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Abstract

This paper presents a novel model-based control strategy for collective blade pitch regulation in Region III of a 5 MW
semi-submersible FOWT. The proposed approach combines a Radial Basis Function Neural Network (RBFNN) with
a Super-Twisting Algorithm (STA) to enhance robustness against disturbances and improve dynamic performance.
The control design is based on a reformulated nonlinear control-oriented model to support the synthesis of adaptive
control laws. In addition to the control strategy, this work introduces a real-time Hardware-in-the-Loop (HIL) platform
as a key contribution, specifically designed for the validation of FOWT control strategies. This platform provides
a strictly synchronized execution framework for accurate real-time emulation and integrates OpenFAST for high-
fidelity dynamic simulations. By enabling real-time validation, the HIL platform plays a crucial role in assessing
control performance under realistic operating conditions. Experimental results confirm both the real-time feasibility
of the proposed RBFNN-based STA controller and the effectiveness of the HIL platform in evaluating its performance,
particularly in regulating generator speed and mitigating platform pitch motion under varying wind conditions.

Keywords: Floating offshore wind turbine, collective blade pitch control, super-twisting, neural networks, adaptive
control, real-time validation

Nomenclature

Table 1: Comprehensive list of mathematical symbols and notations
used throughout the manuscript.

Symbol Description

F 0 Inertial (global) coordinate system
F b Body (tower base) coordinate system
F n Nacelle coordinate system
F s Shaft coordinate system
F r Rotor coordinate system
F g Generator coordinate system
x Full system state vector
xg Translational displacement vector (m)
θ Rotational angle vector (rad)
u Control input vector
θr Rotor azimuth angle (rad)

Continued on next page
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Table 1 – continued from previous page
Symbol Description

θg Generator azimuth angle (rad)
γ Nacelle yaw angle (rad)
θtilt Shaft tilt angle (rad)
ωr Rotor angular speed (rad/s)
ωy Platform pitch angular velocity (rad/s)
β Collective blade pitch angle (rad)
Tg Generator torque (Nm)
R(θ) Rotation matrix from F b to F 0

R(θtilt) Rotation matrix from F s to F n

f Nonlinear dynamics function
v Wind disturbance vector (m/s²)
w Wave disturbance vector (m/s²)
mg Total mass of the FOWT (kg)
ma Added hydrodynamic mass (kg)
FA, FB, FC , FD Aerodynamic, buoyancy, catenary, and hydrodynamic forces (N)
TA, TB, TC , TD Aerodynamic, buoyancy, catenary, and hydrodynamic torques (Nm)
PA Aerodynamic power (W)
Ig Inertia tensor in F b (kg·m²)
Jl Equivalent low-speed shaft inertia (kg·m²)
λ Tip-speed ratio
Rr Rotor radius (m)
ρa Air density (kg/m³)
rb

gt Vector from turbine CG to aerodynamic thrust center in F b (m)
Cp, Ct Power and thrust coefficients (–)
ni j Polynomial coefficients for approximating Ct(λ, β)
gct, fct Polynomial functions used in the approximation of Ct

∆Ct Approximation error in the thrust coefficient model
oi j Polynomial coefficients for approximating Cp(λ, β)
gcp, fcp Polynomial functions used in the approximation of Cp

∆Cp Approximation error in the power coefficient model
vrel Relative wind velocity vector at the rotor center (m/s)
vn Effective wind velocity normal to rotor (m/s)
ηv Effective wind velocity factor, projected along rotor axis (m/s)
a1, a2, a3 Geometric coupling coefficients from position vector rb

gt and shaft tilt
Dg Unmodeled torque disturbances and generator torque effects (Nm)
Dt Total external disturbance torque (Nm)
Dθ Aggregate disturbance in rotational dynamics (Nm)
Dθy Pitch-axis component of the disturbance vector Dθ (Nm)
dθ Scaling factor in pitch rate dynamics coupling aerodynamic and inertial terms
b1, b2, b3 Reciprocal inertia terms: 1/Ixx, 1/Iyy, 1/Izz

b4, b5, b6 Inertial coupling coefficients based on Ig components
gr, gy Nonlinear control gain functions for rotor and pitch dynamics
Dr, Dy Lumped disturbance terms in respective dynamics
gs Composite control gain function in sliding variable dynamics
Ds Lumped disturbance in sliding variable dynamics
ρr1, ρr2 Upper bounds on Dr and Ḋr

ρs1, ρs2 Upper bounds on Ds and Ḋs

Pg Generator electrical power (W)
Continued on next page
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Table 1 – continued from previous page
Symbol Description

ηg Gearbox ratio (–)
ηe Generator efficiency (-)
er Rotor speed tracking error (rad/s)
ey Platform pitch rate tracking error (rad/s)
s Sliding variable (rad/s)
ṡ Time derivative of the sliding variable (rad/s²)
ky Empirical gain for platform pitch rate compensation (s)
ks Composite tracking error gain, ks = kyωrd (rad)
ωrd Rated rotor speed (rad/s)
ω∗rd Modified reference rotor speed accounting for platform motion (rad/s)
Tgd Rated generator torque (Nm)
βS T A Super-Twisting control component of β
βANN Neural network-based disturbance compensation component of β
βϵ Estimation error compensation term in the control law
k1, k2 Gains of the Super-Twisting Algorithm (STA)
D̂s Estimate of lumped disturbance Ds by the neural network
ε Neural network estimation error
W Weight vector of the RBFNN output layer
W∗ Optimal weight vector minimizing estimation error
∆W Weight estimation error: ∆W =W −W∗

ε∗ Minimal estimation error of the neural network
∆ε Error between current and minimal estimation error
x1, x2 Inputs to the RBFNN: sliding variable and its derivative
c ji Center of the jth radial basis function for input i
δ ji Width of the jth radial basis function for input i
h j Output of the jth neuron in the hidden layer
h Vector of outputs from hidden layer neurons
g j Gaussian basis function for neuron j
η1, η2 Learning rates for W and ε adaptation
ϕ Auxiliary integral term in Lyapunov stability analysis
V Lyapunov candidate function

Table 2: List of abbreviations used throughout the manuscript.

Abbreviation Definition

AHOSMC Adaptive High-Order Sliding Mode Control
ANN Artificial Neural Network
BEMT Blade Element Momentum Theory
COM Control-Oriented Model
cRIO compactRIO
CTE Composite Tracking Error
DEL Damage Equivalent Load
DoF Degree of Freedom
DRL Deep Reinforcement Learning
EC Environmental Condition
EoM Equation of Motion
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Table 2 – continued from previous page
Abbreviation Definition

FOWT Floating Offshore Wind Turbine
GSPI Gain-Scheduled Proportional-Integral
HIL Hardware-in-the-Loop
HOSMC High-Order Sliding Mode Control
MIL Model-in-the-Loop
PHIL Power-Hardware-in-the-Loop
RBFNN Radial Basis Function Neural Network
RMSE Root Mean Square Error
SMC Sliding Mode Control
STA Super-Twisting Algorithm
SWL Still Water Level
UDP User Datagram Protocol
VPPC Variable Pitch Power Control

1. Introduction

Despite growing climatic concerns, the global demand for electrical energy continues to rise, with a projected in-
crease of 3.3% in 2024 [1]. To meet this demand while limiting carbon emissions, renewable energy innovations such
as Floating Offshore Wind Turbines (FOWTs) present a promising solution. Unlike bottom-fixed turbines, FOWTs
rely on floating platforms anchored by mooring lines, enabling power generation in deep waters where winds are both
stronger and more stable. These conditions provide multiple benefits for energy production: reduced wind obstacles
simplify system control, lower mechanical strain, and improve turbine efficiency [2]. Additionally, higher wind in-
tensities in deep waters allow greater energy extraction compared to shallow waters or onshore locations. By being
situated far from coastlines, FOWTs also mitigate visual and noise concerns for coastal communities, making them a
viable and sustainable alternative to traditional bottom-fixed wind turbines.

However, the floating nature of FOWTs introduces significant control challenges, notably six additional Degrees
of Freedom (DoFs), making them more sensitive to wind, wave, and current disturbances. Although mooring systems
provide some stabilization, these disturbances can still impact turbine stability, power generation, and operational
costs. Effective control strategies are therefore essential to ensure optimal power capture and structural stability, par-
ticularly in Region III operation, where the turbine functions at its rated wind speed. In this region, the combination
of strong winds and platform motion can lead to a phenomenon known as negative damping [3]. This occurs when
the conventional pitch-to-feather control strategy, designed to reduce power output, unintentionally amplifies platform
pitch motions. As a result, collective blade pitch control plays a crucial role in regulating generator speed and min-
imizing platform pitch oscillations. However, the system’s highly nonlinear behavior, combined with unknown and
varying disturbances, necessitates the development of advanced and robust control methodologies.

In the field of model-based approaches, the majority of studies rely on linear models for FOWTs [4, 5, 6, 7,
8, 9, 12, 13, 14, 15, 16, 10, 11, 17, 18, 19, 20, 21], which are derived from specific operating points based on wind
conditions and rotor speed. Linear control strategies struggle when turbine dynamics shift from the modeled operating
point, reducing control accuracy. As a result, controllers must be continuously adjusted for each new operating point,
making real-time implementation impractical and labor-intensive.

In contrast, adaptive nonlinear control methods provide a more flexible alternative. They handle system nonlin-
earities effectively, improving regulation precision, robustness against disturbances, and adaptability to environmental
variations. This property is particularly relevant for FOWTs operating in Region III, where wind conditions are highly
unpredictable and subject to rapid variations due to external influences such as wind and waves. Specifically, the
transition towards nonlinear algorithms is particularly compelling given the robust response capabilities of nonlinear
control approaches such as Sliding Mode Control (SMC) to external disturbances, unmodeled dynamics, and mod-
eling uncertainties [24]. When designed using a nonlinear model, SMC-based controllers ensure rigorous control
law synthesis, system stability, and optimized performance. The development of robust controllers in this context
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inherently requires a deep understanding of the system’s coupled aero-hydro-servo-elastic behavior. In recent years,
significant efforts have been made toward modeling these interactions comprehensively. For instance, Chen et al. [22]
proposed a coupled aero-hydro-servo-elastic method to evaluate FOWT dynamics and control performance under var-
ious sea states. More recently, another study in [23] extended this approach to include wake interaction effects using
a high-fidelity coupling strategy, emphasizing the growing demand for integrated modeling frameworks that capture
the full system behavior.

While these methods provide accurate simulation platforms, they often rely on high-dimensional numerical mod-
els that are computationally intensive and not directly suitable for real-time control synthesis. Consequently, a shift
towards comprehensive analytical and Control-Oriented Models (COM) for floating wind turbine systems is essential.
However, existing COMs, such as those proposed by Betti [26], Lemmer [27], and Homer [28], are scarce in the liter-
ature and are not fully exploitable for nonlinear control synthesis. Recent studies [25, 30, 31, 32] have demonstrated
the potential of adapting the nonlinear Betti COM for the Tension-Leg Platform (TLP)-based FOWT, ensuring the
preservation of essential dynamics while enabling robust control design. In [77], the nonlinear Homer COM for the
semi-submersible FOWT was adapted to developed a modified super-twisting sliding-mode algorithm, where func-
tions within the rotor speed and platform pitch rate dynamics were approximated by locally valid constants around an
operating point.

A key advantage of using a nonlinear analytical model is that it allows for the systematic synthesis of control laws
with formal stability guarantees, unlike purely data-driven approaches. This structured framework provides a solid
foundation for designing robust controllers that can adapt to dynamic environmental conditions. To overcome the lim-
itations of existing approaches, this work leverages a nonlinear analytical COM to design an advanced control strategy
that ensures both robustness and adaptability to varying operating conditions. Adapting a COM to a fully analytical
form is a crucial step in advancing nonlinear control for FOWTs. Once such a model is available, robust and adaptive
control laws can be synthesized to address the challenges of Region III. Notably, the Super-Twisting Algorithm (STA)
approach, along with other High-Order SMC (HOSMC) methods and their adaptive versions, have demonstrated
significant potential in previous studies [25, 30, 31, 32, 33, 34]. Adaptive SMC methods, either first-order or higher-
order (AHOSMC) [31, 50, 51, 52, 53, 33, 34, 35, 36, 37], dynamically adjust the controller’s parameters in response
to parametric variations and disturbances, particularly in changing environmental conditions. However, their main
drawback lies in convergence time, which can lead to under-performance and overshoots during rapid disturbances,
especially when the control sampling period is relatively long. Additionally, although these methods are robust against
uncertainties, they rely on sufficiently accurate dynamic models of the FOWT, which becomes problematic in extreme
conditions where floating platform dynamics change abruptly.

To address these challenges, data-driven control strategies have recently emerged as a compelling alternative to
traditional model-based approaches [38]. Methods such as fuzzy logic, Machine learning, and Deep Learning with
Artificial Neural Networks (ANNs) bypass the need for explicit analytical models by learning the system’s behavior
directly from input-output data. This makes them well suited for handling the nonlinear and high-dimensional char-
acteristics of FOWTs operating under variable wind and wave conditions. While their application in this field remains
limited [39, 40], several recent works have demonstrated promising results in enhancing control robustness and per-
formance. For instance, [41] proposed an ANN-based model predictive control framework for a 5 MW FOWT, where
the ANN estimates the nonlinear steady-state behavior, while the dynamic part is identified using an AutoRegressive
with eXogenous input (ARX) model. This allowed fast torque-pitch coordination without nonlinear optimization,
improving response to frequency disturbances. Similarly, [42] introduced a gated recurrent neural network (GRNN)
to predict FOWT dynamics for multi-objective pitch control, which reduced blade root loads and improved power
tracking compared to GSPI strategies. In a different context, [44, 45] developed multi-layer perceptron-based surro-
gate models of hybrid FOWT-wave energy platforms and used fuzzy logic controllers to dampen platform oscillations,
showing improved stability under coupled wind-wave conditions.

Beyond supervised learning, Deep Reinforcement Learning (DRL) offers a model-free control paradigm that is
particularly suited to highly uncertain and nonlinear environments. DRL agents learn optimal control policies through
direct interaction with the environment by maximizing cumulative rewards, thereby avoiding the need for explicit
modeling. DRL methods such as Deep Deterministic Policy Gradient (DDPG) [46, 47, 48] and Incremental Dual
Heuristic Programming (IDHP) [49] have been applied to FOWT control, demonstrating their capacity to handle
multiple objectives and adapt to changing conditions. However, these approaches still face challenges, including
training instability, sensitivity to hyperparameters, and computational demands—especially in real-time applications.
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Despite these limitations, data-driven control represents a promising research direction for FOWTs, particularly
when integrated with robust nonlinear techniques. In this context, the combination of SMC and HOSMC with ANN-
based approximators forms a robust hybrid framework capable of managing modeling uncertainties and external
disturbances [54, 55, 56, 57, 58, 76]. Unlike adaptive control techniques such AHOSMC, ANN-based controllers
do not rely on pre-defined adaptation laws but continuously learn and approximate the system’s unknown dynamics,
enabling faster and more precise compensation of uncertainties. While AHOSMC dynamically tunes controller gains
to mitigate disturbances, it often suffers from slow convergence and may struggle with abrupt variations in system
dynamics. In contrast, an ANN can capture and compensate for complex, time-varying dynamics in real time, signif-
icantly reducing adaptation delays. The synergy between ANN and the STA further enhances performance: the ANN
efficiently estimates and counteracts unmodeled dynamics and external disturbances, while the STA ensures robust
tracking and mitigates chattering, which is particularly beneficial for FOWTs operating under highly uncertain and
turbulent conditions. This hybrid approach leverages the ANN’s ability to adapt to complex, nonlinear interactions,
while preserving the stability guarantees of robust model-based control.

Validating control strategies for FOWTs is essential to ensure their reliability in real-world conditions. While
full-scale offshore testing offers the most accurate validation, it is costly, time-consuming, and highly dependent on
unpredictable environmental factors, making iterative controller development impractical. Scaled wind turbine tests in
wave basins [78, 79] provide useful aero-hydro-servo-elastic insights but remain expensive and do not fully replicate
full-scale operating conditions, particularly in terms of aerodynamic loads and control responses. To address these
limitations, this work introduces a Hardware-in-the-Loop (HIL) platform as an intermediate validation step. The HIL
framework enables real-time testing of control strategies in a controlled environment, allowing for rapid iteration and
optimization before costly field trials [80]. By integrating the actual controller hardware with a high-fidelity FOWT
simulation, HIL provides a cost-effective and flexible alternative for assessing computational performance, system
delays, and robustness to uncertainties. This approach bridges the gap between numerical simulations and full-scale
deployment, accelerating development while minimizing financial and logistical constraints.

This paper advances FOWT control strategies by proposing an ANN-based STA control law, built upon an adjusted
nonlinear model. The proposed approach enables a systematic and constructive synthesis of the controller, ensuring
formal stability guarantees. Specifically, the Radial Basis Function Neural Network (RBFNN) observer is integrated
with the STA (RBFNN-based STA) to enhance robustness against disturbances and compensate for unmodeled dy-
namics. While numerous studies on FOWT control explore nonlinear and intelligent control strategies, most remain at
the simulation level using software such as FAST, without experimental validation in real-time environments. To ad-
dress this gap, this work implements and validates the RBFNN-based STA collective blade pitch controller on a HIL
platform, ensuring real-time feasibility and performance assessment under conditions that better reflect real-world
constraints. To the best of our knowledge, this is the first time an adaptive RBFNN-based STA control strategy for
FOWTs has been validated in real-time using an HIL platform.

The main contributions of this article can be summarized as follows:

• Development and reformulation of a nonlinear analytical model for a 5 MW semi-submersible FOWT, ensuring
a structured foundation for robust control synthesis.

• Design of an ANN-based STA control strategy built upon an adjusted nonlinear model, where a RBFNN ob-
server estimates and compensates for unmodeled dynamics and external disturbances, while the STA ensures
robust control performance across varying environmental conditions.

• Design, construction, and implementation of a real-time HIL platform, featuring a strictly synchronized execu-
tion framework to maintain real-time interaction between the control system and the FOWT emulator.

• Experimental validation of the proposed RBFNN-based STA controller through closed-loop HIL testing, demon-
strating superior generator speed regulation and platform motion mitigation under real-time operating condi-
tions, outperforming both the baseline GSPI blade pitch controller and the STA alone.

The remainder of this article is organized as follows: Section II introduces the Homer nonlinear COM, detailing
its reformulation and validation for model-based control development in Region III. Section III defines the control
objectives and presents the design of the RBFNN-based STA controller. Section IV describes the HIL platform,
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followed by the implementation and validation of the RBFNN-based STA through comparative co-simulation tests.
Finally, Section V outlines conclusions and future research directions.

2. FOWT Modeling

To develop an adaptive nonlinear model-based control law for FOWTs operating in Region III, a sufficiently
accurate nonlinear model is essential to facilitate the synthesis of control laws. After introducing the considered
Homer COM, this section details the simplifications made to the nonlinear dynamics of the COM to achieve a fully
analytical model. This refined model serves as a foundation for accurately capturing the dynamic behavior of the
FOWT system and implementing the RBFNN-based STA collective blade pitch controller.

2.1. Homer Control-Oriented Model

A detailed presentation of the Homer’s 3-Dimensional (3-D) COM is given in [28]. The Homer COM is designed
for a 5 MW FOWT based on a semi-submersible platform, whose specifications are given in [29]. The overall system,
composed of the floating platform and the wind turbine, is regarded as a single rigid body, except for the drive shaft,
which is treated as a double-mass system with torsional flexibility. The six right-hand 3-D coordinate systems used
in the model include a global coordinate system (F 0) and five body-fixed coordinate systems (F b,F n,F s,F r,F g).
These are illustrated in Figure 1 and defined as follows:

• Global Coordinate System (F 0): A static reference frame with its origin in the Still Water Level (SWL). The
z-axis points vertically upward, while the x- and y-axes are horizontal, parallel to the SWL.

• FOWT System Coordinate System (F b): A dynamic frame attached to the FOWT’s centroid. The z-axis
extends vertically from the platform to the nacelle, parallel to the turbine tower. The x-axis aligns with the
nominal wind direction, assuming no nacelle yaw movement.

• Nacelle Coordinate System (F n): Originates at the intersection of the yaw axis and rotor axis. Its z-axis aligns
with F b, while the x- and y-axes rotate around the z-axis when yaw motion occurs.

• Shaft Coordinate System (F s): Shares its origin and y-axis with F n but is tilted around the y-axis by the shaft
tilt angle θtilt.

• Rotor and Generator Coordinate Systems (F r and F g): These are dynamic frames attached along the shaft.
Each rotates independently around their respective x-axes, both aligned with F s.

The states vector x incorporates sixteen variables, including the platform’s six DoFs, the rotor and generator
azimuth angles, and all corresponding velocities:

x =
[
xg, yg, zg, θx, θy, θz, θr, θg, ẋg, ẏg, żg, θ̇x, θ̇y, θ̇z, ωr, ωg

]⊤
. (1)

Thus, the model defines three position states, xg =
[
xg, yg, zg

]⊤
, as well as three orientation angles, θ =

[
θx, θy, θz

]⊤
,

representing the displacement vector and rotational position from the body frame F b relative to the world frame F 0.
The orientation angles are part of a rotation matrix, R(θ), approximated under the small angle assumption to simplify
calculations and defined as:

R(θ) =

 1 −θz θy
θz 1 −θx

−θy θx 1

 . (2)

The possible control inputs within the COM are the blade pitch angle (β), the generator torque (Tg), and the
nacelle’s yaw angle (γ):

u =
[
β, Tg, γ

]⊤
. (3)
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Figure 1: Schema of the semi-submersible FOWT with the reference frames considered for modeling [28].

The EoM for the Homer COM are articulated using the Newton-Euler formalism for translational and rotational
dynamics. The nonlinear dynamics function f encapsulates the system’s behavior as follows:

f (x, u, v,w) =



ẋg

θ̇
ωr

ωg(
mgI3 +maI3

)−1 ∑
j F j(x, u, v,w)(

R(θ)I−1
g R(θ)⊤

)∑
j T j(x, u, v,w)

1
Jr

∑
kr

Qkr(x, u, v,w)
1
Jg

∑
kg

Qkg(x, u, v,w)


, (4)

where wind and waves disturbances are represented by vectors v and w, respectively. mg is the total mass of the
FOWTs, I3 is a 3 × 3 identity matrix, and ma is the vector of hydrodynamic added mass. Ig = diag(Ixx, Iyy, Izz) is the
inertia tensor matrix of the wind turbine in the body frame F b. Jr and Jg represent inertia about the rotor-side shaft
and generator-side shaft, respectively, and Qkr and Qkg represent the kr-th and kg-th torque about each respective shaft.
Summations of forces F j and torques T j include aerodynamic (FA and TA), buoyancy (FB and TB), catenary (FC and
TC), and hydrodynamic (FD and TD) components.

Within the model, the aerodynamic force FA is represented as a single thrust force that captures the combined
effects of the wind interacting with the FOWT. This force is assumed to act parallel to the rotor’s axis of rotation in
frame F s, and is applied at the blades’ center of thrust located at the hub:

FA =
1
2
ρaπR2

rCt(λ, β)∥vn∥
2, (5)

where Ct is the thrust coefficient dependent on the tip-speed ratio (λ) and blade pitch angle (β), ρa denotes air density,
Rr is the rotor radius, and vn is the equivalent velocity vector normal to the face of the rotor blade.

The corresponding torque TA generated by the aerodynamic force is then calculated as:

TA = R(θ)rb
gtFA + R(θ)R(θtilt)ηgTgês

1, (6)
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where rb
gt =

[
(rb

gt)x, (rb
gt)y, (rb

gt)z

]
is the position vector from the turbine center of gravity to the force application point

in the body frame F b. ηg is the gearbox ratio, and ês
1 is the first orthogonal unit vector of F s. R(θtilt) defines the

orientation of F s with respect to F n expressed as:

R(θtilt) =

cos(θtilt) 0 − sin(θtilt)
0 1 0

sin(θtilt) 0 cos(θtilt)

 . (7)

The aerodynamic power PA is given by:

PA =
1
2
ρaπR2

rCp(λ, β)∥vn∥
3, (8)

where Cp is the power coefficient.
Typically, the power (Cp) and thrust (Ct) coefficients, which are highly nonlinear functions of λ and β, are ex-

pressed using lookup tables generated offline by external software like AeroDyn [59].

2.2. Adaptation of the Homer COM
The formal structure of the presented Homer COM does not support the development of nonlinear control laws.

Specifically, its aerodynamic module employs a simplified Blade Element Momentum Theory (BEMT), which uses
lookup tables for calculating the thrust coefficient (Ct) and power coefficient (Cp) based on turbine performance data.
These tables, generated by the blade pitch control, intertwine analytical equations with data from third-party software,
complicating the direct application of nonlinear control laws that require fully analytical models.

To overcome these limitations, the Homer model must be reformulated into a fully analytical form, eliminating
dependence on externally sourced tables and enabling the seamless integration of model-based nonlinear control
strategies.

2.2.1. Simplified EoM
In this adaptation, the misalignment between wind direction and the x-axis of F r is not considered. Consequently,

the nacelle yaw motion is omitted. Furthermore, unlike the original two-mass flexible shaft model used by Homer,
this study employs a one-mass rigid shaft model to describe the drivetrain dynamics:

ω̇r =
1
Jl

(
PA

ωr
− ηgTg

)
. (9)

Here, Jl = (Jr + n2
gJg) denotes the equivalent inertia of the low-speed shaft, incorporating both the turbine (Jr) and

generator (Jg) inertia.
Considering this simplified drivetrain model, the state selection for our study includes the platform’s spatial and

angular positions and their time derivatives, the rotor azimuth angle θr and the rotor speed ωr:

x =
[
xg, yg, zg, θx, θy, θz, θr, ẋg, ẏg, żg, θ̇x, θ̇y, θ̇z, ωr

]⊤
. (10)

Given the adoption of a pitch-to-feather strategy for the development of a collective blade pitch controller operating
in Region III, and given that the generator torque Tg is fixed at its rated value and nacelle yaw motion is excluded, the
control input selected consists solely of the blade pitch angle β:

u = β. (11)

Consequently, the EoM for the semi-submersible FOWT can be rewritten to reflect these initial simplifications
made to the model:

f (x, u, v,w) =



ẋg

θ̇
ωr(

mgI3 + maI3

)−1 ∑
j F j(x, u, v,w)

(R(θ) I−1
g R(θ)⊤)

∑
j T j(x, u, v,w)

1
Jl

(
PA
ωr
− ηgTg

)


, (12)
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2.2.2. Dynamics of the platform pitch rate ωy

Within the framework of the Homer model, the thrust coefficient (Ct) of the wind turbine is approximated using a
polynomial function (13). While this method introduces a relatively high fitting error, this deviation will be effectively
managed by the neural network disturbance observer.

Ct(λ, β) = gctβ + fct

=
(
n10 + n11λ + n12λ

2 + n13λ
3 + n14λ

4
)
β

+
(
n00 + n01λ + n02λ

2 + n03λ
3 + n04λ

4 + n05λ
5
)

+ ∆Ct,

(13)

where ∆Ct represents the fitting error. Polynomial coefficients given in Table 3 are determined using MATLAB’s
curve fitting toolbox.

ni j Value ni j Value ni j Value

n00 -0.03825 n01 0.2559 n02 -0.06493
n03 0.02576 n04 -0.003477 n05 -0.0005361
n10 -0.4266 n11 0.3144 n12 -0.01908
n13 0.02513 n14 -0.000702

Table 3: Values of polynomial coefficients for Ct .

By projecting the relative wind velocity vector vrel between the wind and the FOWT at the center of thrust along
the x-axis of the coordinate system F s, vn can be calculated as:

vn = R(θ)R(θtilt)diag(1, 0, 0)R⊤(θtilt)R⊤(θ)vrel, (14)

with:
vrel = v − ẋg − Ṙ(θ)rb

gt, (15)

where v =
[
vx, vy, vz

]
is the total wind velocity vector.

Based on (5), (14), and (15), the aerodynamic force FA is then calculated as:

FA =
1
2
ρaπR2

rCt(λ, β)v2
nR(θ)R(θtilt)

100
 , (16)

which based on (2) and (7), simplifies to:

FA =
1
2
ρaπR2

rCt(λ, β)η2
v

 cos(θtilt) + θy sin(θtilt)
θz cos(θtilt) − θx sin(θtilt)
−θy cos(θtilt) + sin(θtilt)

 , (17)

where ηv is a scalar function representing the effective velocity factor, dependent on the relative wind velocity and
rotor orientation, such as:

ηv = ||vn|| =
[
1 0 0

]
R⊤(θtilt)R⊤(θ)vrel

=
(
cos(θtilt) + θy sin(θtilt)

) (
vx − ẋg − (rb

gt)zθ̇y + (rb
gt)yθ̇z

)
+ (θz cos(θtilt) − θx sin(θtilt))

(
vy − ẏg − (rb

gt)zθ̇x − (rb
gt)xθ̇z

)
+

(
−θy cos(θtilt) + sin(θtilt)

) (
vz − żg − (rb

gt)yθ̇x + (rb
gt)xθ̇y

)
.

(18)
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Given the expression of the aerodynamic torque TA in (6), and substituting (7) and (17) into (6), TA can be rewritten
as:

TA =
1
2
ρaπR2

rCt(λ, β)η2
v a1θ

2
x + a3θxθy − a2θxθz − a2θy − a3θz + a1

a3θ
2
y + a1θxθy − a2θyθz + a2θx + a1θz + a3

−a2θ
2
z + a1θxθz + a3θyθz + a3θx − a1θy − a2


+ Dg.

(19)

where Dg represents disturbances and generator torque influence not captured by the simplified model, and the coef-
ficients are defined as follows:

a1 = (rb
gt)y sin(θtilt), a2 = (rb

gt)y cos(θtilt),

a3 = (rb
gt)z cos(θtilt) − (rb

gt)x sin(θtilt).

Given that the nacelle yaw motion is disregarded in this study, the y-component of the distance vector from the
centroid of the FOWT to the center of thrust ((rb

gt)y) is zero. Consequently, the coefficients a1 and a2, which depend
on (rb

gt)y, are also zero. This simplification allows the aerodynamic torque to be expressed in a more compact form:

TA =
1
2
ρaπR2

rCt(λ, β)η2
va3

θxθy − θz
θ2y + 1
θyθz + θx

 + Dg. (20)

The Euler equations, which govern the rotational dynamics of the FOWT, can be expressed as follows:

θ̈ = R(θ)I−1
g R(θ)⊤ (TA + TB + TC + TD) . (21)

Expanding the matrix multiplication, the dynamics can be detailed as:

θ̈ =

 1 −θz θy
θz 1 −θx

−θy θx 1




1
Ixx

0 0
0 1

Iyy
0

0 0 1
Izz


 1 θz −θy
−θz 1 θx

θy −θx 1


(TA + TB + TC + TD)

=

b1 + b3θ
2
y + b2θ

2
z −b3θxθy + b4θz −b2θxθz + b6θy

−b3θxθy + b4θz b2 + b3θ
2
x + b1θ

2
z −b1θyθz + b5θx

−b2θxθz + b6θy −b1θyθz + b5θx b3 + b2θ
2
x + b1θy

 TA

+ Dt,

(22)

where Ixx, Iyy, and Izz are the moments of inertia about the respective axes. The coefficients are defined as:

b1 =
1

Ixx
, b2 =

1
Iyy
, b3 =

1
Izz
,

b4 =
Iyy − Ixx

IxxIyy
, b5 =

Izz − Iyy

IyyIzz
, b6 =

Ixx − Izz

IxxIzz
,

and Dt = R(θ)I−1
g R(θ)⊤(TB+TC +TD) represents the total disturbance torque including contributions from all external

forces.

Substituting (20) into (22), the Euler equations for the FOWT can be rewritten as:
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θ̈ =
1
2
ρaπR2

rCt(λ, β)η2
va3b1 + b3θ

2
y + b2θ

2
z −b3θxθy + b4θz −b2θxθz + b6θy

−b3θxθy + b4θz b2 + b3θ
2
x + b1θ

2
z −b1θyθz + b5θx

−b2θxθz + b6θy −b1θyθz + b5θx b3 + b2θ
2
x + b1θy


 θxθy − θz
θ2y + 1
θyθz + θx


+ Dθ

=
1
2
ρaπR2

rCt(λ, β)η2
va3


−b2θz(θ2x + θ

2
y + θ

2
z + 1)

b2(θ2x + θ
2
y + θ

2
z + 1)

−b2θx(θ2x + θ
2
y + θ

2
z + 1)

 + Dθ

=
1
2
ρaπR2

rCt(λ, β)η2
va3b2

(
θ2x + θ

2
y + θ

2
z + 1

) −θz1
−θx

 + Dθ

= dθCt(λ, β)η2
v

(
θ2x + θ

2
y + θ

2
z + 1

) −θz1
−θx

 + Dθ,

(23)

where Dθ represents the cumulative disturbance, and is defined as:

Dθ = R(θ)I−1
g R(θ)⊤Dg + Dt. (24)

while dθ is a scaling factor, calculated as:

dθ =
1
2
ρaπR2

r a3b2. (25)

Based on (23), the dynamics of the platform pitch rate of the semi-submersible FOWT can be written as:

ω̇y = dθCt(λ, β)η2
v

(
θ2x + θ

2
y + θ

2
z + 1

)
+ Dθy , (26)

where Dθy represents the y-axis component of Dθ in the frame F 0.
By substituting the thrust coefficient Ct with its polynomial approximation (13), the dynamics can be further

expanded as:
ω̇y = dθ(gctβ + fct)η2

v

(
θ2x + θ

2
y + θ

2
z + 1

)
+ Dθy . (27)

This can be simplified and expressed in terms of control influence and disturbances:

ω̇y = gyβ + Dy, (28)

where gy is a known function considering the dynamics influenced by the rotor configuration and environmental vari-
ables, and Dy encapsulates the polynomial fitting error and cumulative disturbances affecting the pitch rate dynamics,
defined as:

gy = dθgctη
2
v(θ2x + θ

2
y + θ

2
z + 1), (29)

Dy = dθ fctη
2
v(θ2x + θ

2
y + θ

2
z + 1) + Dθy . (30)

Assumption 1. The disturbance Dy and its time derivative Ḋy are bounded such that: |Dy| ≤ ρy1 and |Ḋy| ≤ ρy2
where ρy1 and ρy2 are two unknown positive constants.

2.2.3. Dynamics of the rotational rotor speed ωr

Similar to the thrust coefficient of the wind turbine, the power coefficient Cp is approximated using a polynomial
function, where the coefficients oi j are determined through polynomial regression and are provided in Table 4:

Cp(λ, β) = gcpβ + fcp, (31)
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where:
gcp(λ) = o10 + o11λ + o12λ

2 + o13λ
3 + o14λ

4, (32)

and
fcp(λ) =

(
o00 + o01λ + o02λ

2 + o03λ
3 + o04λ

4 + o05λ
5
)
+ ∆Cp. (33)

with the term ∆Cp representing the fitting error inherent in the polynomial approximation.

oi j Value oi j Value oi j Value

o00 -0.4835 o01 0.7824 o02 -0.3106
o03 -0.03193 o04 -0.01383 o05 0.001998
o10 -0.8757 o11 -0.7761 o12 -0.3552
o13 -0.05165 o14 -0.002998

Table 4: Values of polynomial coefficients for Cp.

Substituting the aerodynamic power PA expression (8) into the one-mass rigid shaft model, the dynamics of the
rotor speed of the semi-submersible can be expressed as:

ω̇r =
1
Jl

(
1
2
ρaπR2

r
Cp(λ, β)
ωr

∥vn∥
3 − ηgTg

)
. (34)

Subsequently, substituting Cp by its polynomial expression (31), the dynamic equation for the rotor speed can be
rewritten as:

ω̇r =
1
Jl

(
1
2
ρaπR2

r
(gcpβ + fcp)
ωr

∥vn∥
3 − ηgTg

)
=

1
Jl

(
ρaπR2

r

2ωr
(gcpβ + fcp)η3

v − ηgTg

)
.

(35)

Thus, the dynamic of the rotor speed can be expressed as:

ω̇r = grβ + Dr, (36)

with

gr =
ρaπR2

r gcpη
3
v

2Jlωr
, and Dr =

ρaπR2
r fcpη

3
v

2Jlωr
−
ηg

Jl
Tg, (37)

where gr is a known function, and Dr encapsulates the polynomial fitting of Cp, excluding the pitch component, along
with cumulative disturbances.

Assumption 2. The disturbance Dr and its time derivative Ḋr are bounded such that: |Dr | ≤ ρr1 and |Ḋr | ≤ ρr2 where
ρr1 and ρr2 are two unknown positive constants.

2.3. Validation of the reformulated dynamics

The original Homer COM was reproduced in the Matlab/Simulink environment under specific wind and wave
conditions that align with those used in its published research [28]. Comparative simulations presented in [28, 25]
indicate a strong correlation between the primary motion behaviors predicted by this COM and the outputs from the
high-fidelity OpenFAST software [60].

Developed by NREL, OpenFAST provides high-fidelity modeling of FOWT dynamics by integrating detailed
aerodynamic, hydrodynamic, and structural models. Figure 2 illustrates the key OpenFAST modules used for FOWT
emulation, which are defined as follows:

• InflowWind: Provides wind field inputs at the rotor, including speed and turbulence intensity.

• ElastoDyn: Simulates elastic structural dynamics of the drivetrain, tower, and nacelle.
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Figure 2: Architecture of the OpenFAST simulation software, depicting key modules used in FOWT system emulation.

Table 5: General, aerodynamic, and generator properties of the Homer model.

Property Unit Value

Rated power MW 5
ωrd rpm 12.1
Tgd N·m 43,093.55
mg kg 14,072,718
Ixx kg·m2 1.695 × 1010

Iyy kg·m2 1.695 × 1010

Izz kg·m2 1.845 × 1010

θtilt deg 5
Rr m 62.94
ρa kg/m3 1.225
rb

gt m [−5, 0, 99.889]T

Jr kg·m2 3.5444 × 107

Jg kg·m2 534.116
ηg - 0.97

• BeamDyn: Models blade flexibility using beam-type finite element methods.

• AeroDyn: Calculates aerodynamic loads using BEMT.

• HydroDyn: Simulates hydrodynamic forces acting on floating structures.

• Mooring: Models mooring system dynamics via MAP++, FEAMooring, or MoorDyn.

• ServoDyn: Simulates pitch and torque actuator dynamics for control systems.

OpenFAST includes 26 preconfigured wind turbines with 24 DoFs, among which the DeepCWind OC4 5 MW
FOWT model closely represents the semi-submersible wind turbine foundation used in the Homer COM. Table 5
summarizes its key properties.

The strong agreement between the Homer COM and OpenFAST across all considered DoFs, as demonstrated in
[28, 25], confirms the reliability of this COM for control design while maintaining computational efficiency. Similarly,
to validate the reformulated dynamics for rotor speed ωr (36) and platform pitch rate ωy (28), an open-loop response
test was conducted under realistic wind and wave conditions characteristic of Region III.
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Figure 3: Collective blade pitch control input for open-loop validation.
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Figure 4: Environmental conditions used for open-loop validation, including 3-D wind speed profiles and wave height variations.

2.3.1. Open-loop configuration
This test aims to compare the time responses of the proposed ωr- and ωy-dynamics with those of the OpenFAST

model in operating Region III. In accordance with the assumptions made during the derivation of these dynamics,
the generator torque control input is fixed at its rated value, Tgd = 43 093.55 N.m, while the nacelle yaw motion is
neglected and set to zero. Consequently, only the collective blade pitch control input is considered for open-loop
validation. The applied blade pitch control input, as specified in the reference study [28], is shown in Figure 3.

The simulation also employs the same wind and wave conditions as those presented in the reference study. The
corresponding 3-D wind speed profiles and wave height variations are illustrated in Figure 4.

2.3.2. Results
The time series results for the simulations conducted in both OpenFAST and the reformulated dynamics are

presented in Figure 5. The statistical comparisons, including the mean, maximum, minimum, and standard deviation
(STD) values, are summarized in Table 6. Additionally, the Root Mean Square Error (RMSE) is computed with
respect to OpenFAST, which serves as the reference model, for both dynamics.

The open-loop validation results demonstrate a strong agreement between the reformulated dynamics and Open-
FAST. For rotor speed, the mean values align closely (10.6154 rpm vs. 10.2494 rpm), with a low RMSE of 0.39027
rpm, confirming that the reformulated model effectively captures the main rotor speed variations. For platform pitch
rate, the reformulated model accurately predicts the general trend but slightly underestimates extreme values, with a
lower standard deviation (0.18605 deg/s vs. 0.29323 deg/s). The RMSE of 0.35759 deg/s remains acceptable, ensur-
ing suitability for control-oriented applications.

3. RBFNN-based STA for collective blade pitch control in Region III

By leveraging the reformulated dynamics of rotor speed (36) and platform pitch rate (28) from the adapted Homer
COM, this section outlines the design framework for an STA control law integrating an RBFNN as a disturbance ob-
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Figure 5: Open-loop validation of the modified Homer model compared to OpenFAST: (a) Rotor speed and (b) Platform pitch rate.

Table 6: Statistical comparison between OpenFAST and the modified Homer model.

modified COM OpenFAST

Rotor speed ωr (rpm)

Mean 10.6154 10.2494
Max 12.05 12.3601
Min 9.2612 9.0421
STD 0.38436 0.39718
RMSE (w.r.t. OpenFAST) 0.39027

Platform pitch rate ωy (deg/s)

Mean -0.00027 0.00170
Max 0.31722 0.94478
Min -0.32971 -0.51657
STD 0.18605 0.29323
RMSE (w.r.t. OpenFAST) 0.35759

server. It first defines the control objectives, followed by the formulation of the sliding variable and its time derivative.
Subsequently, the STA controller design is detailed, including the neural network architecture.

3.1. Control objectives

In Region III, the primary control objectives are to regulate the generator’s power to its rated value while ensuring
stability in the platform’s pitching motion. The generator power, Pg, can be expressed as follows:

Pg = ηeηgTgωr, (38)

where ηe represents the efficiency of the generator.
Given that Tg is fixed at its rated value, the first control objective simplifies to maintaining the rotor speed at its

rated value, ωrd = 12.1 rpm, expressed as:
er = ωr − ωrd. (39)

The second control objective focuses on reducing the platform’s pitching motion. This is achieved by driving the
platform pitch rate, ωy, towards zero:

ey = ωy. (40)
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3.2. Definition of the sliding variable

In an effort to enhance the stability of the FOWT, [61] introduces the concept known as Variable Pitch Power
Control (VPPC). This strategy dynamically adjusts the nominal generator speed, increasing above the constant nomi-
nal value when the platform pitches upwind and decreasing when pitching downwind. This adjustment is realized by
making the nominal generator speed, ωrd, a linear function of the platform pitch rate, ωy.

Drawing inspiration from [61], a practical solution for the underactuated control issue, arising from the presence
of the same control input β in both the platform pitch rate ωy and rotor speed ωr dynamics, is to modify the reference
rotor speed from a fixed value to a linear function related to the platform pitch rate:

ω∗rd = ωrd

(
1 − kyωy

)
, (41)

where ω∗rd is the modified reference rotor speed and ky is a positive constant defined empirically.
Thus, the primary control objective for the FOWT in Region III is to drive the Composite Tracking Error (CT E)

to zero:
CT E = ωr − ω

∗
rd = ωr − ωrd

(
1 − kyωy

)
= er + ksey, (42)

where er = ωr − ωrd, ey = ωy − 0, and ks = kyωrd is a positive scalar constant with units of rpm · s/deg.
This variable is used as the sliding variable in all sliding mode controllers discussed in this chapter. The time

derivative of the sliding variable s can then be expressed as:

ṡ = ėr + ksėy = ω̇r + ksω̇y. (43)

Substituting the two reformulated dynamics expressions (36) and (28), the derivative simplifies to:

ṡ = (grβ + Dr) + ks

(
gyβ + Dy

)
= gsβ + Ds, (44)

where gs = gr + ksgy is a known function and Ds = Dr + ksDy encapsulates the unknown lumped uncertainties and
external disturbances.

Assumption 3. Under Assumptions 1 and 2, it is held that |Ds| ≤ ρs1 and |Ḋs| ≤ ρs2 where ρs1 = ρr1 + ksρy1
and ρs2 = ρr2 + ksρy2 are two unknown positive constants, respectively representing bounds on disturbances and their
rates of change.

3.3. Structure of RBFNN-based STA controllers

The dynamics of the sliding variable (44) incorporate the term Ds, which accounts for unmodeled dynamics,
external disturbances, and modeling uncertainties within the adapted Homer model. To estimate and compensate for
these lumped disturbances, a neural network is employed.

The overall structure of the proposed controller, integrating the STA with a neural network-based disturbance
observer, is illustrated in Figure 6.

In this configuration, the control law β is composed of three distinct components:

β = βS T A − βANN − βϵ , (45)

where:

• βS T A: this component represents the standard STA control law for collective blade pitch control, ensuring the
convergence of the system state to a vicinity of the origin, and defined as:

βS T A = −
1
gs

(
k1

√
|s(t)|sgn(s(t)) + k2

∫ t

0
sgn(s(τ)) dτ

)
, (46)

where k1 > 0 and k2 > 0 are controller gains.
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Figure 6: Block diagram of the neural network-based STA controller.

• βANN : this component aims to capture and compensate for the unknown lumped disturbances Ds. It is expressed
as:

βANN =
1
gs

D̂s, (47)

where D̂s is the disturbance estimate output by the neural network observer.

• βϵ : this component addresses the approximation error ε inherent in the neural network.

βϵ =
1
gs
ε. (48)

By incorporating a neural network to approximate the lumped uncertainties and disturbances Ds, the proposed
controller aims to regulate the rotor speed to its rated value while minimizing the platform’s pitching motion in
Region III. An error estimator is integrated to offset the theoretical minimum estimation error of the neural network,
thereby enhancing the accuracy and robustness of the control strategy.

3.4. RBFNN-based STA controller design
The well-explored class of RBFNN is highly regarded for its efficacy in control systems within dynamic envi-

ronments, such as those encountered in FOWTs. Known for their capability as universal function approximators,
RBFNNs can model any continuous function with remarkable accuracy, provided they are equipped with sufficient
neurons and optimally tuned parameters. This feature, combined with their rapid convergence and simple architecture,
makes RBFNNs ideally suited for tasks requiring quick and accurate modeling of nonlinear dynamics.

At its core, the RBFNN employs radial basis functions as activation functions, which play a critical role in trans-
forming input data into a space where relationships among the data can be more easily interpreted and used by the
neural network. RBFNNs have been effectively combined with various nonlinear control techniques, including SMC
[62, 63, 64, 65, 66, 67, 70]. In particular, the integration of RBFNN-based STA controllers has been explored in ap-
plications like MEMS gyroscopes [68] or PMSG systems [69], indicating a broad applicability across various fields.

3.4.1. RBFNN architecture
The architecture of an RBFNN typically comprises three layers: an input layer, a hidden layer featuring radial

basis functions, and an output layer. This structure is depicted in Figure 7.
Input layer: Directly captures operational parameters pertinent to FOWT dynamics. For this application, the

sliding variable s and its derivative ṡ are chosen as inputs, denoted x1 and x2 respectively, to allow for immediate
reaction to dynamic changes:
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Figure 7: RBFNN architecture within the RBFNN-based STA.

x1 = s, x2 = ṡ. (49)

Hidden layer: This layer uses radial basis functions to transform the input space into a higher-dimensional space
where linear separability is more achievable. Each of the n neurons in this layer processes the inputs using Gaussian
functions with centers c ji and widths δ ji. The output h j of each neuron j is given by:

h j = e−g j , (50)

with

g j =

(
x1 − c j1

)2

2δ2j1
+

(
x2 − c j2

)2

2δ2j2
(51)

Output layer: This layer aggregates the outputs from the hidden layer to form the final output of the network, D̂s,
which is an estimate of the disturbances Ds:

D̂s =W⊤h, (52)

where W = [W1, . . . ,Wn] is the weight vector from the hidden to the output layer, and h = [h1, . . . , hn] is the vector of
outputs from the hidden layer.

With its universal approximation property, the RBFNN can optimally estimate the disturbance Ds when the output
layer weights, W, are ideally tuned. The theoretically minimal estimation error, ε∗, defines the precision limit of the
network:

Ds =W∗⊤h + ε∗, (53)

where W∗ represents the optimal weight configuration.

3.4.2. Stability analysis
The primary objective of the RBFNN is to estimate and compensate for the unknown lumped disturbance Ds,

using inputs x = [s, ṡ], and producing the output D̂s, detailed in equation (52). The adaptation of the weight vector
W⊤ is governed by an adaptive law, formulated based on principles of Lyapunov stability.

Substituting the dynamics of the sliding variable (44) leads to the equation:
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ṡ = gsβ + Ds = gs (βS T A − βANN − βϵ) + Ds

= −k1

√
|s|sgn(s) − k2

∫ t

0
sgn(s) dτ − D̂s − ε + Ds

= −k1

√
|s|sgn(s) − k2

∫ t

0
sgn(s) dτ − ∆W⊤h − ∆ε

(54)

where ∆W =W −W∗ and ∆ε = ε − ε∗.

Assumption 4. It is considered that W∗ and ε∗ are constant in the derivation of the adaptive laws.

The following theorem establishes the criteria for selecting the control gains and learning laws of the RBFNN-
based STA controller to ensure the asymptotic convergence of s to the origin.

Theorem 1. For the system defined, with control gains k1 > 0 and k2 > 0, and properly selected learning laws, s will
converge asymptotically to the origin. The learning laws are defined as:

Ẇ⊤ = η1k2sgn(s)h, (55)

ε̇ = η2k2sgn(s), (56)

where η1 and η2 are positive learning rates.

Proof. The system dynamics (54) can be converted into:ṡ = −k1
√
|s|sgn(s) − ∆W⊤H − ∆ε + ϕ,

ϕ̇ = −k2sgn(s).
(57)

Based on [71], the following Lyapunov candidate function is selected:

V = k2|s| +
1
2
ϕ2 +

1
2η1
∆W⊤∆W +

1
2η2
∆ε2. (58)

The first-time derivative of V is then expressed as:

V̇ = k2 ṡsgn(s) + ϕϕ̇ +
1
η1
∆W⊤∆Ẇ +

1
η2
∆ε∆ε̇

= −k1k2

√
|s| −

1
η1
∆W⊤

(
η1k2hsgn(s) − ∆Ẇ

)
−

1
η2
∆ε

(
η2k2sgn(s) − ∆ε̇

)
.

(59)

Thus, based on Assumption 4 and the learning laws (55) and (56), the first-time derivative of V simplifies to:

V̇ = −k1k2

√
|s|. (60)

Since V̇ ≤ 0, it follows that V̇ is negative semi-definite, indicating the asymptotic convergence of s to the origin.
This completes the proof.

4. HIL platform description and real-time validation

HIL validation enables real-time testing of control laws by interfacing actual controllers with a simulated turbine
environment. This approach mimics real-world FOWT behavior while providing a safe and controlled setting for
evaluating control strategies before deployment. Real-time simulation ensures accurate performance assessment,
allowing developers to analyze system responses, detect potential faults, and refine control algorithms under realistic
operating conditions. This step is critical for validating controller robustness and effectiveness before integration into
a physical system.
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4.1. HIL platform description

The HIL platform (see Figure 8) developed at FEMTO-ST laboratory enables real-time simulation of the Open-
FAST model, ensuring accurate emulation of FOWT dynamics while facilitating smooth communication between
hardware and software components.

Figure 8: Hardware setup featuring the compactRIO-9039 at the bottom and the remote Beckhoff CX2040-0155 at the top, commu-
nicating via UDP.

The platform consists of the following key elements:

• Software emulator: The software emulator represents the analytical or numerical model that simulates the
FOWT’s dynamic behavior. OpenFAST v3.1.0 is used as the high-fidelity model for real-time emulation of the
OC4 DeepCWind 5 MW semi-submersible FOWT.

• Real-time emulator implementation: To execute OpenFAST in real-time, the compactRIO-9039 (cRIO) is
used due to its high processing capabilities and real-time performance characteristics (Table 7). The OpenFAST
model is compiled into an executable program optimized for NI Linux RTOS, a UNIX-based real-time operating
system that ensures efficient execution.

Table 7: Characteristics of the NI card used in the HIL setup.

Specification Details

Brand National Instruments (NI)
Model compactRIO-9039
OS NI Linux Real-Time
Processor Intel Atom Quad-Core 1.91

GHz
RAM 2 GB
Storage 16 GB
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• Remote control unit: For executing control laws and ensuring robust communication, the Beckhoff CX2040-
0155 industrial PC is used (Table 8). Widely employed in industrial automation and control systems, the
Beckhoff is responsible for loading and executing real-time control processes while facilitating data exchange
with the emulator. Its high-speed Ethernet ports support various communication protocols, ensuring minimal
latency.

Table 8: Characteristics of the Beckhoff CX2040-0155 control card in the HIL setup.

Specification Details

Brand Beckhoff
Model CX2040-0155
OS Windows
Processor Intel Core™ i7, 2715QE 2.1

GHz, 4 cores
RAM 4 GB
Storage 40 GB

The controller equations are encoded in LabVIEW, compiled into an executable, and deployed on the Beckhoff
unit.

• Communication protocol: The HIL platform uses the User Datagram Protocol (UDP) for real-time data ex-
change between the emulator (cRIO) and control unit (Beckhoff). UDP is chosen for its low latency, connection-
less operation, and minimal overhead, making it well suited for fast and efficient real-time control applications.

• Communication interfaces: LabVIEW interfaces manage communication between OpenFAST (on cRIO) and
the controller (Beckhoff), allowing users to monitor and interact with the HIL simulation.

On the cRIO host computer, a LabVIEW wrapper integrates OpenFAST with LabVIEW, executing key simula-
tion functions via dynamic library calls. The Wrapper includes:

– sim_init(): Initializes the OpenFAST simulation (called once at startup).

– sim_equilibrium(): Computes the equilibrium output at t = 0s.

– sim_timestep(): Updates OpenFAST outputs at each control step.

– sim_end(): Terminates the OpenFAST simulation.

These functions run sequentially within LabVIEW, using Call Library Node blocks, which invoke specific
functions from the dynamic library. Especially, the sim_timestep() function is embedded in a timed loop to
maintain real-time execution and synchronization throughout the simulation.

4.2. Integration of OpenFAST into the HIL platform

To achieve this setup, OpenFAST must be compiled on the cRIO platform, integrating dynamic libraries that
enable seamless interaction with the LabVIEW Wrapper. As shown in Figure 9, the compilation process creates
a Linux executable and shared libraries (.so files), which are linked with the LabVIEW Wrapper. These shared
libraries form a unified real-time simulation environment, allowing OpenFAST to function within LabVIEW’s control
interface.

4.2.1. Interfacing external control inputs with OpenFAST
To integrate external control inputs into OpenFAST within the cRIO, the function FAST_SetExternalInputs()

propagates variables through OpenFAST modules. The key control variables—generator power (Pg), generator torque
(Tg) and collective blade pitch angle (β)—are the only actively managed variables. The data flow follows this opera-
tional sequence:
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Figure 9: Block diagram of the interactions between OpenFAST library and LabVIEW Wrapper.

Figure 10: Workflow for integrating an external LabVIEW command within OpenFAST.

1. LabVIEW receives control inputs from the Beckhoff controller, passing them to sim_timestep() via a Call
Library Node.

2. The sim_timestep() function invokes OpenFAST subroutine FAST_Update.
3. FAST_Update propagates the control data within OpenFAST by calling two crucial functions:

• FAST_SetExternalInputs(): Updates control inputs, particularly in ServoDyn, which computes the
next system states.

• FillOutputAry(): Returns the computed OpenFAST outputs to LabVIEW.

This workflow, illustrated in Figure 10, ensures that control inputs are accurately integrated into OpenFAST, and
the real-time dynamics of the FOWT system are effectively simulated and updated within the HIL framework.

This integration bridges OpenFAST’s high-fidelity modeling with LabVIEW’s control environment, enabling real-
time HIL testing for advanced FOWT control validation.

4.2.2. HIL execution and real-time synchronization
The block diagram in Figure 11 illustrates the key components and interconnections within the real-time system on

the cRIO. At its core, the four compiled OpenFAST functions—sim_init(), sim_equilibrium(), sim_timestep(),
and sim_end()—handle model initialization, dynamic simulation, and termination.
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Figure 11: Block diagram of the LabVIEW program within the cRIO host computer.

Two key mechanisms ensure real-time performance. First, timer loop regulation enforces a strictly timed execution
loop, ensuring simulation time steps align with the physical system’s constraints. A 0.027 s time step is chosen to
maintain synchronization between the controller and emulator, enabling real-time control simulations. Second, UDP-
based communication facilitates real-time data exchange between the Beckhoff controller and cRIO, allowing the
control system to dynamically adapt and accurately replicate FOWT operation. Additionally, a data collection module
logs key simulation parameters, enabling detailed post-simulation analysis to compare expected vs. actual control
performance.

4.2.3. Data exchange between the controller and emulator
The UDP connection between the emulator (cRIO) and controller (Beckhoff) is structured into two main modules

on each side, one for receiving data and one for transmitting data.

Controller side:.

• Data reception (Module 1): The controller receives critical system states from OpenFAST, including rotor speed,
platform pitch angle, and pitch rate. This data is handled by the UDP READ VI, where the “ID receive data”
input specifies the cRIO’s IP address as the sender. A start/stop control signal ensures synchronization with
the emulator. If no data is received within 5 ms, an error code is generated, halting the simulation to prevent
communication failures.

• Data transmission (Module 2): After processing the received states, the controller computes and sends back
control inputs to the emulator. These inputs include generator power, torque, and blade pitch angle.

Emulator side:.

• Data reception (Module 1): The emulator receives control inputs from the controller, verifies the data format,
and applies the torque, power, and blade pitch commands to the real-time OpenFAST simulation, updating the
turbine’s operational states accordingly.

• Data transmission (Module 2): The cRIO transmits updated system states along with the start/stop signal back
to the controller in real time.

In total, the emulator transmits 32 states variables from OpenFAST to the controller, including: the rotor and
generator speeds, the 6 DoFs platform motions, comprising the 3 translational motions (surge, sway, and heave), and
the 3 rotational motions (roll, pitch, and yaw). In return, the controller sends the generator power, generator torque,
and collective blade pitch angle.
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4.3. HIL real-time validation
The following subsection details the closed-loop validation process of control laws on the HIL platform.

4.3.1. Closed-loop validation process
The LabVIEW HIL program operation is structured as follows and illustrated in Figure 14.

1. Controller program initialization:
The controller program is launched on the host computer connected to the Beckhoff system. In the LabVIEW
interface (Figure 12), the user must enter: IP address of the cRIO (HIL host computer) to establish commu-
nication, program iteration time, desired controller (selected from those implemented on the Beckhoff). Once
settings are configured, the program starts and enters standby mode, indicated by the "Stop Loop" light turning
red.

Figure 12: LabVIEW user interface for controller setup on the Beckhoff host computer.

2. HIL setup on the cRIO host PC:
The cRIO host computer (Figure 13) runs the HIL program and requires: controller computer’s IP address,
simulation duration, program loop iteration time. Once all settings are entered, the HIL program is started.

3. Initialization phase:
The cRIO emulator initializes OpenFAST by calling sim_init(), which sets up the initial conditions. The
sim_equilibrium() function computes the initial system outputs, ensuring a consistent starting point.

4. Synchronous start:
Once initialized, the HIL program synchronizes with the controller and starts the real-time loop. When the
simulation starts on the cRIO, the controller executable is automatically triggered, ensuring full synchronization
between both systems.

5. Real-time closed-loop execution:
Both the controller (Beckhoff) and emulator (cRIO) run simultaneously during the simulation. At each simula-
tion time step, the sim_timestep() function updates the 32 system state variables based on the latest control
inputs. The controller receives the new states via UDP, computes the control inputs (torque, power, blade
pitch), and transmits them back to the emulator via UDP. All exchanged data are continuously recorded for
post-simulation analysis.

6. Simulation termination:
Once the simulation reaches its end time, the HIL program automatically stops by calling sim_end(). The
controller returns to standby mode until a new simulation starts.

7. Data collection and analysis:
After the simulation, key system parameters such as blade pitch angle, rotor speed, platform motions, can be
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Figure 13: LabVIEW user interface for HIL setup on the cRIO host computer.

Figure 14: Detailed operating of the LabVIEW program for the HIL testing of a controller.

visualized in real-time graphs on the LabVIEW interface of the cRIO. This ensures that the recorded data is
suitable for further analysis and controller performance evaluation.
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Figure 15: Comparison of the Baseline controller performance between MIL and HIL for: (a) Rotor speed, (b) Platform pitch rate,
and (c) Blade pitch angle.

4.3.2. Baseline controller validation
To assess the accuracy and reliability of the HIL platform, a comparative validation was conducted between

the GSPI baseline controller [72] running on the HIL platform and its Model-in-the-Loop (MIL) implementation.
The objective was to ensure that the real-time execution of OpenFAST on the cRIO emulator, coupled with real-time
control execution on the Beckhoff controller, accurately reproduces the system dynamics observed in MIL simulations.

The GSPI controller, widely used as a reference for FOWT rotor and platform control, was implemented on both
MIL and HIL under identical wind and wave conditions presented in Figure 4. The MIL simulation was performed
using MATLAB-Simulink, where OpenFAST was interfaced with Simulink to simulate the floating wind turbine’s
dynamics. In this setup, the controller was implemented as a Simulink block running synchronously with OpenFAST,
ensuring ideal execution without real-time constraints. In contrast, the HIL setup ran the same baseline controller on
the Beckhoff industrial PC, executing in real time while exchanging data with OpenFAST on the cRIO emulator via
UDP communication.

The control parameters used in the HIL implementation are detailed in Table 9.

Table 9: Baseline GSPI: control parameters.

Variable Value Description

Kp 0.006275604 Proportional gain for the pitch controller
Ki 0.0008965149 Integral gain for pitch control
Kk 0.1099965 Pitch angle at which power derivative doubles
βmax 1.570796 Maximum blade pitch setting (rad)
βmin 0.0 Minimum blade pitch setting (rad)
βrate 0.1396263 Maximum blade pitch rate (rad/s)
ωcfreq 1.570796 Corner frequency of the low-pass filter (rad/s)
ωrd 12.1 Rated rotor speed (rpm)

To assess the accuracy of the HIL execution, key system variables were compared, including rotor speed ωr,
blade pitch angle β, platform pitch rate ωy, and all 6 DoFs of platform motion. The time series comparison between
MIL and HIL simulations, shown in Figures 15 and 16, shows general consistency during the first 200 seconds, with
qualitative similarity in dynamics despite some minor deviations that begin to emerge early in the simulation. Beyond
200 seconds, a progressive phase offset appears, particularly evident in the platform motions.

To quantify this discrepancy, RMSE was computed for key system variables using MIL results as reference. The
computed RMSE values after 200 seconds are summarized in Table 10.
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Figure 16: Comparison of the Baseline controller performance between MIL and HIL for the 6 DoFs platform motions: (a) Surge,
(b) Roll, (c) Sway, (d) Pitch, (e) Heave, and (f) Yaw motion.

Table 10: RMSE values comparing HIL and MIL outputs after 200s.

Variable RMSE (HIL vs MIL)

Rotor speed (ωr) 0.61582 rpm
Blade pitch angle (β) 0.94427 deg
Platform pitch rate (ωy) 0.097485 deg/s
Platform surge (xg) 0.4137 m
Platform sway (yg) 0.010716 m
Platform heave (zg) 0.027934 m
Platform roll angle (θx) 0.013133 deg
Platform pitch angle (θy) 0.48693 deg
Platform yaw angle (θz) 0.028645 deg

The observed divergence after 200 seconds likely results from the accumulation of small-scale effects inherent to
HIL execution, including:

• Real-time execution constraints in HIL: Unlike MIL, which runs as fast as possible in an ideal environment,
HIL enforces strict timing, where even small jitter in the solver or controller can accumulate over time, leading
to the observed delay.

• UDP communication latency: UDP is used for exchanging data between the cRIO emulator and the Beckhoff
controller. While efficient, its connectionless nature can lead to minor but accumulating timing inconsistencies.

• Loop drift in LabVIEW: The HIL simulation loop is governed by a LabVIEW timed loop. Any deviation
between intended and actual loop execution time can introduce progressive drift, leading to phase shifts after
extended operation.

Despite these effects, the RMSE values remain within acceptable bounds for real-time validation. Indeed, the
rotor speed tracking error remains low at 0.61582 rpm, which is negligible in practical operation. The blade pitch
error (0.94427 deg RMSE) is also small and does not introduce major deviations in aerodynamic performance. The
platform pitch rate and pitch angle errors are 0.097485 deg/s and 0.48693 deg, respectively, confirming minimal
impact on stability. The 6 DoFs platform motion errors remain within a narrow range, with platform roll, pitch, and
yaw angles remaining below 0.5 degrees, ensuring structural stability.

These results confirm the reliability and accuracy of the HIL platform for real-time control validation of FOWTs,
providing a realistic and robust environment to assess controller performance.
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4.4. RBFNN-based STA real-time validation
To design the RBFNN-STA control law, a nonlinear COM derived from the modified HOMER framework is em-

ployed. This model simplifies the coupled dynamics of the FOWT to allow for real-time control synthesis. However, to
rigorously assess the controller’s robustness, all simulations within the HIL platform are conducted using OpenFAST.
As such, the RBFNN-based STA controller is inherently tested under model mismatch conditions, and its performance
demonstrates its ability to adapt to real-time unmodeled disturbances and uncertainties. This approach eliminates re-
liance on perfect model knowledge and supports the robustness of the proposed control strategy in realistic offshore
operating scenarios.

The developed RBFNN-based STA controller was successfully integrated into the Beckhoff system and tested on
the HIL platform for real-time validation. Both the forward pass, responsible for generating control inputs, and the
backward pass, responsible for updating the RBFNN parameters, were fully implemented in LabVIEW. This enabled
real-time adaptation during HIL simulations, allowing the network to dynamically learn and adjust its parameters
under real-time conditions.

The performance of the RBFNN-based STA was evaluated against the STA without neural networks and the
Baseline GSPI, assessing their ability to achieve control objectives across four test scenarios.

4.4.1. Environmental conditions
The five Environmental Conditions (ECs) were selected to comprehensively cover the operational range of Region

III (Table 11). They include three different mean wind speeds with varying turbulence intensities, and three distinct
wave profiles. The corresponding wind and wave profiles are illustrated in Figure 17 and 18, respectively.

EC Wind Speed (m/s) Turbulence (%) Wave Height (m) Wave Period (s)

EC1 18 5 2.6 8.36
EC2 20 5 3.5 9.08
EC3 18 15 2.6 8.36
EC4 20 12 3.5 9.08
EC5 30 20 5 11.5

Table 11: Environmental conditions used for simulation scenarios.

Wind conditions were generated using NREL’s TurbSim software [73], applying a power law wind profile and
the Kaimal turbulence model [74] over 600 seconds. Among the tested scenarios, EC3—with a turbulence intensity
of 15%—produces instantaneous wind speeds ranging from 10.72 m/s to 25.32 m/s. This fully spans the Region III
operating range (from rated to cut-out wind speed), making it a particularly stringent robustness test. Additionally,
EC5, with its high mean wind speed of 30 m/s, approaches the turbine’s cut-out threshold and represents a highly
demanding operational condition for controller evaluation.

Wave conditions were generated using the HydroDyn module in OpenFAST, based on the Pierson-Moskowitz
spectrum [75], to simulate irregular ocean wave patterns that closely replicate real-world conditions.

4.4.2. Validation results
The HIL simulations were conducted for 600 seconds with a sampling period of 0.027 seconds. The sliding mode

and super-twisting parameters, which remained constant across all controllers and ECs, are as follows: the sliding
variable coefficient is ky = 0.05, and the STA gains are k1 = 1.2 and k2 = 1.6. The neural network configuration of
the RBFNN-based STA is defined as:

• Hidden layer with n = 5 neurons.

• Gaussian basis function parameters:

c =
[
−2 −1 0 1 2
−2 −1 0 1 2

]
, b = 2.

• Initial weight values: W = ones(1, n).

29



Figure 17: Wind speed profiles for EC1 and EC2 with 5% turbulence intensity (a), wind speed profile for EC3 with 15% turbulence intensity (b),
wind speed profile for EC4 with 12% turbulence intensity (c), and wind speed profil for EC5 with 20% intensity (d).
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Figure 18: Wave profile for EC1 and EC3 (a), wave profile for EC2 and EC4 (b), and wave profile for EC5 (c).

• Learning rates for adaptive laws: η1 = 0.1 and η2 = 0.5.

Additionally, in order to maintain consistent output limitations, the same maximum blade pitch angle (βmax),
minimum blade pitch angle (βmin), and blade pitch rate (βrate) are applied to the tested RBFNN-based STA and the
STA alone. This ensures that all controllers operate within the same physical constraints, enabling a fair comparison
of their control performance.

Figures 19 to 23 illustrate the controller’s performance in regulating rotor speed, mitigating platform pitch rate,
and stabilizing the FOWT platform’s motion in real-time. The response curves for rotor speed, platform pitch angle,
platform pitch rate, and blade pitch angle across EC1 to EC5 are compared between the proposed RBFNN-based STA
(RBFNN-STA), the STA alone, and the Baseline GSPI. Additionally, Figure 24 presents the sliding variable and its
derivative for the RBFNN-STA, under the turbulent conditions of EC3, providing insight into the controller’s dynamic
behavior.

To quantitatively evaluate the controllers’ performance, mean, standard deviation (STD), and min-max values for
rotor speed, platform pitch rate, and blade pitch angle are presented in Figure 25. These metrics provide insight into
tracking accuracy and variance under each EC. Additionally, the RMSE for rotor speed and platform pitch rate is
detailed in Table 12. Statistical analysis is conducted from 100s to 600s to assess stabilized performance, minimizing
the influence of initial transients.
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Figure 19: Performance comparison of RBFNN-STA, STA, and GSPI for EC1: (a) Rotor speed, (b) Blade pitch angle, (c) Platform
pitch angle, and (d) Platform pitch rate.

Figure 20: Performance comparison of RBFNN-STA, STA, and GSPI for EC2: (a) Rotor speed, (b) Blade pitch angle, (c) Platform
pitch angle, and (d) Platform pitch rate.

Figure 21: Performance comparison of RBFNN-STA, STA, and GSPI for EC3: (a) Rotor speed, (b) Blade pitch angle, (c) Platform
pitch angle, and (d) Platform pitch rate.
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Figure 22: Performance comparison of RBFNN-STA, STA, and GSPI for EC4: (a) Rotor speed, (b) Blade pitch angle, (c) Platform
pitch angle, and (d) Platform pitch rate.

Figure 23: Performance comparison of RBFNN-STA, STA, and GSPI for EC5: (a) Rotor speed, (b) Blade pitch angle, (c) Platform
pitch angle, and (d) Platform pitch rate.
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Figure 24: Sliding variable (a) and its derivative (b) for the RBFNN-STA under EC3.

4.4.3. Discussion
The comparative analysis of the proposed RBFNN-based STA controller, the STA alone, and the Baseline GSPI

under four ECs provides key insights into their real-time performance on the HIL platform.

Rotor speed regulation: Across all five ECs, the RBFNN-based STA controller demonstrates superior rotor
speed tracking performance compared to both the STA and GSPI controllers. The RMSE values for rotor speed (ωr)
consistently show lower errors for the RBFNN-STA, especially under high turbulence (EC3, EC4 and EC5), where

32



EC1 EC2 EC3 EC4 EC5
0

10

20

R
o
to

r 
s
p
e
e
d
 

(r
p
m

)

RBFNN-STA STA Baseline

EC1 EC2 EC3 EC4 EC5

-1

0

1

P
la

tf
o
rm

 p
it
c
h
 

ra
te

 (
d
e
g
/s

)

EC1 EC2 EC3 EC4 EC5
0

20

40

B
la

d
e
 p

it
c
h
 

(d
e
g
)

STD Min-Max

Figure 25: Statistical metrics (mean, STD, min-max) across EC1 to EC5 for: Rotor speed, Platform pitch rate, and Blade pitch
angle.

Table 12: RMSE for rotor speed (ωr) and platform pitch rate (ωy).

EC Controller RMSE ωr (rpm) RMSE ωy (deg/s)

EC1
RBFNN-based STA 0.22169 0.19022

STA 0.31617 0.21163
Baseline 0.53238 0.16675

EC2
RBFNN-based STA 0.23352 0.19453

STA 0.33712 0.20695
Baseline 0.5218 0.20039

EC3
RBFNN-based STA 0.29165 0.2257

STA 1.1633 0.4383
Baseline 1.524 0.34413

EC4
RBFNN-based STA 0.2877 0.23622

STA 0.66112 0.2991
Baseline 1.4046 0.26919

EC5
RBFNN-based STA 0.30292 0.24563

STA 0.84144 0.25994
Baseline 1.6039 0.28432

the controller maintains a lower deviation from the reference speed.
In EC3, the RBFNN-STA achieves an RMSE of 0.29165 rpm, whereas the STA alone exhibits a significantly

higher RMSE of 1.1633 rpm, and the Baseline GSPI reaches 1.524 rpm. A similar trend is observed in EC4, where
the RBFNN-STA maintains 0.2877 rpm RMSE, significantly outperforming the STA (0.66112 rpm RMSE) and GSPI
(1.4046 rpm RMSE). Notably, under the extreme wind scenario EC5 (30 m/s mean wind, 20% turbulence), the
RBFNN-STA maintains robust performance with a rotor speed RMSE of 0.30292 rpm, far lower than STA (0.84144
rpm) and Baseline (1.6039 rpm). These results highlight the controller’s adaptability and robustness in challenging op-
erating conditions, with the RBFNN component significantly enhancing disturbance rejection and rotor speed stability.

Platform pitch rate reduction: Platform pitch rate (ωy) is a key indicator of floating turbine stability, particularly
in response to wind and wave disturbances. The results demonstrate that the proposed RBFNN-based STA consistently
achieves lower pitch rate fluctuations than the other controllers.
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Figure 26: Normalized 1 Hz DELs at the tower base for EC1 to EC5: (a) Side-to-side bending moment and (b) Fore-aft bending
moment.

Under moderate conditions (EC1 and EC2), the Baseline GSPI exhibits the lowest RMSE in ωy. However, under
higher turbulence (EC3-EC5), the RBFNN-STA outperforms both the STA and Baseline GSPI, significantly reducing
pitch rate oscillations. In EC3, the RBFNN-STA achieves an RMSE of 0.2257 deg/s, while the STA reaches 0.4383
deg/s and the GSPI 0.34413 deg/s. Similarly, in EC4, the RBFNN-STA maintains 0.23622 deg/s RMSE, outperform-
ing both the STA (0.2991 deg/s) and GSPI (0.26919 deg/s). In EC5, despite the extremely harsh wind conditions,
the RBFNN-STA continues to slightly outperform the other methods with an RMSE of 0.24563 deg/s, compared to
0.25994 deg/s for the STA and 0.28432 deg/s for the Baseline. This consistency across increasingly difficult scenar-
ios confirms the controller’s capacity to mitigate platform pitch rate excursions effectively, contributing to improved
overall turbine stability.

Blade pitch angle adaptation: Blade pitch angle (β) adjustments reflect the controller’s response to varying wind
conditions and its capacity to regulate rotor speed while maintaining stability. As seen in Figures 19 to 23, the Baseline
GSPI produces the smoothest β profiles, with the lowest standard deviations, owing to its more conservative control
nature.

In contrast, the RBFNN-STA introduces more aggressive and frequent adjustments in β, especially under turbu-
lent and high wind scenarios like EC3 and EC5. These larger fluctuations allow for finer control of rotor speed and
platform stability but come at the cost of increased actuator activity, as also seen in the min-max and STD statistics.

Fatigue Load Analysis: Figure 26 presents the normalized 1 Hz Damage Equivalent Loads (DELs) computed at
the tower base in both the side-to-side and fore-aft directions for all environmental conditions (EC1-EC5). The DELs
are normalized with respect to the Baseline GSPI controller, with percentage values indicating the relative increase
in DEL compared to GSPI. As expected, the GSPI controller, designed to ensure smooth pitch activity, generally
achieves the lowest DEL values across all conditions, serving as a reference for fatigue performance.

In the side-to-side direction (Figure 26a), the RBFNN-STA controller exhibits increased DELs compared to GSPI,
with values ranging from +22% to +30% in EC2–EC5. The STA controller achieves more moderate increases or
even slight reductions (e.g., –3% in EC3 and –5% in EC4), highlighting a trade-off between aggressive disturbance
rejection and structural fatigue. The increase observed for RBFNN-STA is attributable to the more active pitch control
strategy, which, while effective in stabilizing rotor speed and pitch rate, introduces higher-frequency load variations
that amplify tower base fatigue. Similarly, in the fore-aft direction (Figure 26b), the RBFNN-STA consistently yields
the highest DEL values, particularly under turbulent and high wind conditions such as EC3 and EC5, with increases
of +27% and +32%, respectively. In contrast, STA shows smaller increases, ranging from +2% to +11% across
scenarios.

This fatigue analysis highlights an important trade-off between performance and structural loading. While the
RBFNN-STA demonstrates superior control precision and robustness, especially in challenging conditions (EC3–EC5),
its increased actuator activity results in higher DELs that must be considered when assessing long-term reliability
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Overall, the proposed RBFNN-based STA controller exhibits significantly improved control performance com-
pared to both the STA and GSPI controllers, particularly in the most demanding environmental conditions. The
results obtained in EC3, EC4, and EC5 clearly demonstrate enhanced rotor speed tracking, platform stabilization, and
disturbance rejection capabilities.

EC3 and EC5—respectively representing a scenario that spans the full Region III operational range and another
characterized by extreme wind and high turbulence—offer stringent tests of controller robustness. Despite the severity
of these conditions, the RBFNN-based STA maintained effective rotor speed and platform pitch regulation, consis-
tently achieving the lowest RMSE values among all controllers. These results confirm the scalability and robustness
of the proposed controller, even near the turbine’s cut-out wind speed. The ability of the RBFNN-STA to sustain per-
formance under such adverse conditions highlights the benefit of integrating adaptive learning (via RBFNN) within a
robust nonlinear control framework (STA).

Nonetheless, the increased blade pitch activity observed across all ECs requires further investigation to assess its
impact on actuator longevity and long-term operational reliability. Future work should aim to incorporate fatigue-
aware control constraints or penalization terms to balance control precision and structural endurance.

Additionally, the validation setup itself serves as an implicit sensitivity analysis of the control design with respect
to model accuracy. The proposed controller is developed based on the reformulated analytical Homer COM but
is validated in real time using a HIL configuration interfaced with OpenFAST. The inherent model-plant mismatch
between the analytical COM and high-fidelity aero-hydro-servo-elastic OpenFAST simulator naturally introduces
structural and hydrodynamic discrepancies, along with real-time execution constraints and communication latencies.
As such, the HIL results demonstrate the controller’s robustness in compensating for deviations between the modeled
and actual system dynamics, confirming its reliability for realistic offshore deployment.

These findings validate not only the HIL platform’s capability to handle complex, adaptive control algorithms
requiring real-time learning but also the superiority of the proposed RBFNN-STA controller over both the STA alone
and the Baseline GSPI controller.

5. Conclusion

This study presented the real-time validation of an Radial Basis Function Neural Network-based Super-Twisting
Algorithm (RBFNN-based STA) controller for Floating Offshore Wind Turbines (FOWTs) through Hardware-in-the-
Loop (HIL) testing. The proposed control strategy was designed to enhance rotor speed regulation and platform
stability in the challenging operating conditions of Region III.

The nonlinear control law for the RBFNN-based STA controller was derived from the Homer Control-Oriented
Model (COM), representing a 5MW semi-submersible FOWT. To facilitate its use in control law derivation, the
Homer COM was reformulated into a fully analytical model, eliminating dependencies on external lookup tables. The
proposed controller integrates an RBFNN, acting as a real-time disturbance observer, to compensate for unknown
dynamics within the reformulated model, while the STA ensures robustness and guarantees convergence of the sliding
variable through a Lyapunov-based stability analysis.

The HIL platform was designed to accurately emulate real-time FOWT dynamics, integrating OpenFAST with
LabVIEW on a CompactRIO embedded system for real-time simulation, while a remote Beckhoff unit executed the
control algorithms. A UDP-based communication framework facilitated real-time data exchange between the con-
troller and emulator, ensuring accurate replication of FOWT behavior. To establish the reliability of the HIL platform,
an initial baseline validation was conducted by comparing the GSPI controller running on the HIL setup against
its Model-in-the-Loop (MIL) implementation. During the first 200 seconds, the dynamic responses from both MIL
and HIL platforms showed a high degree of similarity across key variables. After this point, noticeable deviations
emerged, particularly in time alignment, which are attributed to real-time execution delays and communication laten-
cies inherent to the HIL setup. These discrepancies were quantitatively assessed using RMSE metrics, which, while
non-negligible, remained within operationally acceptable thresholds for controller validation. Rather than being ig-
nored, these differences highlight the inherent challenges of maintaining perfect synchronization in real-time systems
and underscore the importance of considering such delays when designing and deploying FOWT controllers. Overall,
despite the divergence after 200s, the HIL platform remains a reliable tool for evaluating real-time control strategies
under realistic conditions.
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The performance of the proposed RBFNN-based STA controller was then evaluated against the STA alone and
the Baseline GSPI controller under four distinct environmental conditions (ECs), characterized by varying wind tur-
bulence and wave profiles. The experimental results demonstrated that the RBFNN-based STA consistently outper-
formed both the STA and GSPI, achieving superior rotor speed tracking and platform pitch rate mitigation, particularly
under high turbulence scenarios. The integration of the RBFNN as a real-time disturbance observer significantly im-
proved disturbance rejection, leading to lower RMSE values across all key performance variables. However, it was
observed that the RBFNN-based STA induced more aggressive blade pitch adjustments, resulting in higher pitch an-
gle fluctuations compared to the Baseline GSPI. While this behavior contributes to better adaptability under varying
wind conditions, it may also increase actuator wear over time. This trade-off suggests that further optimization of the
control strategy could focus on balancing adaptability and actuator longevity.

Overall, the results confirm that the proposed RBFNN-based STA controller provides a more effective control
strategy for FOWTs operating in Region III, enhancing system stability and performance under realistic offshore con-
ditions. The HIL validation underscores the feasibility of real-time implementation of advanced control algorithms
and offers a robust testbed for assessing control sensitivity to model-plant mismatch. Notably, while the controller is
synthesized using a simplified analytical model, it is deployed in a closed-loop with OpenFAST, whose high-fidelity
modeling introduces realistic structural and hydrodynamic deviations. This inherently tests the robustness of the con-
trol strategy against modeling inaccuracies, supporting the controller’s practical applicability. Future research could
focus on extending this evaluation through systematic perturbation-based sensitivity analyses and Power-Hardware-
in-the-Loop (PHIL) testing to further bridge the gap toward field deployment.

Beyond the present validation of the RBFNN-based STA controller, future work will focus on benchmarking
against modern data-driven control approaches, particularly Deep Reinforcement Learning (DRL) methods. These
strategies offer model-free control capabilities and have demonstrated significant potential in managing complex, non-
linear systems such as FOWTs under turbulent environmental conditions. Integrating DRL agents with robust control
frameworks may further enhance adaptability and control precision in Region III, providing a valuable direction for
advancing FOWT control strategies.
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