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ABSTRACT - Internal states knowledge of a proton exchange
membrane fuel cell (PEMFC) is essential to enhance its perfor-
mance level and further extend its lifespan. Real-time membrane
water content estimation is crucial to prevent PEMFC from
degrading conditions by avoiding drying or flooding. Estimating
PEMFC humidity state can also contribute to establishing fault-
tolerant control strategies. In this paper, a steady-state membrane
water content estimation tool and a lumped cell voltage model
have been developed. The cell voltage model has been validated
using automotive fuel cell experimental data and compared with
the outputs of a commercial simulation tool. The cell voltage
value built on membrane water content estimation is sensitive to
combined humidity and temperature variations, as validated by
experimental data. This work paves the way for developing an
online membrane water content observer for fault-tolerant control
applications.

Keywords – Fuel cell, Diagnosis, Observer, Water content, Mem-
brane, Drying, Flooding.

1. INTRODUCTION

In a context of greenhouse gas emission reduction in the
transportation sector, the demand for sustainable mobility alter-
native solutions is growing worldwide. Electrical vehicles (EVs)
market share has considerably increased over the last years. Wi-
thin the European Union, planning to ban the sale of new pe-
trol, diesel, and hybrid vehicles by 2035, the share of electric
vehicles among new registrations for passenger cars has increa-
sed up to 14% in 2022 [1]. Even though most of them are po-
wered by electrical batteries, this technology alone cannot ad-
dress all customer needs, especially for heavy-duty transporta-
tion due to a certain number of limitations for intensive uses
such as long-distance travel, payload and continuous operability.
As a complementary solution to address these specific demands,
Among those promising solutions, proton-exchange membrane
fuel cells (PEMFC) systems offer a high-power density and re-
duced refueling time [2]. Their development has been initiated
decades ago for specific applications. Since then, PEMFC em-
braces technological breakthrough in many fields such as mate-
rials, industrial processes but also control strategies [3].
PEMFC main technical improvements are driven by cost, effi-
ciency and durability objectives. Reaching these objectives is
crucial for industrial fuel cell manufacturers to enter the auto-
motive market and meet the institutional targets [4]. A deep un-
derstanding of fuel cell technology and the underlying physics
cannot be torn apart from cost reducing and lifespan increasing
targets. Fuel cell are complex devices, entailing electrical, ther-
mal, mechanical and electrochemical interactions at macro and
microscales. Catching these complex phenomena is often im-
possible using in-situ measurements, hence the need of parame-
ters called internal states.

Internal states, also called pivotal states, describe the physics
inside an operating PEMFC, with a physical meaning [5]. Reac-
tants partial pressure values, membrane water content and anode
stoichiometry are the most studied internal states in the literature

[5], [6], [7], [8]. Internal state observer is already used in seve-
ral automotive engineering frameworks, such as battery State of
Charge (SoC) estimation [9] or combustion torque estimation
in internal combustion engines [10]. Among the conceivable in-
ternal states, PEMFC humidity level is crucial to enhance its
performances and extend its lifespan. In fact, a well humidi-
fied membrane will be more conductive and induce less voltage
losses [11]. Maintaining satisfying humidity level over time is
also crucial to reduce fuel cell degradation. However, measu-
ring a humidity level at system interfaces is difficult due to sen-
sor costs and liquid water presence. It is often the case in ope-
ration, when vapor partial pressure is above saturation pressure
for a given operating temperature. In-situ fuel cell water quan-
tity measurement requires a very intrusive hardware and may
be inaccurate in extreme operating conditions [12], [13], even if
liquid water visualization experiments are useful to understand
local phenomena [14]. Therefore, humidity observers have been
widely studied over the last years, coupling accurate model and
closed-loop control structures for model predicting control and
diagnosis applications [15], [16]. PEMFC online diagnosis can
also be performed without model [17], [18]. The next section is
a state-of the art review of models for humidity state observa-
tion.

2. PEMFC MODELS FOR INTERNAL STATE
ESTIMATION: A REVIEW

Estimating an unknown internal state tackles the question of
model and control interactions. Modeling an operating PEMFC
has garnered significant attention since the first fuel cell indus-
trial applications [6], [7], [19]. PEMFC models’ accuracy has
considerably increased over the years, together with the glo-
bal comprehension of complex physics associated. In the mean-
time, computation time has decreased due to microprocessors
technology improvements, paving the way for even more com-
plex simulations. Nonetheless, control applications require a
high computational efficiency for the online implemented mo-
del. Building a fuel cell model is then a tradeoff to make bet-
ween accuracy and computational efficiency. Fuel cell systems
are subject to heat transfer, pressure drop, mechanical stress, de-
gradation, electrical resistance, etc. Each sensitivity to operating
conditions variations has a specific time constant, from a few
milliseconds to hours. It is in the scope of the fuel cell model
to account for this complexity, even in extreme operating condi-
tions, to avoid degradation scenarios. PEMFC previous research
has extensively investigated cell voltage modeling, which will
be reviewed in the next subsection.

2.1. Cell voltage models

Cell voltage and stack humidity variations are often linked in
stack operation. Besides, measuring stack voltage is necessary
for fuel cell system level control purposes. Individual cell vol-
tage measurement is also common in stack testing. Therefore it
is relevant to build a robust cell voltage model and calibrate it



with test data. Modeling cell voltage involves considering reac-
tion kinetics, ohmic losses, and mass transfer mechanisms. It is
therefore necessary to put modeling work in accordance with
real fuel cell physics. Although fuel cell voltage models are wi-
despread in the literature, their formulation and structure may
vary depending on the purpose and the complexity requested.
An exhaustive review of fuel cell voltage models for thermal and
water management strategies is provided by [20]. In most of the
models described in the literature, cell voltage value is obtained
by subtracting activation, ohmic and concentration losses from a
reversible voltage [19]. However, the expression of thermodyna-
mically reversible voltage may vary between the models, even
though it results in a very slight variation within the PEMFC
current density operating range.

Modeling PEM cell voltage using a lumped volume for anode
and cathode is very common. Assuming a homogeneous tempe-
rature of these volumes and a uniform gas distribution among
the channels, the cell voltage value can be derived from ope-
rating conditions with no spatial dependency. Such a model is
very useful for control applications and within a given operating
range. One of the most popular lumped cell voltage model has
been developed by Pukrushpan et al. in 2004 [6] . This model
has been derived under the assumption of isothermal PEMFC
stack operation from Open Circuit Voltage (OCV) to maximum
power operating point. The model is able to reproduce PEMFC
stack transient response to operating conditions variations and
is coupled with other sub models for membrane hydration or
cathode pressure. It is still used in many recent modeling and
control works. Another similar model considering isothermal
stack operation has been proposed by Ritzberger et al. [21] in
2020 as an evolution of the one of Pukrushpan et al. [6]. More
recently, fuel cell voltage models have been developed as part
of observer building work. Chi et al. [7] derived a cell voltage
model as part of a sliding mode observer. The authors stated
to have only two fitting parameters to calibrate their model on
real data. Kravos et al. [16] proposed a model qualified as “ther-
modynamically consistent” for observer applications. Under a
realistic set of assumptions, a simplification of Butler-Volmer
equations results in a sinus hyperbolicus function describing ac-
tivation losses in cell voltage equation.

Despite their computational efficiency and relatively easy
implementation, lumped models can not catch in-plane and
through the membrane occurring phenomena. To overcome this
limitation, 0D lumped model from Kravos et al. [16] has been
enhanced with reactant depletion along the channel. The quasi
1D model can also distinguish two regions in the bipolar plates
and Gas Diffusion Layer (GDL) interface. Doing so, Goshtasbi
et al. [22] obtained a very accurate model, providing values dis-
tribution in every direction of the cell without compromising
computational efficiency. The 1D-model through the membrane
is solved twice, under the land and under the channel, then being
also discretized along the channel to account for reactant deple-
tion.

Finally, more complex cell voltage models exist in the lite-
rature, but their associated computational cost is an obstacle
for online observer integration. Extracting a simple model from
a multiphysics model framework is however possible [8]. The
strong interaction between membrane hydration and cell vol-
tage drives all the previously mentioned model structures. Real-
time capable cell voltage models are often derived in a global
modeling framework considering membrane hydration pheno-
mena [6], [7], [16]. More recently, Gass et al. [23] developed
a physics-based model, which is part of a global open-source
model structure [24].

2.2. Membrane hydration models

As a product from oxidation-reduction equation inside the
PEMFC, water cannot be torn apart from its underlying physics.
As previously said, membrane hydration level strongly contri-
butes to fuel cell performance. Proton Exchange Membranes

(PEM) constitute the electrolyte of the fuel cell, enabling pro-
tons transport from anode to cathode side. They are also a sup-
port for catalyst layers. PEM are made of complex polymers
with a backbone structure comparable to polytetrafluoroethy-
lene (Teflon). Sulfonic acid chains are added, which enables
protons to be transported in aqueous phase through hydronium
complexes in flooded nano-scale pores [19]. Membrane water
content, denoted by λ, relates the number of water molecules
per sulfonic acid site in the membrane. At first sight, it might
appear unrealistic to count molecules inside the pores. Experi-
ments have however been led by Springer et al. [11] to corre-
late membrane water content to water activity. It consists in an
isothermal sorption curve, given that water content evolution is
proportional to polymer mass variation. The sorption curve can-
not be found with measurement beyond saturation level (water
activity equal to 1). At that point, water content values are close
to 14 and remains constant. Bao et al. [25] gives an extrapo-
lation of isothermal sorption curves with a sinus hyperbolicus
expression, covering water activity values from 0 to 3. Despite
their widespread use in the fuel cell modeling literature, correla-
tions from Springer do not account for membrane structure and
thickness evolution throughout the years. A more consistent and
updated review about fuel cell polymers is provided by Kusoglu
et al. [26].

The membrane water content values have no critical use itself,
nevertheless it drives the ohmic losses of the fuel cell [19], and
so its performances. Moreover, membrane water content appears
in many water dynamics models. In fact, PEM are subjected to
lots of phenomena through its thickness and at its interfaces. We
distinguish two main contributors to water transport through the
membrane, occurring in opposite directions. Firstly, electroos-
motic drag is the transport of water molecules with the protons,
from anode side to cathode side. One proton can literally drag
up to 22 water molecules along with it [11]. Secondly, back dif-
fusion is the diffusion process of water through the membrane. It
is caused mainly by a concentration gradient, and therefore des-
cribed by a Fick-like equation. The diffusion process is drived
by water concentration gradient, then directed from cathode to
anode in many cases. These transport mechanisms and their in-
teractions with membrane water content are precisely described
by Jiao et al. [27], and more recently by Gass et al. [28].

FIG. 1. Setup of a PEMFC stack under test.

3. CELL VOLTAGE MODEL
The main objective of the presented steady-state fuel cell vol-

tage model is to make the link between its design parameters, the
operating conditions and the measurable output performance of
the stack. To do so, different sub models have been developed in
Python code to provide robust and stable output towards opera-
ting conditions and fuel cell design parameter evolution.

In accordance with most of cell voltage models in the lite-
rature, cell voltage equation is written as a subtraction of va-



rious voltage losses from a reversible thermodynamical voltage
[19][6]:

Vcell = EOC − Vact − Vohmic − Vconc (1)

This section focuses on losses formulation and their contribu-
tion to the fuel cell voltage equation within the current density
range of a typical polarization curve. Model output voltage va-
lues are compared with those of a commercial fuel cell model
under the same calibration and with experimental data from an
automotive stack.

TABLE 1. Symbols used for cell voltage model derivation.

Symbol Description Unit
Erev Reversible cell voltage V

EOC Open Circuit potential V

T Stack temperature K

j Current density A/cm²

j0 Reference current density A/cm²

αa,c Charge transfer coefficient −
λ Membrane water content −
n Nb. of electrons exchanged −
SRair,H2 Stoichiometric ratio −
pH2,O2

Reactants’ partial pressures bar

aw Water activity −
RHa,c,mem Relative humidity %

R gas constant (8.314) J/mol · kg
F Faraday constant (96485) s ·A/mol

σ Membrane conductivity (Ω · cm)−1

tm Membrane thickness cm

3.1. Model assumptions

The following model equations have been selected under the
following main hypotheses:

— The model is steady-state.
— There is no liquid water in the fuel cell. Water is only

in the gaseous phase, even in the gas channels. Therefore,
the Nernst reference potential value is E0 = 1.229 V.
Transient phenomena linked with water phase change and
liquid water transport are not taken into account.

— Polymer membrane thickness is constant. Membrane
swelling due to humidity variations is not taken into ac-
count.

3.2. Open Circuit Voltage (OCV)

Erev is the reversible thermodynamically predictable vol-
tage which varies with temperature and pressure. For a PEMFC
consuming oxygen and hydrogen, and producing water, it can
be written as:

Erev = E0+
∆ŝ

nF
(T −T0)+

RT

nF

[
ln(pH2) +

1

2
ln(pO2)

]
(2)

where ∆ŝ is the entropy variation, T0 = 298.15 K is the
reference temperature, n = 2, and the other variables are
defined in Table 1 .

Thus we can obtain the open-circuit equivalent potential:

EOC = Erev −OCVloss (3)

OCVloss in (3) is a constant parameter, calibrated to fit the
real OCV value which is gas crossover dependant.

3.3. Activation/kinetic losses

Activation losses are calculated using the Tafel equation,
which is easier to solve in steady-state operation [20]:

Vact =


RT
2F

(
j
j0

)
, j ≤ j0

1−αa,c

RT
2αa,cF

ln
(

j
j0

)
, j > j0

1−αa,c

(4)

Activation voltage losses are calculated on both anode and
cathode sides, then added together.

3.4. Concentration losses

Concentration losses occur mainly at high current density va-
lues. They are caused by diffusion processes and reactant trans-
port limitations. As no mechanistic diffusion phenomena is in-
cluded in the cell voltage model yet, the equation from O’Hayre
[19] is used, and the value of jlim is to be calibrated:

Vconc =

(
1 +

1

αc

)(
RT

2F

)
ln

jlim
jlim − j

(5)

Concentration voltage losses are calculated only on the ca-
thode side.

3.5. Ohmic losses

Ohmic losses expression entails two main contributors, which
are membrane resistance Rm and stack electrical resistance Re.
Thus, the overall ohmic voltage loss expression can be written
as:

Vohmic = (Rm +Re)j (6)

Re is constant and part of the stack calibration. It represents the
sum of all electrical resistances at component interfaces in the
stack architecture.

Rm is the membrane ionic resistance, which is calculated ac-
cording to Springer et al. [11]:

Rm =

∫ tm

0

dz

σ(λ)
in Ω · cm2 (7)

σ is the membrane conductivity and is strongly dependant on
membrane hydration state λ. tm is the membrane thickness in
cm, z is the coordinate fixed to the dry membrane. Under the
assumption of constant membrane thickness, which correspond
to no membrane swelling, we can simplify the membrane resis-
tance equation:

Rm =
tm
σ(λ)

(8)

Springer et al. [11] were the first to establish a relationship
between membrane conductivity and its water content λ. This
expression is based on measurements made at 30°C with an ad-
ditional temperature sensitivity:

σm = (b11λ− b12)exp

(
b2

(
1

303
− 1

T

))
in (Ω · cm)−1

(9)
b11, b12, b2 are constant coefficients determined during the ca-

libration process. They may vary based on the membrane mate-
rial and cell configuration.

3.6. Cell voltage model validation

In this section, the previously derived model is compared to
a commercial lumped cell voltage model, already validated by
Symbio under a wide operating range. The same calibration of
OCVloss, b11, b12, b2, Re is used. The commercial simulation
tool has been used under the same assumptions to make sure



results can be compared. Additionally, the two models are eva-
luated using a dataset from a Symbio in-house designed full-size
stack polarization curve. The same operating conditions are used
as inputs for the two models. Comparative results are presented
in Figure 2.

Operating conditions are the following ones:
— Panode,in = Pcathode,in = 2.5 bar
— SRair = 1.8, SRH2

= 1.5
— T = 353.15 K (using cooling loop regulation)
— RHan,in = 60%,RHca,in = 35%

FIG. 2. Comparative results: polarization curve modeling.

The Mean Average Percentage Error (MAPE) has been used
to assess the precision of the proposed model relative to the
commercial simulation tool and experimental data. The MAPE
indicator is calculated as:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (10)

with ŷi being the voltage values obtained from the presented
model, and yi either the commercial simulation tool output
or experimental values. The obtained MAPE values are given
below:

— Model versus Experimental data: 1.38%
— Model versus Commercial simulation tool: 1.23%

These results tend to show that the presented model can repro-
duce the commercial simulation tool’s results under the same
operating conditions. Both derived and commercial simulation
tool overestimate cell voltage value compared to experimental
data, even though the MAPE indicator calculated using (10) is
below 1.5%. The presented cell voltage model provides accu-
rate results in steady-state mode. The next section will focus on
membrane humidity modeling to make the link between opera-
ting conditions and membrane hydration state required for ac-
curate cell voltage modeling.

4. HUMIDITY MODEL
4.1. Model equations

Under the assumption of no liquid water inside the PEMFC,
we can obtain a simple relationship between membrane average
water activity and its water content λ. In this work, we can as-
sume aw = RH

100 , as aw ≤ 1. Therefore both indicators express
the same humidity state and will be used without distinction in
the next sections. Isothermal membrane sorption experiments
have been carried out using the same protocol as Springer et al.
[11]. Experimental data have been fitted to obtain a 5th order
polynomial expression. The formula is only valid when aw is
less than 1:

λ(aw) =

4∑
i=0

aiaw
i (11)

ai are empirical coefficients. In accordance with the model hy-
pothesis of no liquid water, (11) has been extended for aw > 1,
using an equation form taken from Bao et al. [25] to obtain an
equilibrium value of membrane water content:

λeq(aw) =
1

2

[
4∑

i=0

aiaw
i

]
(1 − tanh (100[aw − 1]))

+
1

2

[
4∑

i=0

ai +

(
14 −

4∑
i=0

ai

)
(1 − exp (−K (aw − 1)))

]
(1 + tanh (100[aw − 1]))

(12)

K is a shape factor to smooth the link between (11) and its ex-
tension (12). It has been chosen in accordance with the literature
[25][28]. Coefficients a0,1,2,3,4 are empirical.

4.2. Model results

Humidity and cell voltage submodels previously presented
are coupled to obtain cell voltage results depending on opera-
ting conditions and consequently calculated membrane water
content. We assume a constant RH value, equals to the average
of the anodic and cathodic ones. Figure 3 presents cell archi-
tecture and related flows within a bipolar plate, and a stacked
cell view with the PEM (Proton Exchange Membrane) in the
middle. Anode and cathode are in counter flow, whereas coolant
and cathode are in co-flow configuration.

FIG. 3. Bipolar plate architecture and associated flows.

FIG. 4. Cell architecture (through-the-plane view) and associated RH values.

In steady-state operations, a membrane water content value
for each operating point is calculated using (12). Then, cell vol-
tage ohmic losses are obtained from (6). Figure 5 presents the
obtained results for different operating conditions variations.

Figure 5 shows the sensitivity of the voltage ohmic losses mo-
del to operating conditions. The bar chart in blue represents the
average relative humidity in the membrane, calculated under the
previously mentionned hypothesis, and represented as RH mem-
brane on Figure 4. Relative humidity values can be read on y-
axis on the right. The green markers are modeled ohmic voltage



FIG. 5. Cell voltage ohmic losses operating conditions sensitivity.

losses. Their normalized values are displayed on y-axis on the
left. As decribed in the presented cell voltage model, we can
consider that ohmic voltage losses are prevalent in this range
of current density values. Model sensitivity is divided in three
parts, each containing three cases:

— For the RH sensitivity section corresponding to the three
first data points, average RH is given as a model input va-
lue. We observe that ohmic voltage losses decrease as the
RH increase at constant temperature and pressure condi-
tions. This is in line with (11) in which λ is an increa-
sing function of RH. Thus, conductivity values calcula-
ted from (9) decrease over increasing RH, resulting in a
lower membrane resistance value. Ohmic voltage losses
displayed on Figure 5 are calculated from (6). Re being
constant, even if Rm value is lower in humid conditions,
ohmic losses increase linearily with current density.

— In the second part, only pressure values are varying. They
are the same on anode and cathode side. Pressure varia-
tions have an impact on relative humidity. In fact, inlet
relative humidity values are fixed, and the corresponding
output values are calculated, taking into account the out-
let pressure and considering constant pressure drop across
the cell. Therefore, we can see in Figure 5 that average
relative humidity values slighlty increase along with pres-
sure. As a result, the same mechanism described in the
previous part leads to a decrease in ohmic voltage losses.

— The last part of the sensitivity analysis combines RH and
temperature within three selected operating points, that
are representative of fuel cell operation. The same ten-
dency as in previous parts is observed, considering that
increasing operating temperature of the cell at a given in-
let RH value will lead to a lower average humidity va-
lue and, therefore, increase ohmic voltage losses. The last
case stands for a cell-drying scenario, in which combi-
ned high temperature and low relative humidity lead to a
cell degradation mechanism. This case also highlights the
need for the model to take into account the water produ-
ced by the electrochemical reaction within the fuel cell.
In fact, the membrane is partially humidified by the water
produced on the cathode side, and transported across the
cell via a back diffusion mechanism.

To summarize, Figure 5 displays the model sensitivity to va-
rying humidity, pressure, and temperature conditions. In accor-
dance with equations from previous section, the humidity model
is able to catch membrane conductivity variations with operating
conditions.

5. EXPERIMENTAL DATA VALIDATION
The objective of this section is to compare model results with

experimental data, and evaluate the model’s ability to catch ope-
rating conditions variation in steady-state mode. To do so, a da-
taset from Symbio testing campaign is used. The global confi-
guration of the stack under test is illustrated by Figure 1. There
is no anodic recirculation, and both anode and cathode loops
are humidified separately. The testing protocol consists in va-
rying cooling loop regulated temperature, under constant pres-
sure. The temperature sensitivity has been repeated for three cur-
rent density levels (Very low, Low and Mid). Figure 6 displays
the results. The bar chart in blue line corresponds to the mini-
mum temperature in the stack cooling loop, its value can be read
on y-axis on the left. The three current density levels are grou-
ped on the x-axis on top of the figure. For each operating point,
the previously derived model is used to:

— Calculate the average of anode inlet and cathode outlet
relative humidity values, as presented in Figure 4.

— Use the humidity model to calculate a membrane water
content value, and the cell voltage model to generate the
corresponding voltage.

— Compare the obtained voltage value with the measured
mean cell voltage on the testbench.

FIG. 6. Temperature sensitivity results and corresponding predicted voltage
values, at a constant pressure.

Figure 6 displays the obtained relative error values on cell
voltage prediction under two different hypothesis. The triangles
and stars indicate the relative error in cell voltage using lambda
cathode and lambda average, respectively. For the Lambda ave-
rage serie, membrane water content is calculated considering as
input an average RH value, displayed as RH membrane in Fi-
gure 4. For the Lambda cathode serie, membrane water content
is calculated considering as input the theoretical cathode out-
put RH value, displayed as RH cathode out in Figure 4. Consi-
dering the water produced on the cathode side, we know that
Lambda cathode serie refers to more humid conditions. We ob-
serve that for all the operating points studied, relative error on
cell voltage prediction is below 5.5%. At low current density,
we observe that calculating a membrane water content value on
average RH hypothesis provides better results than accounting
for cathode outlet only. There is also a better prediction accu-
racy along with temperature. Average RH-based cell voltage er-
ror increases at mid current densities along with temperature,
meaning that the humidity model could be further improved. Ta-
king into account cathode outlet RH for cell voltage prediciton
provides very arccurate results at high temperature and current
density. Only ohmic voltage losses are displayed here, but acti-
vation losses cannot be neglected.



This results highlights the underestimation of membrane hu-
midity under some operating conditions. Cell voltage prediction
capability is limited by the membrane water content value in
this model. Therefore, there is a need to model water transport
through the membrane to obtain more accurate results.

6. CONCLUSIONS AND PERSPECTIVES

The presented cell voltage and humidity models link mem-
brane hydration state and cell voltage in steady-state operations.
The model, calibrated using experimental automotive PEMFC
stack data, is able to catch operating conditions variations. In
steady-state mode, the model can provide an accurate cell vol-
tage value with less than 5.5% relative error towards temperature
variations. Although this work paves the way for future real-
time membrane water content observers, work is in progress to
improve the humidity model. Typically, liquid water transport,
phase change and transient regimes will be implemented. With
these improvements, real-time observer will be implemented in
PEMFC stack test benches.
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