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Abstract15

The control of Floating O�shore Wind Turbines (FOWTs) in Region III
is challenging due to complex aerodynamic, hydrodynamic, and structural
interactions. This paper presents a fully data-driven, model-free Deep Re-
inforcement Learning (DRL) controller based on the Trust Region Policy
Optimization (TRPO) algorithm to regulate the collective blade pitch of a
5 MW semi-submersible FOWT. The controller was trained in high-�delity
simulations and experimentally validated in a wave basin using a Software-In-
the-Loop (SIL) approach. Results show improved generator speed regulation
and platform stability compared to a baseline Gain-Scheduling Proportional-
Integral (GSPI) controller. However, performance degradation with gener-
ator speed overshoots was observed under extreme wind conditions. This
study highlights the potential of DRL for FOWT control and identi�es fu-
ture directions to enhance robustness in harsh environments.

Keywords: Floating o�shore wind turbine, collective blade pitch control,16

model-free control, deep reinforcement learning, Trust Region Policy17

Optimization, wave basin validation18

1. Introduction19

Global temperatures are projected to rise by up to 1.5°C by 2030 [? ],20

threatening ecosystems, biodiversity, infrastructure, and human health. This21

trend is driven by greenhouse gas emissions, primarily from human activi-22

ties. Therefore, transitioning to cleaner energy sources, such as renewables,23
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is essential to mitigate this crisis. Wind energy stands out as a promising so-24

lution, with o�shore deployment addressing the spatial limitations of onshore25

wind farms. Among these, Floating O�shore Wind Turbines (FOWTs) o�er26

signi�cant advantages by operating in deeper waters with stronger, steadier27

winds, thus enhancing power generation e�ciency.28

Despite technological advancements and several notable �oating wind de-29

ployments, such as the Kincardine O�shore Wind Farm by Principle Power30

[? ], Hywind Tampen by Equinor [? ], and the EolMed project led by BW31

Ideol [? ], the control of FOWTs remains a signi�cant challenge due to their32

complex, nonlinear, and highly coupled dynamics. The latest outlook by33

IRENA [? ] highlights the rapid growth of �oating o�shore wind, while the34

World Energy Council [? ] documents the increasing number of large-scale35

global projects. The o�shore environment introduces continuous stochastic36

disturbances from wind, waves, and currents, which interact with the �oating37

platform's six Degrees of Freedom (DoFs). The o�shore environment intro-38

duces continuous stochastic disturbances from wind, waves, and currents,39

which interact with the �oating platform's six Degrees of Freedom (DoFs).40

Among the three standard operating regions, Region III�associated with41

above-rated wind speeds�presents the most critical control challenges. In42

this region, the control objective shifts from maximizing energy capture to43

maintaining generator speed at its rated value, commonly through pitch-to-44

feather control. However, while this strategy e�ectively reduces rotor thrust,45

it can also introduce negative aerodynamic damping [? ]. This phenomenon46

occurs when blade pitch adjustments inadvertently excite, rather than sup-47

press, platform pitch oscillations�particularly near the structure's natural48

frequency. Such destabilizing feedback may lead to resonant behavior, posing49

risks to both structural integrity and power quality. These challenges call for50

advanced control strategies capable of simultaneously regulating generator51

speed and suppressing platform motion, while accounting for the nonlinear52

and coupled aero-hydro-servo-elastic dynamics of the system.53

54

Traditional control methods primarily use Collective Blade Pitch (CBP)55

to adjust blade angles and regulate power output based on operating con-56

ditions. Jonkman [? ] provided a detailed dynamic modeling framework57

for o�shore �oating wind turbines, laying the foundation for control system58

development. Based on this framework, Larsen and Hanson [? ] proposed a59

method to mitigate low-frequency tower vibrations induced by pitch control,60

addressing a key limitation in early �oating wind platforms. The widely ref-61
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erenced 5-MW baseline controller developed by Jonkman et al. [? ], based on62

a Gain-Scheduled Proportional-Integral (GSPI) approach, is often adapted63

from bottom-�xed wind turbines and used as a benchmark. Furthermore,64

[? ] analyzed how control strategies in�uence pitch damping characteristics,65

highlighting the sensitivity of �oating systems to feedback design. These66

traditional approaches, while foundational, remain highly sensitive to envi-67

ronmental disturbances and struggle with the nonlinear, coupled dynamics68

speci�c to FOWTs.69

70

Recent advancements emphasize Multi-Input Multi-Output (MIMO) con-71

trol models that account for the coupled dynamics of FOWTs. Linear control72

strategies such as the Linear Quadratic Regulator (LQR) have been explored73

extensively. Namik and Stol contributed signi�cantly to this �eld through a74

series of studies: in [? ], they introduced an individual blade pitch control75

scheme for FOWTs, in [? ], they analyzed the performance of such control76

strategies on di�erent �oating platforms, and in [? ], they extended the77

approach to spar-buoy con�gurations, highlighting control performance un-78

der platform motion. Christiansen et al. later proposed an optimal control79

design tailored to ballast-stabilized �oating turbines [? ] and further inves-80

tigated wave disturbance reduction [? ]. Lemmer et al. [? ] complemented81

these works by o�ering a systematic comparison of linear control methods82

for disturbance rejection. These approaches typically rely on linearized mod-83

els derived around operating points to simplify the �oating wind turbine84

dynamics.85

Linear Parameter-Varying (LPV) control strategies have also emerged,86

allowing gain scheduling across operating regions. Bagherieh et al. [? ] pro-87

posed LPV control above rated wind speed, while Zhao et .al [? ] extended88

it with switching mechanisms to adapt to platform motion.89

To enhance robustness, H∞ control has been investigated using various90

formulations. Bakka et al. [? ] developed an LMI-based synthesis approach91

for output feedback control, while Li and Gao [? ] applied generalized H∞92

structural control to mitigate loads. Cortes Sanchez [? ] explored distur-93

bance rejection strategies under wind and wave conditions. Further studies94

by Bakka et al. [? ] and Hara et al. [? ] highlighted the e�ectiveness of95

gain-scheduled and experimentally validated H∞ control in o�shore settings.96

Model Predictive Control (MPC) has also emerged as a powerful alter-97

native due to its ability to manage constraints and optimize multivariable98

responses. Mahmoud and Oyedeji [? ] provided a comprehensive survey on99
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MPC applications in wind turbine systems. Lemmer et al. [? ] and Cunha100

et al. [? ] implemented MPC strategies to reduce blade fatigue and suppress101

platform motion. Okada et al. [? ] extended MPC to parameter-varying102

models for greater �exibility, while Wakui et al. [? ] introduced preview-103

based MPC techniques to further enhance platform stabilization and power104

output regulation.105

106

Nonlinear Model Predictive Control (NMPC) strategies aim to overcome107

the limitations of linear assumptions. Schlipf et al. [? ] compared feed-108

forward and MPC approaches using LIDAR measurements to enhance wind109

preview capabilities. In a subsequent study, Schlipf et al. [? ] applied NMPC110

to �oating wind turbines, demonstrating its e�ectiveness in managing plat-111

form dynamics. The work in [? ] further extended NMPC formulations with112

real-time LIDAR inputs, improving the responsiveness of turbine control sys-113

tems. Raach et al. [? ] focused on the integration of individual pitch control114

within NMPC frameworks to mitigate loads and enhance stability. Shah115

et al. [? ] later proposed an NMPC-based solution aimed speci�cally at116

minimizing platform motions, validating its capability under various o�shore117

operating conditions.118

Sliding Mode Control (SMC) has also gained traction for its robustness119

to model uncertainties and external disturbances. Bagherieh et al. [? ]120

pioneered the application of SMC with nonlinear input-output feedback lin-121

earization to enhance control precision in �oating o�shore systems. Zhang122

et al. [? ] introduced an adaptive robust control approach using SMC,123

while their later work [? ] proposed a super-twisting version tailored for124

FOWTs with CBP strategy. A foundational contribution to the �eld came125

from Shtessel et al. [? ], who developed an adaptive-gain formulation of126

the super-twisting SMC, improving chattering mitigation and convergence.127

Building upon these foundations, Zhang and Plestan [? ] applied an adaptive128

SMC to �oating wind turbines equipped with permanent magnet synchronous129

generators, demonstrating improved dynamic response. Taleb et al. [? ] in-130

troduced a novel adaptation law designed speci�cally for FOWT control.131

Finally, Taleb and Plestan [? ] proposed a reduced-parameter version of the132

adaptive super-twisting controller, which facilitates practical implementation133

while preserving robustness. Despite their strengths, many of these model-134

based controllers depend on linearized or reduced-order representations �135

often derived from OpenFAST [? ] � which limits their performance when136

the system operates far from nominal conditions.137
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While nonlinear controllers based on reduced-order models of FOWTs138

have improved disturbance rejection and handling of platform dynamics,139

their performance often hinges on the accuracy of the underlying model.140

Basbas et al. [? ] provided a comprehensive review of modeling strategies141

for nonlinear control design, highlighting the trade-o�s between �delity and142

complexity. Among them, Betti et al. [? ] developed a control-oriented143

model that simpli�es platform and turbine interactions while maintaining144

essential dynamics. Similarly, Lemmer [? ] proposed low-order modeling145

techniques tailored for control and optimization purposes, emphasizing prac-146

tical implementability. Homer et al. [? ] introduced a 3D physics-based147

modeling framework designed speci�cally for control synthesis, accounting148

for spatial e�ects in �oating platforms. Despite these advances, the depen-149

dency on accurate models leaves such approaches sensitive to structural un-150

certainties and environmental variability, which limits robustness and adapt-151

ability in real-world applications. Recent studies by Basbas et al. [? ] and152

Liu et al. [? ] have proposed super-twisting-based control laws tailored153

to reduced-order, control-oriented models of �oating o�shore wind turbines.154

While these approaches improve disturbance rejection and dynamic response,155

their performance remains sensitive to the accuracy of the underlying mod-156

eling assumptions and simpli�cations. To overcome this limitation, Didier157

et al. [? ] introduced neural network-based observers with adaptive laws158

derived from Lyapunov analysis, enabling real-time compensation of model159

uncertainties and unmodeled dynamics. Furthermore, in [? ], a higher-order160

sliding mode controller was integrated with a neural network observer to ad-161

dress the full-order FOWT dynamics, including the second-order behavior of162

the blade pitch actuator.163

164

Building on these hybrid approaches, data-driven, model-free control meth-165

ods o�er a promising alternative by leveraging data to bypass explicit system166

dynamics, making them well suited for highly nonlinear systems [? ]. Recent167

advances in computing and data processing enable techniques like fuzzy logic,168

Machine Learning (ML), Deep Learning (DL), and genetic programming [?169

]. In the context of FOWTs, Kane [? ] demonstrated the feasibility of using170

ML-based control strategies for individual blade pitch regulation, showing171

improved adaptability compared to conventional methods. Roh [? ] pro-172

posed a DL-based controller that compensates for actuator delay, enhancing173

tracking performance in �oating wind systems. These approaches design con-174

trollers using input-output data, enhancing adaptability to real-time changes175
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in FOWT dynamics. Although their application in FOWTs remains limited,176

data-driven methods hold signi�cant potential to address traditional control177

challenges, making them a key area for future research.178

Among the realm of ML, Reinforcement Learning (RL) stands out as a179

particularly promising approach. Rooted in the principles of the Markov180

Decision Process (MDP), RL agents are designed to learn optimal control181

policies through direct interaction with their environment, optimizing long-182

term rewards based on observed data. A policy, in the context of RL, de�nes183

the strategy or mapping from an agent's observed states to its actions within184

the environment. Deep RL (DRL), which integrates neural network struc-185

tures into the RL framework, exhibits a signi�cant ability to address the186

intricate control challenges of conventional model-based methods, such as187

dependence on analytical models and lack of robustness to modeling errors188

and uncertainties. Notably, the adaptability of neural networks to dynamic189

environments reduces the need for extensive tuning and enables the controller190

to generalize behaviors across varying operating conditions. The actor-critic191

architecture, a popular approach within DRL, facilitates this by employing192

two neural networks�the actor and the critic�to respectively improve the193

policy and evaluate its performance. The learning process unfolds in two194

main steps: �rst, the critic evaluates the current policy, and then the actor195

improves the policy to better meet control objectives.196

Although applications of DRL in the FOWT control domain are emerg-197

ing, most existing works have focused on model-based approaches, where198

either the FOWT dynamics are learned via neural networks or approxima-199

tors are embedded within the control structure. For instance, Xie et al. [?200

] proposes a model-based Incremental Dual Heuristic Programming (IDHP)201

framework that requires an internal model of the system. Chen et al. [? ]202

implement a Software-in-the-Loop (SIL) architecture combining DRL with203

dynamic response analysis for FOWTs. In a subsequent study, Chen and Hu204

[? ] investigate the in�uence of key parameters on dynamic response predic-205

tion using arti�cial intelligence-based methods. Additionally, Chen et al. [?206

] propose a simulation annealing-based optimization algorithm to improve207

the forecast accuracy of dynamic responses in FOWTs. While these studies208

demonstrate the potential of DRL, many rely on deterministic policy gra-209

dient methods such as DDPG, which are often sensitive to hyperparameter210

tuning and less robust to exploration noise.211

212

This paper addresses this gap by developing a DRL-based CBP control213
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system speci�cally for Region III operation. The controller is based on the214

actor-critic Trust Region Policy Optimization (TRPO) algorithm, which op-215

timizes control performance without relying on an internal dynamics model.216

TRPO introduces a trust region constraint using the Kullback-Leibler (KL)217

divergence between successive policies, enabling more stable learning than218

�rst-order methods like DDPG or Twin Delayed DDPG (TD3). This sta-219

bility is particularly important for �oating wind systems, where abrupt pol-220

icy updates can exacerbate nonlinear e�ects such as negative damping in221

the platform pitch dynamics. Furthermore, TRPO employs a stochastic222

policy formulation, promoting more e�ective exploration of the state-action223

space�a key advantage in o�shore environments characterized by stochastic224

disturbances and coupled dynamics. While TD3 partially addresses DDPG's225

limitations through twin critics and target smoothing, its deterministic policy226

structure may still hinder robustness under variable conditions.227

Thus, given the safety-critical nature of pitch control in Region III and228

the experimental validation required for deployment, TRPO was selected for229

its favorable balance of stability, safety, and exploration capacity. To the230

best of our knowledge, this study is the �rst to propose a fully data-driven,231

model-free DRL controller validated in a realistic wave basin environment232

for FOWTs operating in Region III. This work demonstrates the practical233

feasibility of DRL-based control strategies through both high-�delity simu-234

lations and experimental implementation, o�ering new insights into �oating235

wind turbine control under complex o�shore conditions. The proposed con-236

troller is benchmarked against the conventional GSPI controller [? ] using237

a validated wave basin platform that replicates Region III hydrodynamic238

scenarios.239

The main contributions of this paper are as follows:240

� The development of a novel, fully data-driven, model-free DRL con-241

troller based on the TRPO algorithm within an actor-critic framework,242

speci�cally designed to optimize the control of FOWTs in Region III.243

� The implementation of a control strategy that eliminates the need for244

detailed dynamic modeling, enabling the controller to adapt directly245

to complex environmental conditions through learning from simulation246

data.247

� The experimental validation of the proposed DRL controller in a re-248

alistic wave basin setup using a Software-In-the-Loop (SIL) approach,249
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demonstrating its superior performance in generator speed regulation250

and platform stability compared to the conventional GSPI controller.251

� A comprehensive performance analysis under various wind and wave252

conditions, highlighting both the robustness of the DRL controller and253

areas for improvement, particularly under extreme o�shore scenarios.254

The structure of this paper is as follows: Section II outlined the pri-255

mary control objectives for the considered semi-submersible FOWT system.256

Section III details the design of the proposed DRL controller, including the257

implementation speci�cs and training process. Section IV discusses the ex-258

perimental setup within the wave basin facility and presents a comparative259

analysis of the controller's performance under various environmental condi-260

tions. Finally, Section V concludes the study and suggests avenues for future261

research.262

2. Problem Formulation263

This section presents the FOWT system considered for the pitch control264

problem and outlines the associated control objectives.265

2.1. Floating Wind Turbine System266

This study considers the NREL OC4-DeepCWind 5 MW semi-submersible267

FOWT, illustrated in Figure ??. The turbine speci�cations, summarized in268

Table ??, are derived from the NREL 5 MW baseline turbine [? ], with269

additional platform characteristics from [? ]. The FOWT system consists270

of a 5 MW wind turbine mounted on a semi-submersible platform, stabi-271

lized by ballast and a large waterplane area. The platform's mooring system272

maintains its position while resisting drift caused by wind and waves.273
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Table 1: Speci�cations of the NREL OC4-DeepCwind 5 MW Semi-submersible FOWT.

Parameter Value

Rated power 5 MW
Rotor orientation, con�guration Upwind, 3 blades
Rotor diameter 126 m
Hub diameter 3 m
Hub height 90 m
Cut-in wind speed 3 m/s
Rated wind speed 11.4 m/s
Cut-out wind speed 25 m/s
Rated rotor speed 12.1 rpm
Rated generator speed 1173.7 rpm
Rated generator torque 43,093.55 Nm
Gearbox ratio 1:97
Generator e�ciency 0.944
Minimum blade pitch setting 0◦

Maximum blade pitch setting 90◦

Maximum absolute blade pitch rate 8◦/s

Figure 1: Semi-submersible FOWT structure.

The fundamental principle of energy transmission within the wind tur-274

bine, shown in Figure ??, involves converting wind kinetic energy into elec-275
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trical power.276

Figure 2: Wind turbine energy transmission system.

The wind exerts aerodynamic forces on the turbine blades, generating277

rotational motion:278

Pwind =
1

2
ρaπR

2
rv

3, (1)

where ρa is the air density, Rr is the rotor radius, and v is the wind speed.279

Not all wind energy is captured due to aerodynamic ine�ciencies, quanti�ed280

by the power coe�cient Cp, which depends on the blade pitch angle β and281

the tip-speed ratio λ:282

Cp = f(β, λ), with λ =
ωrRr

v
, (2)

where ωr is the rotor speed. The aerodynamic power PA extracted from the283

wind becomes:284

PA =
1

2
ρaCpπR

2
rv

3. (3)

The drivetrain transmits mechanical energy from the rotor to the gener-285

ator. Neglecting friction, its dynamics can be modeled as a rigid one-mass286

shaft, as described in [? ]:287

ω̇r =
1

Jl

(
PA
ωr
− ηgTg

)
, (4)

where ηg is the gearbox ratio, Tg is the generator torque, and Jl = Jr +288

η2gJg represents the equivalent shaft inertia. Finally, the generator converts289

mechanical energy into electrical power Pg:290
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Pg = Tgωg, with ωg = ηgωr. (5)

While the energy transmission dynamics provide valuable insight into291

FOWT behavior, the DRL-based controller proposed in this study does not292

require explicit dynamic modeling. Instead, it learns optimal control poli-293

cies directly from data, enabling a fully model-free approach to tackle the294

challenges in FOWT control.295

2.2. Control Objectives296

Given the slower role of the nacelle's yaw motion in immediate control297

responses, it is neglected in this study. The primary control inputs are the298

blade pitch angle and generator torque, with the pitch-to-feather method [?299

] being employed in Region III. This method regulates generator speed by300

adjusting blade pitch while maintaining constant torque, o�ering adaptability301

to wind �uctuations and reducing structural loads.302

Unlike bottom-�xed turbines, FOWTs introduce additional complexity303

due to their �oating platforms, which exhibit six DoFs. The platform's mo-304

tion makes FOWTs more vulnerable to disturbances from wind, waves, and305

currents. At above-rated wind speeds, pitch-to-feather control reduces rotor306

thrust, potentially leading to negative damping, where control actions am-307

plify platform pitching motion and cause resonant oscillations [? ]. Balancing308

power regulation and platform stability is particularly challenging, as these309

objectives often con�ict. Aggressive pitch adjustments can improve power310

regulation but exacerbate platform instability and fatigue loads.311

This study addresses these challenges by designing a DRL-based pitch312

controller that considers two primary control objectives:313

� Maximize power output: The goal is to maintain the generator314

power at its rated value of 5 MW. Since the generator torque is con-315

stant, this translates to maintaining the generator rotational speed (ωg)316

at its rated value (ωgd = 122.9096 rad/s). The error e1 quanti�es the317

deviation of the current rotational speed from the rated speed:318

e1 = ωg − ωgd. (6)

� Ensure platform stability: Minimizing pitch oscillations is critical,319

as platform motion directly impacts generator speed and power out-320

put. While eliminating these oscillations entirely in Region III is not321
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feasible, reducing their magnitude enhances system stability. The er-322

ror e2 measures the deviation of the platform pitch rate (ωy) from its323

reference value (ωy,ref = 0 rad/s):324

e2 = ωy − ωy,ref. (7)

The controller aims to minimize both e1 and e2, achieving an optimal325

trade-o� between power regulation and platform stability.326

To meet these objectives, a DRL-based controller is developed using the327

TRPO algorithm, an on-policy, actor-critic, model-free approach known for328

its stability and e�ectiveness in complex control environments. The DRL329

controller dynamically adjusts the CBP angle while maintaining the genera-330

tor torque at its rated value, ensuring robust performance in the challenging331

conditions of Region III.332

3. DRL-based Collective Blade Pitch Control Design in Region III333

This section presents the design of the DRL agent, serving as a CBP334

controller for the introduced 5 MW semi-submersible FOWT. The Open-335

FAST simulation software, incorporating the NREL OC4-DeepCWind model,336

serves as the agent's training environment. This black-box approach enables337

the development of control strategies without requiring prior knowledge of338

the system's underlying dynamics.339

The proposed controller, illustrated in Figure ??, employs an arti�cial340

neural network architecture to optimize CBP control. It integrates actor and341

critic networks that interact with the simulated FOWT environment, lever-342

aging the TRPO algorithm for policy updates. Additionally, the architecture343

includes an action selector to generate control inputs and a reward calculator344

to evaluate performance.345
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Figure 3: Interaction between the DRL agent and the OpenFAST simulation software.

3.1. MDP Formulation for FOWT Control in Region III346

The interaction between the DRL agent and the simulated FOWT en-347

vironment is represented using the MDP framework. MDP models the in-348

teraction between a decision-making agent and its environment [? ], where349

the environment includes the system to be controlled and any external dis-350

turbances. The agent interacts with the environment through three primary351

signals, as depicted in Figure ??:352

� Observations s: Information received from the environment describ-353

ing its current state at a given time.354

� Actions a: Decisions made by the agent that directly a�ect the envi-355

ronment's state.356

� Rewards r: Feedback from the environment evaluating the e�ective-357

ness of the agent's actions.358
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Figure 4: Interaction between the agent and environment in MDP.

By e�ectively de�ning the MDP elements�state space (S), action space359

(A), reward function (R), discount factor (γ), and transition probability360

(p)�the FOWT control problem is formulated as a robust foundation for361

developing a DRL-based control strategy.362

3.1.1. States (S)363

According to the energy transmission model (??)-(??), the power gener-364

ated by the FOWT system depends on the generator rotational speed ωg.365

This speed, in turn, is in�uenced by wind speed v, blade pitch angle β, and366

indirectly by the platform pitch θy and its angular velocity ωy. Hence, the367

generated power P can be expressed as:368

P = f(ωg, v, θy, ωy, β). (8)

However, when employing a model-free TRPO algorithm, explicit knowl-369

edge of the complete system dynamics is not required for controller design.370

This means that the function f can remain unknown. Instead, the state371

space S is designed to include all essential aspects needed for the DRL agent372

to make informed decisions:373

� Generator speed (ωg) [rad/s]: Indicates energy capture and power374

generation.375

� Generator speed error (e1 = ωg − ωgd) [rad/s]: Tracks deviation376

from the rated speed.377

� Platform pitch angle (θy) [rad]: Re�ects platform motion due to378

wind and waves.379
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� Platform pitch angular velocity (e2 = ωy) [rad/s]: Monitors the380

rate of platform pitch changes.381

� Previous blade pitch control (βt−1) [rad]: Captures the controller's382

last action.383

The observation vector s is then:384

s = [ωg, e1, θy, ωy, βt−1]
⊤. (9)

3.1.2. Actions (A)385

The action space is de�ned as the continuous normalized range A =386

[−1, 1]. Accordingly, the policy network within the DRL controller outputs387

the mean and standard deviation of a Gaussian distribution at each time388

step. A normalized continuous action is then stochastically sampled as:389

anorm ∼ N (µ(s), σ(s)2),

where µ(s) and σ(s) are the state-dependent mean and standard deviation390

produced by the actor network. During training, this sampling encourages391

exploration, while during evaluation, only the mean action is used to ensure392

deterministic behavior.393

The sampled action anorm ∈ [−1, 1] is linearly mapped to the physical394

blade pitch range [0, π
2
] rad (i.e., 0◦ to 90◦). To ensure safe and stable inter-395

action with the FOWT environment�particularly during early exploratory396

phases�the resulting action is saturated within the valid pitch range, and a397

rate limiter is applied to constrain variation between successive time steps.398

This limiter is consistent with the Baseline controller [? ] and is expressed399

as:400

u̇ ≤ βrate, (10)

where βrate = 8◦/s denotes the maximum allowable blade pitch rate.401

3.1.3. Reward function (R)402

The reward function guides the DRL controller by quantifying the im-403

mediate outcomes of actions to achieve the presented key control objectives:404

power regulation and platform stability.405

The general reward signal r is expressed as:406

r = W1 · f(e1) +W2 · g(e2) +W3 · h(u̇), (11)

where W1,W2,W3 are weights representing the relative importance of each407

objective:408
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� Generator speed tracking (f(e1)): Penalizes deviations of generator409

speed ωg from its rated value ωgd, ensuring e�cient power generation.410

� Platform stability (g(e2)): Discourages large pitch rates ωy to reduce411

platform motion.412

� Control smoothness (h(u̇)): Limits abrupt control changes to mini-413

mize actuator wear.414

The speci�c base reward signal used in this study, obtained through man-415

ual tuning, is:416

rbase = max(0, 15− |e1|)−W1 · |e1| −W2 · |e2| −W3 · |u̇|+G1, (12)

where G1 = 10 if |e1| ≤ 2, otherwise G1 = 0. This bonus incentivizes oper-417

ation near the rated generator speed. The weights are tuned as W1 = 0.5,418

W2 = 0.08, and W3 = 0.01, achieving a balanced trade-o� among objectives.419

420

To further ensure safe operation, a constraint-based penalty is introduced421

in the reward function. Speci�cally, a penalty term C is added to the base422

reward rbase, resulting in the �nal reward signal used by the DRL agent:423

r = rbase + C, (13)

where the constraint penalty C is de�ned as:424

C =

{
−1, if ωg /∈ [80, 163],

0, otherwise.
(14)

This constraint discourages the agent from operating outside the genera-425

tor's allowable speed range and helps guide policy learning toward safe and426

e�ective control actions.427

3.1.4. Discount factor γ428

The discount factor, set to γ = 0.99, balances short- and long-term re-429

wards, ensuring the agent values both immediate power generation and the430

long-term stability of the system.431
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3.1.5. Transition probability p432

The transition probability describes how system states change in response433

to actions, in�uenced by wind, waves, and hydrodynamic e�ects. Using the434

TRPO algorithm, the DRL agent empirically learns these dynamics through435

interactions with the environment. By iteratively observing state-action-436

reward transitions (s, a, r, s′), the agent re�nes its policy to adapt to the437

nonlinear and stochastic nature of FOWT dynamics.438

3.2. Neural Networks Architectures439

The DRL controller includes two neural networks: the actor π(a|s, ϕ)440

and the critic v(s, ψ), where ϕ and ψ represent the parameters of the actor441

and critic networks, respectively. The critic network evaluates the quality of442

states by estimating the expected return, while the actor network determines443

the action probabilities.444

3.2.1. Critic network445

The architecture of the actor network is represented in Figure ?? and is446

organized as:447

� Input layer: Receives the state vector s.448

� Hidden layers: Two fully connected layers with 256 units each, using449

ReLU (Recti�ed Linear Unit) activation functions.450

� Output layer: A fully connected layer that produces a scalar output,451

representing the value v(s, ϕ), which estimates the expected return from452

state s.453
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Figure 5: Architecture of the critic neural network employed within the DRL controller.

The total number of learnable parameters ψ in the critic network is cal-454

culated based on the layer sizes:455

First fully connected layer: (5× 256) + 256 = 1, 536 parameters456

Second fully connected layer: (256× 256) + 256 = 65, 792 parameters457

Output layer: 256× 1 = 256 parameters458

Total: 1, 536 + 65, 792 + 256 = 67, 584 parameters.459

3.2.2. Actor network460

The architecture of the actor network is represented in Figure ?? and is461

organized as:462

� Input layer: Receives the state vector s.463

� Hidden and output layers: The architecture consists of fully con-464

nected layers, branching into two separate paths:465

� Mean path: Outputs the mean values for actions using the Tanh466

activation function, ensuring outputs are bounded within [-1, 1],467

scaled appropriately for the action space.468

� Standard deviation path: Outputs the standard deviation us-469

ing the Softplus activation function, ensuring that the values re-470

main positive.471
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Together, the mean and standard deviation outputs de�ne the param-472

eters of the Gaussian action distribution from which the action is sam-473

pled.474

Figure 6: Architecture of the actor neural network employed within the DRL controller.

The total number of learnable parameters ϕ in the actor network is com-475

puted based on the layer sizes:476

Input fully connected layer: (5 + 1)× 256 = 1, 536 parameters477

Second fully connected layer: (256 + 1)× 1 = 257 parameters478

Mean path fully connected layer: (1 + 1)× 1 = 2 parameters479

Standard deviation path fully connected layer: (1 + 1)× 1 = 2 param-480

eters481

Total: 1, 536 + 257 + 2 + 2 = 1, 797 parameters.482

3.2.3. State normalization483

State normalization is a key preprocessing step in DRL, especially when484

neural networks are used as function approximators. In this implementation,485

observed states are scaled to the range [−1, 1] using Min-Max scaling:486

snormi =
2 · (si − si,min)

si,max − si,min

− 1. (15)
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This scaling ensures that each normalized state snormi falls within [−1, 1],487

stabilizing the learning and mitigating gradient instability from widely vary-488

ing input magnitudes. Normalization is crucial for the semi-submersible489

FOWT, where state variables have diverse units and ranges. The ranges490

used in this study are:491

� Generator speed (ωg): [80, 163] rad/s492

� Platform pitch (θy): [-0.035, 0.105] radians493

� Platform pitch rate (ωy): [-0.035, 0.035] rad/s494

� Blade pitch angle (β): [0, π] radians495

3.3. Training Process of the DRL Controller496

The TRPO algorithm is used to optimize the control policy of the 5 MW497

semi-submersible FOWT. The actor network π(a|s, ϕ) and critic network498

v(s, ψ) are trained iteratively to maximize the expected reward. Training is499

guided by gradient-based optimization using experiences collected from the500

simulated environment.501

3.3.1. Overview of TRPO algorithm502

The TRPO algorithm, introduced by Schulman et al. in 2015 [? ], is a503

robust actor-critic method designed to ensure stable policy updates. TRPO504

achieves stability by constraining the Kullback-Leibler (KL) divergence be-505

tween successive policies, preventing abrupt changes that could destabilize506

the control system.507

The policy update process under TRPO is summarized as follows:508

1. Initialization: The critic v(s, ψ) and actor π(a|s, ϕ) networks are ini-509

tialized with random weights ψ and ϕ, respectively.510

2. Experience generation: The agent interacts with the simulated511

FOWT environment using the current policy, generating episodes of512

state-action-reward tuples:513

(sts, ats, rts+1, sts+1, . . . , sts+N−1, ats+N−1, rts+N , sts+N). (16)

Here, each tuple (st, at, rt+1, st+1) represents the state, action, reward,514

and next state. The starting time step ts is incremented after each set515

of N experiences, as ts ← ts +N . The agent selects actions based on516

a probability distribution derived from the current policy: π(a|st, ϕ).517
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3. Advantage function and Return calculation: For each step t,518

where t = 1, 2, . . . , N , calculate the Advantage function At and Return519

Gt:520

521

Generalized Advantage Estimation (GAE):522

At =
ts+N−1∑
k=t

(γλ)k−t (rk+1 + γv(sk+1, ψ)− v(sk, ψ)) , (17)

where λ is the smoothing factor, and γ is the discount factor.523

524

Return Gt:525

Gt = At + v(st, ψ). (18)

4. Mini-batch selection: Randomly select a subset of experience data526

to create mini-batches of size M , which will be used to update the527

networks.528

5. Critic network update: Update the critic network by minimizing529

the mean squared error between the predicted values and the returns:530

ψ ← ψ − αcritic∇ψLcritic(ψ), (19)

where αcritic is the learning rate for the critic, controlling the step size531

of each update, and the loss function Lcritic(ψ) is de�ned as:532

Lcritic(ψ) =
1

M

M∑
i=1

(Gi − v(si, ψ))2 . (20)

6. Actor network update: Update the actor network to maximize the533

expected advantage, subject to the KL-divergence constraint. The ob-534

jective function is de�ned as:535

Lactor(ϕ) = −
1

M

M∑
i=1

(
π(ai|si, ϕ)
π(ai|si, ϕold)

Ai + wEi(ϕ, si))
)
, (21)

Here π(ai|si, ϕ) is the probability of taking action ai following the cur-536

rent policy, π(ai|si, ϕold) is the probability of taking action ai following537

the old policy. The entropy term Ei(ϕ, si) is de�ned as follows, where538

w is the entropy loss weight:539

Ei(ϕ, si) =
1

2
ln

(
2π · e · σ2

i

)
, (22)
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where σi is the standard deviation for the output action when in state540

si following the current policy. This entropy loss term encourages ex-541

ploration by preventing the policy from becoming too deterministic.542

7. KL-divergence constraint satisfaction: Ensure that the updated543

policy remains close to the old one by enforcing the following constraint:544

1

M

M∑
i=1

DKL(ϕold, ϕ, si) ≤ δ, (23)

where δ controls the size of the policy update. The KL-divergence545

DKL(ϕold, ϕ, si) between the old policy and current policy is computed546

as:547

DKL(ϕold, ϕ, si) = ln

(
σϕ
σϕold

)
+
σ2
ϕold

+ (µϕold − µϕ)2

2σ2
ϕ

− 1

2
. (24)

Here, µϕ and σϕ represent the mean and standard deviation of the ac-548

tion distribution output by the current actor policy, while µϕold and549

σϕold correspond to the mean and standard deviation of the action dis-550

tribution under the old policy.551

8. Actor parameter update: Perform the actor network parameter up-552

date by solving the optimization problem using the conjugate gradient553

descent:554

ϕ = ϕold + α

√
2δ

(H−1g)⊤H−1(H−1g)
H−1g, (25)

where H is the Hessian matrix, g is the gradient of the objective func-555

tion Lactor(ϕ), and α is the step size determined via line search:556

α ∈
{
1,

1

2
,
1

22
, . . . ,

1

2n−1

}
. (26)

9. Iteration: Repeat the steps iteratively, allowing the TRPO algorithm557

to continuously improve the policy.558

The DRL controller is implemented using the Reinforcement Learn-559

ing Toolbox in MATLAB/Simulink R2023a, where the actor and critic560

networks, as previously de�ned, are trained using the built-in TRPO agent561

framework. A custom environment interface was developed to integrate the562

TRPO agent with the OpenFAST simulator, allowing the agent to reset563

episodes, advance simulation steps, and compute rewards based on real-time564

system states.565
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3.3.2. Simulated environment566

For a model-free approach, a robust and accurate simulation platform567

is essential to emulate the NREL OC4-DeepCwind 5 MW semi-submersible568

FOWT. The high-�delity OpenFAST simulation software [? ] is chosen569

for its detailed and reliable modeling of aerodynamic, hydrodynamic, and570

structural dynamics, as well as mooring system behavior. It incorporates a571

servo-elastic structural model to capture the complex forces acting on �oating572

wind turbines. Figure ?? illustrates the key OpenFAST modules:573

� In�owWind: Provides wind �eld inputs at the rotor, including speed574

and turbulence intensity.575

� ElastoDyn: Simulates elastic structural dynamics of the drivetrain,576

tower, and nacelle.577

� BeamDyn: Models blade �exibility using beam-type �nite element578

methods.579

� AeroDyn: Calculates aerodynamic loads using Blade Element Mo-580

mentum Theory (BEMT).581

� HydroDyn: Simulates hydrodynamic forces acting on �oating struc-582

tures.583

� Mooring: Models mooring system dynamics via MAP++, FEAMoor-584

ing, or MoorDyn.585

� ServoDyn: Simulates pitch and torque actuator dynamics for control586

systems.587
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Figure 7: Architecture of the OpenFAST simulation software, depicting key modules used
in FOWT system emulation.

3.3.3. Training process588

The training process of the DRL controller follows these steps:589

1. Initialization: Initialize the actor and critic networks with random590

weights to begin the exploration process.591

2. Episode execution: For each training episode:592

(a) Environment reset: Reset the OpenFAST simulation environ-593

ment using the ElastoDyn module and set initial conditions.594

(b) Initial observation: Retrieve the initial state s0 and compute595

the initial action a0 using the current policy.596

(c) Interaction loop: While the episode has not terminated, repeat597

the following steps:598

� Select an action a ∼ π(a|s) based on the current state s and599

the actor network.600

� Apply a to the environment and observe the next state s′ and601

the reward r.602

� Store the transition (s, a, r, s′) for policy and value updates.603

� Update the current state s← s′.604

3. Return calculation: For each trajectory of transitions compute the605

cumulative return Gt.606
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4. Critic update: Update the critic network by minimizing the loss func-607

tion, which measures the discrepancy between the predicted value and608

the cumulative return (??).609

5. Actor update: Optimize the actor network parameters using a policy610

gradient method with a trust region constraint to ensure stable updates611

(??).612

6. Training loop: Repeat the process until convergence to an optimal613

policy that maximizes the long-term reward while respecting FOWT614

operational constraints.615

The training is conducted episodically, with standardized initial condi-616

tions to enhance learning robustness. Each episode begins with a collective617

blade pitch angle set to 16.8773◦, perturbed with random noise, and a plat-618

form pitch angle randomly initialized between 1.5◦ and 2.5◦. Episodes last619

Tf = 600 s, with control actions executed at a �xed time step Ts = 0.0125 s.620

This setup introduces variability, improving the policy's ability to generalize621

across di�erent initial conditions.622

Table ?? outlines the speci�c settings employed during the training of the623

TRPO agent.624
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Table 2: Training Parameters for the DRL Controller.

Parameters Value Description

Total simulation time
(Tf )

600 s Duration of each training episode.

Time step (Ts) 0.0125 s Frequency for updates to capture en-
vironment dynamics.

Discount factor (γ) 0.99 Ensures focus on long-term rewards.
Experience horizon
(N)

512 Trajectory length for balancing im-
mediately vs. future outcomes.

Entropy Loss weight
(w)

0.01 Promotes exploration by preventing
early convergence.

KL Divergence limit
(δ)

0.01 Stabilizes policy by controlling pol-
icy update deviation.

Line Search Iterations
(n)

10 Optimizes policy update step size.

Mini-batch size (M) 128 Sample size for each update.
Smoothing factor
(GAE) (λ)

0.95 Manages bias variance in advantage
estimation.

Critic learning rate
(αcritic)

0.001 Adjusts critic network weights.

3.3.4. Environmental conditions625

The e�cacy of the DRL controller depends on the Environmental Con-626

ditions (ECs) used during training, simulated with OpenFAST.627

The key environmental factors considered are:628

� Wind speed range: Training scenarios span wind speeds from the629

rated speed (Vrated = 11.4m/s) to the cut-out speed (Vcut−out = 25m/s)630

of the NREL 5 MW reference turbine, covering typical operational631

conditions in Region III.632

� Turbulence intensity: To capture the stochastic nature of o�shore633

wind, turbulent wind pro�les are generated using NREL's TurbSim634

software [? ] with the Kaimal turbulence model [? ]. The Kaimal635

model, widely adopted for o�shore environments, accurately simulates636

gusty and variable wind conditions [? ].637
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� Wave conditions: Complex wave dynamics are modeled using the Hy-638

droDyn module in OpenFAST. The wave pro�les are generated based639

on the Pierson-Moskowitz spectrum, a standard for fully developed sea640

states [? ], and characterized by signi�cant wave height and peak pe-641

riod.642

A speci�c training environment, EC0, is de�ned to standardize the train-643

ing setup. Table ?? summarizes its characteristics, and the corresponding644

wind and wave pro�les are shown in Figure ??. Both wind and wave direc-645

tions are aligned along the downwind axis of the FOWT.646

Table 3: Characteristics of Environmental Condition EC0

Parameter Value

Simulated Wind

Mean Wind Speed 18 m/s
Turbulence Intensity 15%
Wind Speed Range 10.72 to 25.32 m/s

Simulated Wave

Signi�cant Wave Height 1.2646 m
Peak Period 10 s
Wave Type Irregular
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Figure 8: Wind speed (a) and wave height (b) pro�les used in the simulation environment
for training the agent.
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3.4. Training Results647

This subsection presents the outcomes of the training simulations using648

the DRL controller in the Matlab/Simulink environment coupled with Open-649

FAST. The turbine speci�cations are detailed in Table ??, and the training650

parameters are summarized in Table ??. For these simulations, all DoFs in651

OpenFAST were enabled, except for yaw motion, which was neglected. A652

constant generator torque strategy was adopted, �xing the generator torque653

at its rated value Tgd = 43, 093.55N.m. The DRL controller applied a CBP654

strategy, uniformly adjusting all three blade pitch angles, as illustrated in655

Figure ??.656

Training was conducted on a workstation equipped with an 11th Gen657

Intel® CoreTM i7-11850H processor (8 cores, 2.50 GHz), with 6 cores allo-658

cated for parallel environment simulation. A total of 500 training episodes659

were executed. The agent's performance was evaluated every 10 episodes,660

focusing on generator speed tracking and platform pitch motion mitigation.661

Root Mean Square Error (RMSE) metrics were computed for both genera-662

tor speed and platform pitch rate to quantitatively assess control accuracy663

and motion suppression. The best control policy emerged around episode664

138, corresponding to approximately 6.6 million simulation steps. The total665

training time to reach this performance level was approximately 28 hours.666

The performance of the trained DRL controller was compared to the667

Baseline GSPI controller, implemented as an external dynamic link library668

(.dll) within OpenFAST [? ]. Table ?? summarizes the GSPI controller669

parameters.670

Table 4: Baseline GSPI: Pitch Control Parameters.

Parameter Value Description

Kp 0.0063 Proportional gain for pitch controller at
rated pitch (s)

Ki 0.0009 Integral gain for pitch controller at rated
pitch (-)

Kk 0.11 Pitch angle where aerodynamic power
derivative w.r.t. pitch doubles (rad)

βmax 1.57 Max pitch setting (rad)
βmin 0.0 Min pitch setting (rad)
βrate 0.14 Max absolute blade pitch rate (rad/s)
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3.4.1. Simulation results under training conditions671

The results, shown in Figure ??, include response curves for generator672

speed, platform pitch angle, platform pitch rate, and blade pitch angle under673

EC0 conditions. These variables serve as key indicators for evaluating control674

performance.675
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Figure 9: Training results of the DRL controller compared with the GSPI baseline: (a)
Generator speed ωg, (b) Platform pitch angle θy, (c) Platform pitch rate ωy, and (d) Blade
pitch angle β.

To quantitatively assess the controller's performance, Figure ?? presents676

statistical diagrams summarizing the mean, STandard Deviation (STD), and677

min-max values for rotor speed, platform pitch angle and rate, and blade678

pitch angle. Table ?? provides the RMSE values for generator speed and679

platform pitch rate. As RMSE is highly sensitive to errors in the data, it680

serves as a valuable metric for evaluating the accuracy of the trained con-681

troller. The statistical analysis covers the period from 100 seconds to 600682

seconds to exclude the e�ects of initial conditions.683
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Figure 10: Statistical diagrams of mean, STD, and min-max values under EC0 for the
DRL and Baseline controllers: (a) Generator speed ωg, (b) Platform pitch rate ωy, (c)
Blade pitch angle β, (d) Platform pitch angle θy.

Table 5: RMSE for Genrator Speed (ωg) and Platform Pitch Rate (ωy).

Controller RMSE ωg (rad/s) RMSE ωy (deg/s)

DRL Controller 1.91043 0.16138
Baseline 12.3083 0.30103

3.4.2. Discussion684

The performance evaluation of the DRL controller under EC0 conditions,685

as compared to the Baseline GSPI controller, provides several key insights686

into its e�ectiveness in managing both generator speed and platform stability.687

Generator speed tracking: The results in Figure ??(a) and the sta-688

tistical summary in Figure ??(a), as well as the RMSE values in Table ??689

demonstrate that the DRL controller signi�cantly outperforms the Baseline690

in terms of generator speed tracking. The DRL controller maintains a much691

lower RMSE value of 1.91 rad/s, compared to 12.31 rad/s for the Baseline.692

This suggests that the DRL approach is more e�ective at optimizing power693

generation, particularly under the high turbulence intensity conditions of694

EC0, by dynamically adjusting the blade pitch to maintain rated generator695

speed. Moreover, the reduced STD in the DRL controller's generator speed696
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further underscores its ability to maintain more stable speed tracking with697

less variability than the Baseline.698

Platform pitch angle and rate: The DRL controller also demonstrates699

superior performance in mitigating platform pitch motion, as shown in Fig-700

ures ??(b) and (c). Compared to the Baseline, the DRL controller achieves701

a noticeable reduction in both the pitch angle and rate, contributing to more702

stable platform behavior. The RMSE for the pitch rate is reduced from 0.30703

deg/s (Baseline) to 0.16 deg/s (DRL), indicating better control of platform704

dynamics. Additionally, the lower STD of the platform pitch rate in Figure705

??(b) reinforces the DRL controller's ability to stabilize the platform more706

e�ectively.707

Blade pitch angle behavior: A notable di�erence between the two708

controllers is the blade pitch angle behavior, as shown in Figures ??(d) and709

??(c). The DRL controller exhibits a higher variation in the blade pitch710

angle, with a larger STD compared to the Baseline. This indicates that the711

DRL controller employs a more dynamic strategy, frequently adjusting the712

blade pitch to counteract environmental disturbances.713

While this suggests a more aggressive control approach, the increased re-714

sponsiveness in blade pitch adjustment contributes to better overall generator715

speed tracking and platform stability. However, it is important to note that716

excessive pitch variability may lead to increased wear on the blade actuators,717

potentially increasing maintenance costs over time.718

4. Experimental Validation of the Trained DRL Controller719

After completing the training process, the performance of the DRL con-720

troller was evaluated under novel wind and wave conditions, not encountered721

during training, trhough an experimental setup (Figure ??). These tests722

assess the controller's ability to generalize across unseen scenarios.723

To provide a comprehensive evaluation, the DRL controller's performance724

is also benchmarked against the Baseline GSPI controller. This comparative725

analysis highlights the advantages of the DRL-based approach while identi-726

fying any limitations under challenging operating conditions.727
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Figure 11: Implementation of the trained DRL controller for experimental validation.

4.1. Experimental Setup Description728

The experimental validation was conducted at the LHEEA Laboratory729

(Laboratory of Hydrodynamics, Energetics, and Atmospheric Environment)730

at Centrale Nantes, France. This facility features advanced ocean engineer-731

ing infrastructure, including a wave basin tailored for reduced-scale FOWT732

testing. Leroy et al. [? ] performed an in-depth experimental analysis of the733

hydro-elastic response of a spar-type �oating o�shore wind turbine in such734

conditions. Building upon this, Bonnefoy et al. [? ] proposed a hybrid SIL735

modeling approach to enhance the experimental assessment of FOWTs in736

wave tank environments. Additionally, Arnal [? ] developed the experimen-737

tal SIL framework used for real-time control validation, which was leveraged738

in the current study.739

The experimental setup comprises a reduced-scale FOWT placed at the740

center of the wave basin, a Ni-compactRIO-9046 computer integrating both741

OpenFAST and the trained DRL controller, and a real-time control system.742

This control system simulate aerodynamic loads on the reduced model via743

force control, replicating the behavior of a full-scale FOWT under dynamic744

environmental conditions.745

The wave basin, measuring 30 meters in width, 50 meters in length, and746

5 meters in depth, is equipped with a wave generation system at one end and747

a wave absorption system at the other end. The wave generation system,748

composed of 48 hinged �aps, allows for the creation of multidirectional reg-749

ular and irregular waves, characteristic of deep-water environments. On the750
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opposite side, a wave absorption system minimizes re�ections, ensuring clean751

wave pro�les for accurate testing. Additionally, seven wave gauges installed752

within the basin provide precise measurements of wave elevation.753

A 1/32 scale model of the NREL OC4 DeepCWind 5 MW semi-submersible754

FOWT was placed at the center of the basin (Figure ??). This scaled model755

replicates the dynamics of the full-scale system and is equipped with the756

following sensors:757

� Accelerometers located on the nacelle.758

� Load cells with six measurement components are installed between the759

tower top and the nacelle, as well as between the platform and the760

tower, to capture forces and moments.761

� A Qualisys Motion Tracking (QMT) system with four cameras to cap-762

ture detailed position data of the scale model's �oats and nacelle.763

The model is anchored using four spring-loaded mooring lines that mimic764

the behavior of the three catenary mooring lines of the full-scale FOWT,765

ensuring realistic mooring forces. Wave gauges convert wave elevation data766

into voltage signals via an external acquisition system, while the QMT system767

continuously tracks the nacelle and platform positions, feeding real-time data768

to the NI-CompactRIO-9046 computer.769

Figure 12: Scale model of the NREL OC4 DeepCWind 5 MW FOWT in the wave basin.
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The experimental setup integrates the physical wave basin dynamics with770

OpenFAST for numerical simulations. The In�owWind module generates771

wind in�ow, and AeroDyn calculates aerodynamic loads based on system772

states. The ServoDyn module manages turbine control (blade pitch and773

torque), while ElastoDyn computes platform motions and structural dynam-774

ics. Wave generation, platform motion, and mooring forces are physically775

modeled in the basin, while OpenFAST integrates real-time position data776

to simulate aerodynamic responses. At each simulation step, OpenFAST777

calculates rotor azimuth, rotational speed, and blade pitch angles, updating778

turbine states based on the imposed platform motions and tower de�ection.779

For experimental deployment on the NI-compactRIO-9046, the trained DRL780

policy was exported from MATLAB/Simulink and re-implemented in C++ as781

a shared library (odiscon.so), with con�guration parameters de�ned in a782

.yml �le. Thus, the external DRL controller, compiled as a shared library,783

computes the blade pitch angle and generator torque using both real-time784

measured data and simulated turbine states as inputs.785

To address the challenge of scaling aerodynamic forces [? ], caused by786

di�erences in the Reynolds number when scaling down wind turbines, the ex-787

periment employs a SIL approach. Instead of using a physical rotor, the aero-788

dynamic forces computed in OpenFAST are applied using six propeller-based789

actuators (Figure ??). This con�guration enables accurate reproduction of790

six-component aerodynamic forces with minimal actuator usage. Within the791

NI-compactRIO-9046 computer, the real-time control system of these pro-792

pellers comprises two loops: an outer loop for OpenFAST calculations and793

an inner loop for actuator control based on a nonlinear SMC [? ].794

The outer loop receives the simulated wind pro�le and the real motion795

data of the FOWT's scale model from the QMT system via Ethernet cable,796

alongside blade pitch angle from the trained DRL controller. OpenFAST797

then computes the reference aerodynamic loads matrix MAr, which speci�es798

the forces and moments to be applied by the six propellers.799

The inner loop ensures that the actual loads MA generated by the pro-800

pellers closely follow this reference matrix MAr, using Pulse Width Modula-801

tion (PWM) signals sent to the electric motors driving the propellers. Two802

HBK MCS10 6D load cells are installed at the nacelle and tower base to803

measure multidimensional forces and moments. These load measurements804

are transferred to the NI-CompactRIO-9046 via a NI-9237 analog full-bridge805

input module, while control signals for the propeller motors are dispatched806

through a NI-9401 digital output module using PWM. This setup enables807
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precise actuator control, allowing real-time aerodynamic forces to align seam-808

lessly with the DRL control strategy.809

Figure ?? presents a schematic diagram of this wave tank platform cou-810

pling framework.811

Figure 13: Schematic diagram of the wave tank platform SIL coupling framework.

4.2. Validation of the Experimental Setup812

To ensure the experimental setup accurately mimics the hydrodynamic813

behavior of the OC4 DeepCWind semi-submersible 5 MW FOWT, a series814

of validation tests were conducted.815

� Dry tests: Conducted to estimate the mass, the position of the center816

of gravity, and the inertia properties of the scale model.817

� Static pullout tests: Performed to assess the sti�ness of the mooring818

system, which is critical for accurately simulating the platform's stabil-819

ity and movements. The mooring equivalent linear sti�ness around the820

equilibrium position on the surge axis for the entire mooring system821

was estimated after pullout tests as 77N/m (at model scale).822

� Decay tests: These tests measure the natural periods and damping823

coe�cients, providing data on how the platform model's motion decays824

over time when perturbed. The hydrodynamic time-domain proper-825

ties of the �oating platform model were measured in all six DoFs. To826
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achieve high accuracy, the connection sti�ness and drag coe�cients of827

the �oating platform were meticulously calibrated. This calibration828

aligns the time-domain free-decay responses of the platform in the ex-829

perimental setup with those predicted by OpenFAST simulations. This830

ensures that the mooring line behavior and other dynamic responses831

are correctly modeled. Figure ?? presents a comparison of the cali-832

brated free-decay responses between the wave basin experiment and833

the OpenFAST simulation for surge, heave, and pitch motions of the834

platform. The speci�c initial conditions applied for the free-decay tests835

in still water (with no wind) are:836

� Surge: Initial displacement of 25 cm.837

� Heave: Initial displacement of 5 mm.838

� Pitch: Initial amplitude of 6 degrees.839
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Figure 14: Comparison of free-decay responses between experimental setup and Open-
FAST simulation in the surge, heave, and pitch DoFs: (a) Surge, (b) Heave, and (c) Pitch.

Table ?? gives the natural periods obtained with the reduced experi-840

mental OC4 platform in the wave basin compared to the OC4 speci�-841

cations [? ].842

37



Table 6: Comparison of Natural Periods between OC4 Platform Speci�cations and Wave
Tank Experiments.

DoF OC4 FOWT speci�cations (s) Wave basin experiments (s)

Heave 17 17.06
Surge 112 107.3
Pitch 25 26.20
Roll 25 26.16
Yaw 78 59.99
Sway 112 129.0

The observed periods for the heave DoF in the wave basin are closely843

aligned with the OC4 speci�cations, indicating an accurate replication844

of vertical dynamics. A slight deviation is noted for the surge period,845

with experimental results showing a shorter period than speci�ed. This846

discrepancy may stem from di�erences in hydrodynamic modeling or847

environmental setup. Both pitch and roll exhibit minor variations but848

remain within an acceptable range, suggesting that rotational dynamics849

are adequately captured in the experimental setup. Larger deviations850

are observed in the yaw and sway periods, likely due to the speci�c851

mooring con�guration employed in the experiments, as variations in852

mooring setups can signi�cantly in�uence the platform's lateral and853

rotational movements.854

Overall, the experimental results from the wave basin setup are in good855

agreement with the OC4 platform's speci�cations. This validation con�rms856

the accuracy of the experimental setup in replicating the dynamic behavior857

of the semi-submersible FOWT. As a result, the experimental platform is858

validated as reliable for further testing and for validating the DRL controller859

under realistic operating conditions.860

4.3. Validation of the Trained DRL Controller861

The performance of the trained DRL controller was rigorously evaluated862

through a series of tests conducted in the wave basin experimental setup.863

Each test lasted 36 minutes and was structured into three distinct phases:864

� Initialization (2 minutes): OpenFAST is initialized with the initial865

aerodynamic loads and wind conditions for the FOWT. The actuators866
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of the propellers on the scaled model are activated to reproduce the867

initial forces. The testing begins once the forces acting on the model868

stabilize.869

� Test phase (14 minutes): The DRL controller operates under spec-870

i�ed wind and wave conditions, with a sampling interval of 0.0565685871

seconds. Given the model's 1/32nd scale, aerodynamic parameters872

within OpenFAST are adjusted using Froude scaling laws to ensure873

realistic outcomes. This e�ectively extends the 14-minute test dura-874

tion to a full-scale equivalent of approximately 79.2 minutes.875

� Post-test (20 minutes): This phase allows the scaled FOWT model876

to settle back to a resting state after the active testing period.877

To evaluate the robustness and adaptability of the DRL controller, three878

distinct ECs were selected for testing, with their characteristics speci�ed in879

Table ??. EC3 was speci�cally chosen to simulate conditions near the op-880

erational limits of Region III, providing a thorough assessment of the DRL881

controller's performance under extreme wind pro�les. These experimental882

setups and conditions ensure that the DRL controller is tested not only for883

e�cacy but also for its ability to adapt to the dynamic and sometimes ex-884

treme conditions typical of o�shore environments.885

Table 7: ECs used during the Validation of the DRL Controller (Wave Heights are pre-
sented at Full Scale).

EC Mean Wind Signi�cant Wave Spectral
Speed (m/s) Wave Height (m) Peak Period (s)

EC1 14 7 12.0
EC2 20 7 12.0
EC3 30 3.5 12.0

4.3.1. Experimental results886

The experimental results for EC1, EC2, and EC3 are presented in Figures887

??, ??, and ??, respectively, showing response curves for generator speed,888

platform pitch angle, platform pitch rate, and blade pitch angle. The trained889

DRL controller is compared to the Baseline GSPI controller, both of which890

were compiled in a shared library and called at each time step within the891

NI-compactRIO-9049 system, tested under the same experimental setup.892
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Figure 15: Experimental results comparing DRL controller (blue) and the Baseline (red)
for EC1: (a) Generator speed ωg, (b) Platform pitch angle θy, (c) Platform pitch rate ωy,
and (d) Blade pitch angle β.
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Figure 16: Experimental results comparing DRL controller (blue) and the Baseline (red)
for EC2: (a) Generator speed ωg, (b) Platform pitch angle θy, (c) Platform pitch rate ωy,
and (d) Blade pitch angle β.
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Figure 17: Experimental results comparing DRL controller (blue) and the Baseline (red)
for EC3: (a) Generator speed ωg, (b) Platform pitch angle θy, (c) Platform pitch rate ωy,
and (d) Blade pitch angle β.

Figure ?? presents statistical diagrams showing the mean, STD, and min-893

max values for generator speed, platform pitch angle and rate, and blade894

pitch angle across EC1, EC2, and EC3. Table ?? provides the RMSE values895

for generator speed and platform pitch rate. The �rst 100 seconds of experi-896

mental data are also excluded from the analysis to minimize the in�uence of897

initial conditions.898
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Figure 18: Statistical diagrams of mean, STD, and min-max values for EC1, EC2, and
EC3: (a) Generator speed, (b) Platform pitch rate, (c) Blade pitch angle, and (d) Platform
pitch angle.

Table 8: RMSE for Generator Speed ωg and Platform Pitch Rate ωy.

Controller RMSE ωg (rad/s) RMSE ωy (deg/s)

EC1
DRL Controller 2.6984 0.3053

GSPI 8.1879 0.3367

EC2
DRL Controller 1.7288 0.3050

GSPI 8.5526 0.3481

EC3
DRL Controller 2.814 0.1869

GSPI 8.8339 0.2245

The tower base side-to-side and fore-aft moments under EC1, EC2, and899

EC3 are shown in Figure ??, Figure ??, and Figure ??, respectively. To high-900

light the simulation results, a quantitative analysis was conducted to assess901

the controller's impact on structural fatigue. Speci�cally, the fatigue Dam-902

age Equivalent Load (DEL) is used to characterize the bending moments.903

The DEL represents the equivalent load variation corresponding to the same904

damage level produced by a single load cycle, with the equivalent number of905

load cycles determined using the rain�ow counting method. For the tower, a906

Wöhler exponent of 5 is applied [? ].907
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To compare the tower base side-to-side and fore-aft moments under dif-908

ferent ECs, the normalized DEL for each variable is calculated as:909

NormalizedDEL =
DEL
DELb

, (27)

where DELb is the DEL obtained using the Baseline controller for the respec-910

tive variable.911

The normalized DELs for the moments shown in Figures ??, ??, and ??912

are presented in Figure ??.913
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Figure 19: Bending moments under EC1 for the DRL and Baseline controllers: (a) Tower
base side-to-side moment, (b) Tower base fore-aft moment.
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Figure 20: Bending moments under EC2 for the DRL and Baseline controllers: (a) Tower
base side-to-side moment, (b) Tower base fore-aft moment.
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Figure 21: Bending moments under EC3 for the DRL and Baseline controllers: (a) Tower
base side-to-side moment, (b) Tower base fore-aft moment.
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Figure 22: Normalized DELs for EC1, EC2 and EC3: (a) Tower base side-to-side moment,
(b) Tower base fore-aft moment.

4.3.2. Discussion914

Generator speed tracking: The generator speed response, illustrated915

in Figures ??(a), ??(a), and ??(a), shows that the DRL controller maintains916

a narrower interval around the rated speed compared to Baseline GSPI con-917

troller across all ECs. In particular, under EC2 conditions, where the mean918

wind speed is 20 m/s, the DRL controller closely tracks the rated speed,919

achieving a much lower RMSE of 1.73 rad/s compared to 8.55 rad/s for the920

Baseline GSPI controller. This performance suggests that the DRL controller921

adapts well to wind speeds close to the wind conditions seen during training.922
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In EC3, which features more extreme wind conditions (mean wind speed923

of 30 m/s), the DRL controller maintains stability but shows a slight over-924

shoot, with the generator speed consistently exceeding the rated value. This925

indicates that while the DRL controller can handle varying conditions, its926

ability to generalize under more extreme wind conditions is somewhat lim-927

ited. This may be due to the relatively mild wind conditions encountered928

during training, as the maximum wind speed experienced by the DRL agent929

was 25.32 m/s.930

Platform pitch angle and rate: The platform pitch angle and rate931

responses given in Figures ?? ((b), (c)), ?? ((b), (c)), and ?? ((b), (c)), indi-932

cate that the DRL controller reduces platform pitch angle and rate slightly933

more e�ectively than the Baseline GSPI controller. While the improvement is934

less pronounced than in generator speed tracking, the DRL controller demon-935

strates slightly better platform stability. In EC2, the DRL controller achieves936

an RMSE of 0.3050 deg/s for the platform pitch rate, compared to 0.3481937

deg/s for the Baseline controller. This reduction in platform motion con-938

tributes to the structural integrity of the �oating wind turbine, which is939

crucial for its long-term durability in o�shore environments.940

Although the reduction in platform pitch motion is not as signi�cant as941

the improvements seen in the generator speed tracking, the DRL controller942

is still able to outperform the Baseline controller in mitigating platform dy-943

namics.944

Blade pitch angle behavior: As seen during the training phase, the945

DRL controller exhibits more dynamic adjustments in blade pitch angle, as946

illustrated Figures ??(d), ??(d), and ??(d) for the blade pitch angle control.947

The DRL controller's strategy involves more frequent and larger blade pitch948

adjustments to counter environmental disturbances, which helps maintain949

generator speed and platform stability. However, this more aggressive control950

approach may lead to increased mechanical stress on the blade actuators and951

potentially higher maintenance costs over time.952

Tower base moments: Across all environmental conditions (EC1, EC2,953

and EC3), the DRL controller's normalized DELs for the tower base side-954

to-side moments remain close to 1 (Figure ??(a)), indicating its ability to955

maintain comparable fatigue loads to the baseline controller. For instance,956

under EC1, the normalized DEL is 1.004, re�ecting only a +0.4% increase957

compared to the baseline. Similarly, under EC2 and EC3, the normalized958

DELs are 1.021 (+2.1%) and 1.065 (+6.5%), respectively. This slight in-959

crease in DEL, particularly in more severe environmental conditions (EC3),960
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suggests that the DRL controller introduces additional minor structural fa-961

tigue, potentially due to its more aggressive control actions aimed at opti-962

mizing system performance.963

In contrast, the fore-aft moments reveal a more pronounced increase in964

normalized DELs under all ECs, particularly in EC3 (Figure ??(b)). For in-965

stance, under EC1, the normalized DEL reaches 1.193, representing a +19.3%966

increase compared to the baseline. This increase becomes more pronounced967

as platform pitching dynamics intensify.968

Generalization across ECs: The DRL controller demonstrates strong969

performance in EC2, which has wind conditions similar to those used in970

training. In EC1, which has a lower wind speed mean (14 m/s), the DRL971

controller also generalizes well, though a minor deviation below the rated972

speed is observed. However, the extreme conditions of EC3 (30 m/s mean973

wind speed) pose a greater challenge to the DRL controller's generalization974

capabilities, as evidenced by the generator speed overshoot and increased975

blade pitch variation. Moreover, Figure ?? and Table ?? provide a quantita-976

tive comparison of the DRL and GSPI controllers. Across all ECs, the DRL977

controller exhibits lower RMSE values for both generator speed and platform978

pitch rate, demonstrating superior control accuracy. The statistical analy-979

sis further supports this, showing reduced standard deviations (STDs) for980

generator speed and platform pitch, which are more signi�cant under EC2981

(+27%) and EC3 (+54%).The substantial rise in the fore-aft DELs could982

stem from the controller's strategy to stabilize the platform while achieving983

generator speed tracking. These objectives may lead to higher loads in the984

fore-aft direction, where p rate with the DRL controller across EC1, EC2,985

and EC3. However, for blade pitch angle, the DRL controller shows higher986

STDs across all ECs, indicating more aggressive control inputs. The normal-987

ized DELs indicate that as conditions become more severe (EC3), the DRL988

controller tends to exert greater demands on the structure, especially in the989

fore-aft direction. This trend highlights a potential trade-o�: while the DRL990

controller improves power regulation and system stability, it also introduces991

higher fatigue loads in some structural components.992

Overall, the DRL controller shows good adaptability and robustness, out-993

performing the Baseline GSPI controller across a wide range of conditions994

typical of Region III. However, under more extreme conditions such as EC3,995

there is potential for a further re�nement, particularly in terms of stabilizing996

generator speed and reducing structural fatigue. Strategies such as including997

a more explicit penalty for structural fatigue in the reward function or op-998
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timizing the control policy to balance performance and load reduction may999

mitigate these increases in DEL in future works.1000

5. Conclusion1001

This paper presented a fully data-driven, model-free Deep Reinforcement1002

Learning (DRL) control strategy for regulating the collective blade pitch of a1003

5 MW semi-submersible Floating O�shore Wind Turbine (FOWT) in Region1004

III. Using the Trust Region Policy Optimization (TRPO) algorithm within an1005

actor-critic framework, the proposed controller e�ectively maintained rated1006

generator speed and reduced platform pitch motion under varying o�shore1007

conditions. The controller was trained in a high-�delity OpenFAST sim-1008

ulation environment and experimentally validated in a wave basin using a1009

Software-In-the-Loop (SIL) approach, providing robust evidence of its per-1010

formance bene�ts.1011

Experimental results demonstrated that the DRL controller outperforms1012

the conventional Gain-Scheduling Proportional-Integral (GSPI) controller,1013

particularly in generator speed regulation and platform stability. However,1014

under extreme wind conditions, the controller exhibited performance degra-1015

dation, characterized by generator speed overshoots and aggressive blade1016

pitch variations, which could impact structural integrity over time.1017

This study highlights the feasibility and potential of DRL-based con-1018

trol strategies for FOWTs, o�ering improved adaptability and disturbance1019

rejection without relying on explicit dynamic models. Future work will fo-1020

cus on enhancing the controller's generalization capabilities under extreme1021

conditions by re�ning the reward function�especially to better manage the1022

trade-o� between control performance and structural fatigue�through auto-1023

mated tuning strategies such as Bayesian optimization, and by investigating1024

advanced neural network architectures.1025

In addition to advancing model-free DRL-based pitch control, future re-1026

search will explore hybrid control architectures that combine data-driven1027

learning with model-based techniques to improve robustness and ensure sta-1028

bility. In particular, integrating DRL with nonlinear Sliding Mode Control1029

(SMC) o�ers the potential to combine adaptability to unmodeled dynamics1030

with formal stability guarantees. This line of work aims to develop hybrid1031

control frameworks capable of safely and e�ectively managing the complex1032

dynamics of �oating wind turbines, especially under extreme o�shore oper-1033

ating conditions.1034
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