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Abstract— This paper introduces a novel adaptive feedback
control approach for disturbed chains of integrators with
smooth disturbances with unknown upper bound. The proposed
approach combines adaptive neural network with higher-order
sliding mode control to achieve the convergence of system states
towards a vicinity of the origin. Notably, this approach does
not rely on any prior information about the disturbance. The
adaptive neural network term compensates the disturbance with
an error, while the higher-order sliding mode control term
effectively addresses this error and ensures the stabilization of
the system state. Compared with existing neural network-based
sliding mode control approaches, our proposed method does not
require reducing the system order and utilizes only two terms
for control. These characteristics contribute to its simplicity and
lead to improved closed-loop performance. The effectiveness of
the adaptive feedback control is specifically assessed for semi-
submersible floating offshore wind turbines operating above
rated speed. Simulation results demonstrate superior perfor-
mance in rotor speed regulation and platform pitch reduction
compared to the baseline gain-scheduling proportional integral
controller.

I. INTRODUCTION
Sliding Mode control has emerged as an effective tech-

nique for handling systems with matched disturbances [1].
Indeed, it has proven its high efficiency due to its insensitivity
to the disturbances and its ability to guarantee the finite-time
convergence. The first-order sliding mode control requires
that the sliding variable has a relative degree equal to one.
To address relative degree equal to r, Higher Order Sliding
Mode Controllers (HOSMCs) have been introduced [2],
[3], [4], [5], [6]. However, implementing HOSMCs requires
knowledge of the upper bound of the rth derivatives, which
is often unknown or subject to variation in practical systems.

To tackle this challenge, two families of approaches can
be employed. The first approach involves utilizing adaptive
schemes that dynamically adjust the control gain of the
HOSMC in order to be as small as possible whereas sufficient
to counteract the disturbances and ensures the stabilisation
of the system state [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19].
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Belfort, France flavie.didier@utbm.fr,
salah.laghrouche@utbm.fr

2The author is with Mechanical and Industrial Engineering department,
College of Engineering, Sultan Qaboos University (SQU), Muscat, Oman
h.obeid@squ.edu.om

3The author is with Laboratoire des Signaux et Systèmes,
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The second approach entails integrating sliding mode
control with other techniques capable of approximating the
disturbance, such as neural networks [20] or fuzzy logic
systems [21]. In this context, the Radial Basis Function
Neural Networks (RBFNN) algorithm has demonstrated ex-
ceptional capability in approximating nonlinear functions,
making it a compelling choice to address this problem [22].
Indeed, RBFNN has been effectively combined with various
nonlinear control techniques, including backstepping [23],
Model Predictive Control (MPC) [24], and sliding mode
control [25].

In the case of sliding mode control, the approach consists
in utilizing the RBFNN for disturbance estimation, while the
sliding mode control handles estimation errors and ensures
the convergence of the system state to a vicinity of the
origin [26]. In [27], a combination of the RBFNN with the
Super-twisting sliding mode control has been proposed. This
approach is suitable for first-order disturbed systems but may
not be generalized for disturbed chains of integrators of order
r.

To address this limitation, researchers have proposed vari-
ous approaches in the literature, which can be classified into
two main categories: (a)

1) Creating a sliding surface [26], [28], [29].
2) Utilizing the concept of integral sliding mode control

[30].
Approach (a) suggests creating an auxiliary sliding surface

to reduce the system’s order to one on the sliding surface.
Subsequently, first-order sliding mode control is applied in
conjunction with the RBFNN to ensure the convergence of
the system state towards the origin vicinity. However, the
drawback of this approach is that it does not allow for the
utilization of a sliding variable with arbitrary relative degree.

To overcome this drawback, approach (b) proposes em-
ploying the concept of integral sliding mode control. Inte-
gral sliding mode control combines first-order sliding mode
control with a nominal control to robustify the pre-designed
nominal control while maintaining its dimension. The use of
the RBFNN is essential to compensate the disturbance. By
combining the RBFNN and integral sliding mode control,
the convergence of the system state towards a vicinity of
the origin can be ensured. However, it is worth noting that
this approach introduces three control terms, which can pose
challenges during real-time implementation.

This paper presents a novel approach to address the
mentioned limitations by utilizing a family of homogeneous
HOSMCs in combination with RBFNN. The proposed ap-
proach offers a solution for disturbed chains of integrators



of order r while ensuring system state convergence to a
vicinity of the origin. Remarkably, this is achieved using
only two control terms, without reducing the system’s order.
As a result, the proposed approach offers simplicity and ease
of implementation in real-world applications.

This paper is organized as follows. In Section II, the
problem formulation with some preliminary results is given.
In Section III, the proposed approach is presented. In Section
IV, the proposed approach is applied to FOWT and its
performance are illustrated through OpenFAST simulation.
Finally, some conclusions are drawn in section V.

II. PROBLEM FORMULATION

Consider the case of disturbed chain of integrators of order
r given by {

σ̇i = σi+1, i = 1, · · · , r − 1,

σ̇r = u(t) + ϕ(σ),
(1)

where σ = [σ1 σ2 · · · σr]⊤ is the system state, u(t) ∈ R
is the control input and ϕ(σ) ∈ R is an unknown smooth
function.

The control objective is to design an adaptive feedback
control law that can drive σ asymptotically to zero with non-
overestimated control and without requiring any information
on the disturbance.

A. Preliminairis

The proposed adaptive control relies on the following
two algorithms: the discontinuous higher order sliding mode
control algorithm and the RBFNN algorithm. These two
algorithms will be summarized in this subsection. For sim-
plicity, the notation ⌊x⌉γ is used to represent |x|γ sign(x),
e.g. ⌊x⌉ 1

2 = |x| 12 sign(x).
Proposition 1: [31] Consider system (1). Let us suppose

that there exists a feedback law u = u0(σ) that ensures
the convergence of σ to the origin in a finite-time and the
following conditions hold true:

(i) there exists a continuous positive definite function
V0(σ) such that there exists c > 0 and α ∈ (0, 1)
for which the time derivative of V (σ) satisfies

V̇0(σ) ≤ −cV α
0 (σ); (2)

(ii) the function σ 7→ u0(σ)
∂V0(σ)
∂σr

is non positive over
Rr and, for every non zero σ ∈ Rr verifying
u0(σ) = 0, one has ∂V0(σ)

∂σr
= 0. As a consequence

function σ 7→ sgn(u0(σ))
∂V0(σ)
∂σr

is well-defined
over Rr \ {0} and non positive.

Remark 1: Among different controllers that can fulfill
Proposition 1, Hong’s controller [32] can be used. This
controller is defined as follows:
Let κ < 0 and l1, · · · , lr positive real numbers. Define
u0 = vr for i = 0, ..., r − 1:

v0 = 0, vi+1 = −li+1⌊⌊σi+1⌉βi − ⌊vi⌉βi⌉(αi+1/βi), (3)

where pi = 1+(i−1)κ, β0 = p2, (βi+1)pi+1 = β0+1 >
0 and αi =

pi+1

pi
.

Now, let ψr(σ1, · · · , σr) = ⌊σr⌉βr−1 − ⌊vr−1⌉βr−1 . Then
according to [31], if κ = −1/r, one can obtain the following
homogeneous HOSMC

u0 = −lr sgn
(
ψr(σ1, · · · , σr)

)
. (4)

Here are HOSMC examples for r = 1, . . . , 4:
1) u0 = −l1sgn(σ1).
2) u0 = −l2sgn(⌊σ2⌉2 + l21⌊σ1⌉).
3) u0 = −l3sgn

(
⌊σ3⌉4 + l42

⌊
⌊σ2⌉

3
2 + l

3
2
1 ⌊σ1.⌉

⌉ 4
3
)

4) u0 = −l4sgn
(
⌊σ4⌉6 + l63

⌊
⌊σ3⌉

5
2 + l

5
2
2

⌊
⌊σ2⌉

4
3 +

l
4
3
1 ⌊σ1⌉

⌉ 15
16

⌉ 12
15
)

.
Proposition 2: [33], [34] Consider a continuous function

f(σ) over a compact set Ωσ ⊂ Rr. Consider the following
RBFNN given by

fnn(σ) = w⊤h(σ), (5)

where σ ∈ Ωσ is the input, w = [w1 w2 · · · wm]⊤ ∈ Rm

is the weight vector, m is the node number, and h(σ) =
[h1(σ) h2(σ) · · · hm(σ)]⊤ is the basis function vector,
where hi(σ) satisfies

hi(σ) =
1√
2πri

exp(− (σ − ci)
⊤(σ − ci)

2r2i
), i = 1, 2, · · · ,m

(6)
with ci is the center of the receptive field, and ri is the width
of the Gaussian function.
Then, the RBFNN given in (5) can approximate the contin-
uous function f(σ) over the compact set Ωσ ⊂ Rr to any
arbitrary accuracy as

f(σ) = w∗⊤h(σ) + ε(σ), ∀σ ∈ Ωz, (7)

where w∗ is the ideal constant weights, and ε(σ) is the
approximation error.

Assumption 1: [33] There exist ideal constant weights w∗

such that |ε(σ)| ≤ ε∗ with unknown constant ε∗ > 0 for all
σ ∈ Ωσ .

III. ADAPTIVE NEURAL-NETWORKS-BASED HIGHER
ORDER SLIDING MODE CONTROL DESIGN

To implement the proposed algorithm, the control input is
chosen as follows

u = u0 − uNN , (8)

where u0 is the HOSMC introduced in [31] and uNN is the
adaptive RBFNN given by

uNN = w⊤h(σ), (9)

with
dw

dt
≜ η

∂V

∂σr
h(σ). (10)

Here, η is an arbitrary positive constant.
Theorem 1: Consider system (1) with smooth nonlinear

function ϕ(σ). Let the control input u is chosen as (8)-(9).
Then, there exists a small positive constant lr > ε∗ that



ensures the asymptotic convergence of the system state σ to
the origin.

Proof: Substituting (8) and (9) into system (1) yields

{
σ̇i = σi+1, i = 1, · · · , r − 1,

σ̇r = −lr sign
(
ψr(σ)

)
− w⊤h(σ) + ϕ(σ).

(11)

Lemma 1: [35] The RBFNN w⊤h(σ) can be applied to
approximate ϕ(σ), where σ ∈ Ωσ ⊂ R. In this case, ϕ(σ)
can be expressed as

ϕ(σ, t) = w∗⊤h(σ, t) + ε(σ), (12)

where w∗ denotes the ideal constant weights, and |ε(σ)| ≤ ε∗

is the approximation error with constant ε∗ > 0.
Define ∆w = w − w∗, then system (11) can be rewritten

as {
σ̇i = σi+1, i = 1, · · · , r − 1,

σ̇r = −lr sign
(
ψr(σ)

)
−∆w⊤h(σ) + ε(σ).

(13)

Define the Lyapunov function as

V = V0 +
1

2η
||∆w||2. (14)

The time derivative of V along the trajectory of (13) is

V̇ = V̇0 +
1

η
∆w⊤ d∆w

dt
. (15)

this yields

V̇ =
∂V

∂σ1
σ2 + ...+

∂V

∂σr

(
−lr sgn(ψr)−∆w⊤h(σ) + ε(σ)

)
+
1

η
∆w⊤ d∆w

dt
≤ −cV α

0 − | ∂V
∂σr

|(lr − ε∗)

+∆w⊤
(1
η

d∆w

dt
− ∂V

∂σr
h(σ)

)
. (16)

Substituting (10) into (16), and suppose that there exists a
positive constant lr > ε∗, then one can obtain the following
inequality

V̇ ≤ −cV α
0 , (17)

which ensures the asymptotic convergence of the state vari-
ables σ to zero.

Remark 2: It is important to highlight that in this paper,
the RBFNN is specifically utilized for disturbance estima-
tion. Nevertheless, it is worth noting that the theoretical
framework presented in this study can be extended to accom-
modate alternative algorithms, such as the Hermite neural
network or other viable options.

Remark 3: In real-world applications, it is possible for
the initial state variables to be located outside the compect
set Ωσ . In such cases, one can employ a barrier function-
based adaptive sliding mode control approach to drive the
states towards a neighborhood of zero [31]. Once the states
approach this vicinity, the algorithm seamlessly transitions
to the proposed adaptive neural network-based higher-order
sliding mode control strategy.

IV. APPLICATION TO FLOATING OFFSHORE WIND
TURBINE

In this section, the proposed adaptive control method is
applied to regulate the operation of a FOWT above its
rated speed. This approach is particularly well-suited to
FOWT systems due to their high-order nonlinear nature,
uncertainties, and susceptibility to significant wind and wave
disturbances. The FOWT system studied in this paper is
the NREL OC4-DeepCwind 5 MW semi-submersible FOWT
[36]. The nonlinear Control-Oriented Model (COM) devel-
oped by Homer in [37] specifically for this FOWT serves as
the foundation for designing the proposed adaptive controller
law.

A. FOWT Modeling

FOWT models comprise three components: the mechani-
cal structure model, the wind turbine model, and the drive-
train model. In this paper, the semi-submersible FOWT under
consideration, consisting of the floating platform and the
wind turbine, is treated as a single rigid body. The mechan-
ical structure is described using Newton-Euler’s equation of
motion, while the interaction between the wind and the wind
turbine is represented by a single thrust force FA:

FA =
1

2
ρaπR

2
rCt(λ, β) ∥vn∥2 vn (18)

where || · ∥2 is the Euclidean norm of a vector, ρa is the air
density, Rr is the effective rotor radius, vn is the equivalent
velocity vector, Ct is the thrust coefficient, a highly nonlinear
function in terms of the tip speed ratio λ and the blade pitch
angle β.

For the drive-train dynamic model, a one-mass rigid shaft
model is adopted in (19) depicting the relationship between
rotor speed ωr, generator torque Tg , gearbox ratio ηg , low-
speed shaft equivalent inertia Jl, and aerodynamic power
PA:

ω̇r =
1

Jl
(
PA

ωr
− ngTg), (19)

PA =
1

2
ρaπR

2
rCp(λ, β) ∥vn∥32 (20)

where, the aerodynamic power is influenced by the nonlinear
power coefficient Cp, which varies with λ and β.

The states vector given in (21) comprises the position
vector xm = [xm, ym, zm] and the orientation vector θ =
[θx, θy, θz], along with their respective time derivatives, the
rotor azimuth angle θr, and the rotor speed ωr.

x = [xm, θ, θr, ẋm, θ̇, ωr]
⊤ (21)

Considering the generator torque as fixed, the control input
u corresponds to the blade pitch angle β:

u = β (22)

Based on (18)-(20) and using the nonlinear COM proposed
in [37], the model of the FOWT system can be represented



as follows:ẍmθ̈
ω̇r

 =

 (mgI3 +ma)
−1

(FA)
R(θ)I−1

θ R(θ)⊤ (TA + TB + TC + TD)
1
Jl

(
PA

ωr
− ngTg

)


= f(x, u, v, w)

(23)

where f = (x, u, v, w) describes the nonlinear function
vector governing the equations of motion, with v and w, the
disturbances caused by the wind and wave, respectively. mg

denotes the total mass of the FOWT, while ma represents
the hydrodynamic added mass vector. TA, TB , TC , TD are
the aerodynamic torque vector, the buoyancy torque vector,
the mooring line torque vector, the hydrodynamic drag and
inertial torque vector, respectively. Iθ is the considered inertia
tensor of the FOWT and R(θ) is the simplified rotation
matrix.

The coupling between the state variables and the control
input in (23) poses a significant challenge for designing the
adaptive nonlinear controller. Overcoming this mathematical
complexity requires reformulating and adapting the system
equations. Specifically, the nonlinear coefficients Ct(λ, β)
and Cp(λ, β), typically obtained from lookup tables, pose
difficulty in isolating the command β. To address this limita-
tion, both coefficients are expressed as polynomial functions
of the form:

Cx(λ, β) =

(
4∑

i=0

cCx
0i λ

i

)
β +

5∑
i=0

cCx
1i λ

i +∆Cx (24)

where Cx corresponds to either Ct or Cp, and ∆Cx rep-
resents the fitting error. The coefficients cCx

0i and cCx
1i are

determined through polynomial regression using MATLAB’s
curve fitting toolbox. Consequently, the polynomial expres-
sions for Ct and Cp are rewritten as:

Ct(λ, β) = gctβ + fct (25)

Cp(λ, β) = gcpβ + fcp (26)

where gct, gcp, fct, and fcp are polynomial functions of λ.
Substituting (25) and (26) into (18) and (20), respectively,

and considering external disturbances, parametric uncertain-
ties, and unmodeled dynamics, the first time derivative of θ̇y
and ωr can be expressed as:

ω̇y = θÿ = gyβ + hy = (gyn +∆gy)β + hy = gynβ +Hy,

ω̇r = θr̈ = grβ + hr = (grn +∆gr)β + hr = grnβ +Hr

(27)
where ωy represents the platform pitch rate, gy and gr are
nonlinear terms of ωy and ωr, respectively, gyn and grn
are the rated values of gy and gr, respectively, ∆gy and
∆gr are time-varying parametric uncertainties for gy and
gr, respectively, hy and hr are the lumped disturbances,
and Hy and Hr represent lumped uncertainties and external
disturbances. They are expressed as follows:{

gy = dθgct ∥vn∥22 (θ2x + θ2y + θ2z + 1)

hy = dθfct ∥vn∥22 (θ2x + θ2y + θ2z + 1) +Dθy

(28)

{
gr =

ρaπR
2
r

2Jlωr
gcp ∥vn∥32

hr =
ρaπR

2
r

2Jlωr
fcp ∥vn∥32 −

ng

Jl
Tg

(29)

with the expression of Dθy and dθ given as in [38].
Assumption 2: Hy and its time derivative Ḣy are bounded,

satisfying |Hy| ≤ ρy1 and |Ḣy| ≤ ρy2, where ρy1 and ρy2
are two positive constants.

Assumption 3: Hr and its time derivative Ḣr are bounded,
satisfying |Hr| ≤ ρr1 and |Ḣr| ≤ ρr2, where ρr1 and ρr2
are two positive constants.

The blade actuator dynamics have been incorporated into
the nonlinear model of the FOWT by the following second-
order differential equation:

β̈ = ω2β∗ − 2ξω0β̇ − ω2
0β (30)

where ω0 and ξ are the natural pulsation and the damping
rate of the actuator, respectively, and β∗ is the blade pitch
angle produced by the actuator. Thus, the state vector and
the control input can be rewritten as follows:

x = [xm, θ, θr, ˙xm, θ̇, ωr, β]
⊤, u = β∗ (31)

Based on (27), (30), and (31), the model of the FOWT
system expressed in (23) is rewritten as:
ẍm
θ̈
ω̇r

β̈

 =


(mgI3 +ma)

−1
(FA)

R(θ)I−1
θ R(θ)⊤ (TA + TB + TC + TD)

1
Jl

(
PA

ωr
− ngTg

)
−2ξω0β̇ − ω2

0β

+


0
0
0
ω2
0

β∗

(32)

B. Control Design

Above the rated speed, the primary control objectives
involve regulating the rotor speed to its rated value ωrd =
12.1 rpm and ensuring stability in platform pitching motion.
This is expressed through the following tracking errors er
and ey:

er = ωr − ωrd (33)

ey = ωy − 0 = ωy (34)

Considering the refined dynamics of the platform pitch
rate ωy and the rotor speed ωr derived previously, the control
input β influences both dynamics. A practical approach to
address the under-actuated control issue—arising from the
shared control input β in both the platform pitch rate and
rotor speed dynamics—is to modify the reference rotor speed
from a fixed value ωrd to a linear function related to the
platform pitch rate: ω∗

rd = ωrd(1− kyωy), where ω∗
rd is the

adjusted reference rotor speed and ky is a positive constant
determined empirically.

Thus, the primary control objective for the FOWT in
Region III is to drive the composite tracking error e to zero:

e = ωr − ω∗
rd = ωr − ωrd(1− kyωy) = er + ksey (35)

where er = ωr − ωrd, ey = ωy − 0 and ks = kyωrd, a
positive scalar constant with units of rpm · s/deg.

The first time derivative of e can be expressed as:

ė = ėr + ksėy = ω̇r + ksω̇y (36)



Substituting (27) into (36), the first time derivative is
expressed as:

ė = (grnβ +Hr) + ks(gynβ +Hy) = gsnβ +Hs (37)

where gsn = grn + ksgyn and Hs = Hr + ksHy , with Hs

the lumped uncertainties and external disturbances.
Assumption 4: According to Assumption 2 and Assump-

tion 3, |Hs| ≤ ρs1 and ˙|Hs| ≤ ρs2, with ρs1 = ρr1 + ksρy1
and ρs2 = ρr2 + ksρy2.

The control objective is for e converge to the origin in
finite time in the presence of lumped disturbances.

Based on (32) and defining the sliding variable as σ1 = e,
the following third-order system is considered:
σ̇1 = σ2

σ̇2 = σ3

σ̇3 = gsnω
2
0β

∗ + gsnω
2
0(

−2ξ
ω0
β̇ − β) + Ḧs = gsnω

2
0β

∗ + ϕ
(38)

where ϕ represents the unknown disturbance.
The control law u(t) is designed according to (8) where

u0 is the HOSMC chosen for r = 3. The adaptive RBFNN
term uNN satisfies (9)-(10), with ∂V

∂σ3
given by:

∂V

∂σ3
= ⌊σ3⌉4 + l42

⌊
⌊σ2⌉

3
2 + l

3
2
1 ⌊σ1⌉

⌉ 4
3 . (39)

Here add expression V with Vo from Hong(2002) Then
partial derivative of Vo/sigma3

C. Simulation Results

The effectiveness of the proposed adaptive controller for
the presented third-order system (38), is validated through
simulation studies using the Matlab/Simulink interface. The
high-fidelity modeling software OpenFAST is employed with
the 5 MW semi-submersible NREL OC4-DeepCwind model.
The disturbances, comprising the wind and waves, are given
in Fig.1 , where the mean wind speed is 18 m/s with a
turbulence rate of 15%, and the wave height is close to 5.18
m with a peak period of 12 s.

Fig. 1. Operating conditions for simulation

The HOSMC gains are l1 = 1.5, l2 = 1.5 and l3 = 0.5.
The RBFNN structure comprise 5 neurons in its hidden layer
(m = 5). The parameters of the Gaussian function are c1 =
[−1 − 1 − 1]⊤, c2 = [−0.5 − 0.5 − 0.5]⊤, c3 =
[0 0 0]⊤, c4 = [0.5 0.5 0.5]⊤, c5 = [1 1 1]⊤, ri =
1 for i = 1, · · · , 5, with η = 0.01.

TABLE I
CONTROL PERFORMANCE: MEAN ERRORS AND STANDARD DEVIATION

Controllers Mean ωr STD ωr

[rpm] [rpm]
Baseline 12.2808 1.3930

RBFNN-HOSMC 11.9771 0.4340

Mean θy STD θy
[deg] [deg]

Baseline 1.9693 1.1694
RBFNN-HOSMC 1.9952 0.8875

Mean ωy STD ωy

[deg/s] [deg/s]
Baseline −6.32e− 04 0.4088

RBFNN-HOSMC 3.1236e− 05 0.3473

The results of the comparative analysis conducted against
the baseline controller [39] are depicted in fig.2, while the
mean errors and standard deviations of the control perfor-
mance are provided in Table I.

Fig. 2. Simulation Results: Proposed adaptive controller RBFNN-HOSMC
(blue) and baseline (red)

The simulation results demonstrate the effectiveness of the
proposed adaptive approach, RBFNN-HOSMC, in achieving
the control objectives. The controller successfully regulates
the rotor speed ωr to its rated value (12.1 rpm), while ensur-
ing stabilization of the platform pitch. Notably, the RBFNN-
HOSMC exhibits better tracking performances compared
to the baseline controller, as evidenced by the standard
deviation being reduced by a factor of more than three.
Additionally, the standard deviation of the platform pitch
angle θy , as well as the platform pitch rate ωy , are lower
than those of the baseline controller, further highlighting the
superiority of the proposed approach in term of achieving
control objectives.

V. CONCLUSIONS
In this paper, we have presented a new adaptive feedback

control approach for disturbed chains of integrators with
smooth disturbances. By combining adaptive neural networks
with higher-order sliding mode control, we have achieved
the convergence of system states to a vicinity of the origin
without requiring any prior knowledge of the disturbance
upper bound. The adaptive neural network term effectively
compensates for the disturbance with an error, while the
higher-order sliding mode control term handles this error and



ensures the stabilization of the system state. The simplicity
of implementation and the absence of the need to reduce
the system order make our proposed method well-suited for
practical applications.

ACKNOWLEDGMENT
This work has been supported by the ANR CREATIF

project, by the EIPHI Graduate School (contract ANR-17-
EURE-0002) and the Region Bourgogne Franche-Comté.
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continuous twisting algorithm,” International Journal of Control,
vol. 89, no. 9, pp. 1798–1806, 2016.

[13] H. Obeid, L. M. Fridman, S. Laghrouche, and M. Harmouche, “Barrier
function-based adaptive sliding mode control,” Automatica, vol. 93, pp.
540 – 544, 2018.

[14] H. Obeid, S. Laghrouche, L. Fridman, Y. Chitour, and M. Har-
mouche, “Barrier function-based variable gain super-twisting con-
troller,” IEEE Transactions on Automatic Control, vol. DOI:
10.1109/TAC.2020.2974390, 2020.

[15] H. Obeid, S. Laghrouche, and L. Fridman, “Dual layer barrier func-
tions based adaptive higher order sliding mode control,” International
Journal of Robust and Nonlinear Control, vol. 31, no. 9, pp. 3795–
3808, 2021.

[16] F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak, “New method-
ologies for adaptive sliding mode control,” International Journal of
Control, vol. 83, pp. 1907 – 1919, 2010.

[17] ——, “Sliding mode control with gain adaptation-application to an
electropneumatic actuator,” Control Engineering Practice, vol. 21,
no. 5, pp. 679 – 688, 2013.

[18] F. Plestan, X. Yan, M. Taleb, and A. Estrada, Adaptive solutions for
robust control of electropneumatic actuators. IET, 2016, pp. 387–406.

[19] Y. Shtessel, M. Taleb, and F. Plestan, “A novel adaptive-gain super-
twisting sliding mode controller: methodology and application,” Auto-
matica, vol. 48, no. 5, pp. 759–769, 2012.

[20] Y.-C. Liu, S. Laghrouche, A. N’Diaye, and M. Cirrincione, “Her-
mite neural network-based second-order sliding-mode control of syn-
chronous reluctance motor drive systems,” Journal of the Franklin
Institute, vol. 358, no. 1, pp. 400–427, 2021.

[21] J. Zhang, D. Chen, G. Shen, Z. Sun, and Y. Xia, “Disturbance observer
based adaptive fuzzy sliding mode control: A dynamic sliding surface
approach,” Automatica, vol. 129, p. 109606, 2021.

[22] T. Fukuda and T. Shibata, “Theory and applications of neural networks
for industrial control systems,” IEEE Transactions on industrial elec-
tronics, vol. 39, no. 6, pp. 472–489, 1992.

[23] Y. Li, S. Qiang, X. Zhuang, and O. Kaynak, “Robust and adaptive
backstepping control for nonlinear systems using rbf neural networks,”
IEEE Transactions on Neural Networks, vol. 15, no. 3, pp. 693–701,
2004.

[24] C. Manzie, M. Palaniswami, D. Ralph, H. Watson, and X. Yi, “Model
predictive control of a fuel injection system with a radial basis function
network observer,” J. Dyn. Sys., Meas., Control, vol. 124, no. 4, pp.
648–658, 2002.

[25] X. Chen, W. Shen, M. Dai, Z. Cao, J. Jin, and A. Kapoor, “Robust
adaptive sliding-mode observer using rbf neural network for lithium-
ion battery state of charge estimation in electric vehicles,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 4, pp. 1936–1947,
2015.

[26] S.-J. Huang, K.-S. Huang, and K.-C. Chiou, “Development and
application of a novel radial basis function sliding mode controller,”
Mechatronics, vol. 13, no. 4, pp. 313–329, 2003.

[27] Z. Feng and J. Fei, “Super-twisting sliding mode control for micro
gyroscope based on rbf neural network,” IEEE Access, vol. 6, pp.
64 993–65 001, 2018.

[28] S. Mahjoub, F. Mnif, N. Derbel, and M. Hamerlain, “Radial-basis-
functions neural network sliding mode control for underactuated
mechanical systems,” International journal of dynamics and control,
vol. 2, pp. 533–541, 2014.

[29] F.-J. Lin, J.-C. Hwang, P.-H. Chou, and Y.-C. Hung, “Fpga-based
intelligent-complementary sliding-mode control for pmlsm servo-drive
system,” IEEE transactions on power electronics, vol. 25, no. 10, pp.
2573–2587, 2010.

[30] W. Tang and Y. Cai, “A high order sliding mode control scheme
based on adaptive radial basis function neural network,” in 2011 50th
IEEE Conference on Decision and Control and European Control
Conference. IEEE, 2011, pp. 6343–6348.

[31] S. Laghrouche, M. Harmouche, Y. Chitour, H. Obeid, and L. M.
Fridman, “Barrier function-based adaptive higher order sliding mode
controllers,” Automatica, vol. 123, p. 109355, 2021.

[32] Y. Hong, “Finite-time stabilization and stabilizability of a class of
controllable systems,” Systems & control letters, vol. 46, no. 4, pp.
231–236, 2002.

[33] C. Wang, D. J. Hill, S. S. Ge, and G. Chen, “An iss-modular approach
for adaptive neural control of pure-feedback systems,” Automatica,
vol. 42, no. 5, pp. 723–731, 2006.

[34] T.-S. Li, D. Wang, G. Feng, and S.-C. Tong, “A dsc approach
to robust adaptive nn tracking control for strict-feedback nonlinear
systems,” IEEE transactions on systems, man, and cybernetics, part b
(cybernetics), vol. 40, no. 3, pp. 915–927, 2009.

[35] S. S. Ge and C. Wang, “Adaptive nn control of uncertain nonlinear
pure-feedback systems,” Automatica, vol. 38, no. 4, pp. 671–682,
2002.

[36] A. Robertson, J. M. Jonkman, M. Masciola, A. G. H. Song,
A. Coulling, and C. Luan, “Definition of the semisubmersible floating
system for phase ii of oc4,” National Renewable Energy Laboratory,
Golden, Colorado, USA, Tech. Rep. NREL/TP-5000-60601, 2014.

[37] J. R. Homer and R. Nagamune, “Physics-based 3-d control-oriented
modeling of floating wind turbines,” IEEE Trans. Control Syst. Tech-
nol, vol. 26, no. 1, pp. 14–26, 2018.

[38] Y.-C. Liu, H. Basbas, and S. Laghrouche, “Robust blade pitch control
of semi-submersible floating offshore wind turbines based on the mod-
ified super-twisting sliding-mode algorithm,” Submitted to J. Frankl.
Inst, 2024.

[39] J. Jonkman, “Dynamics modeling and loads analysis of an off-
shore floating wind turbine,” National Renewable Energy Laboratory,
Golden, Colorado, USA, Tech. Rep., 2007.


