiles (i.e. without spectral intensity or phase information) 

nonetheless reveal sufficient similarities to allow physical classification of different propagation 

behavior.  Extensions of this work could be in numerous directions, including for example the use of 

simultaneous spectral intensity profiles to generalize the technique to more difficult cases with initial 

chirp leading to effects such as spectral compression [35, 36] which would be hard if not impossible to 

distinguish using temporal profile clustering only.  Also, whilst we have considered background-free 

pulses in this analysis, it could be readily extended to nonlinear and dispersive pulse structures upon a 

continuous background, opening the possibility to obtain insights and empirical intuition into the 

properties and emergence of extreme rogue wave events. It is also possible that going beyond the simple 

NLSE and including additional higher order linear or non-linear terms will allow a useful cluster analysis 

of the highly complex process of supercontinuum generation.  And in addition to NLSE-related 

problems, the process could readily be adapted to handle propagation in cavities typical of lasers or 

resonators supporting dissipative or cavity solitons. And of course, extensions of the clustering 

algorithm beyond the use of K-means may also prove useful, although this is beyond the scope of this 

present paper. 
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