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Abstract. Synthetic and natural fibers with diameters in the range of a few
tens of micrometers can be routinely fabricated. Because of the intricate micro-
structure of the fibers, however, their elastic properties remain poorly understood.
In this study, we employ micro-Brillouin light spectroscopy (micro-BLS) to explore
direction-dependent acoustic phonon propagation in amorphous E-glass, synthetic
silk, polyamide 11 (PA11), and flax fibers. The technique is non-invasive and
non-destructive, and is an alternative to static mechanical tests. The observable
frequency shifts of laser light resulting from Brillouin scattering from hypersonic
acoustic phonons of the fiber are in a few 10-GHz range. We determine the full
elastic tensors and the optical anisotropy, assuming only transversely isotropic
symmetry at the optical wavelength scale. The obtained elastic constants are
compared with values reported in the literature for similar materials.
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1. Introduction

Natural fibers, including plant fibers, enter the fab-
rication of sustainable composites. Recent research
has illuminated their intricate elastic properties. By
mapping longitudinal moduli, scientists have revealed
spatial heterogeneity and anisotropic behavior. These
findings have broad implications across various fields
such as materials engineering and design [1], textile
industry, biomechanics and medical devices, forensic
science, non destructive testing (NDT) and environ-
mental monitoring. The elastic properties of fibers
are typically investigated through destructive and inva-
sive analysis methods. Recent studies using Brillouin
Light Scattering (BLS) micro-spectroscopy, however,
have yielded promising results. This non-invasive, all-
optical technique maps the complex longitudinal mod-
ulus of fibers, revealing significant spatial heterogeneity
and anisotropic mechanical properties. Notably, inves-
tigations on viscose fibers and bleached softwood pulp
[1] demonstrated a regular pattern of modulus vari-
ation normal to the fiber axis. A similar study [2]
focused on a micro-structured composite system com-
prising wool fibers (approximately 15 µm in diameter)
embedded in a 30 µm thick epoxy film affixed to a re-
flective silicon substrate. The elastic constants of cellu-
losic viscose fibers were determined [3] combining two
different scattering processes and directions with only
one scattering geometry. Wang et al. [4] estimated the
full elastic tensor and the ordinary and extraordinary
refraction indices of spider silk by a combination of
measurements in different scattering geometries. Re-
cently, Aluculesei et al. characterized Bombyx mori
silkworm silk fiber following a similar methodology [5].

There is hence a strong interest in obtaining
the elastic properties of other synthetic and natural
fibers. We specifically consider in this work E-
glass, polyamide 11, flax, and synthetic silk. E-
glass fibers were originally developed for electrical
insulation and are widely produced industrially for
applications in textile and composite materials. They
are produced as multifilament bundles, with filament
diameters ranging from 3 to 20 µm. Polyamide
11 (PA11), also known as Nylon 11, is a versatile
synthetic polymer derived from renewable resources,
primarily castor oil. Polymerized amides, linked by
peptide bonds, are thermoplastic materials known for
their high tensile strength, good creep resistance, and
outstanding resistance to abrasion, chemicals, and heat

[20]. PA11 fibers are used in automotive processing,
aerospace, healthcare, electronics, sports equipment,
and coatings due to their lightweight, durability,
chemical resistance, and bio-compatibility. Silk
exhibits exceptional mechanical properties, including
high tensile strength and significant extensibility,
positioning it among the toughest materials known
[21, 22, 23]. The excellent properties of flax fibers
made them very well recognized in a wide range of
applications. The primary use of this fiber is in the
production of textiles, such as clothing or linens, due
to its strength, durability, and comfort. Flax fibers
are also employed in the creation of ropes and high-
quality paper products, but also as a reinforcement
in composite materials for building and automotive
applications. Flax cultivation is environmentally
friendly, requiring low inputs of water, pesticides, and
fertilizers, making it a sustainable choice compared
to synthetic fibers [24, 25]. Further details about
harvesting, structure and composition of flax fibers are
given by Richely et al. [26] and Bourmaud et al. [27].

Despite their intricate microstructures, the com-
plete elastic properties of these fibers remain poorly
understood. Traditional stress-strain experiments only
measure the axial Young’s modulus. In this study,
micro-BLS is employed to explore direction-dependent
phonon propagation in E-glass, silk, PA11, and flax
fibers, determining their full elastic properties and
their optical birefringence, employing only measure-
ments in the backscattering configuration in two dif-
ferent incidence planes, either containing or orthogo-
nal to the fiber axis, plus an additional measurement
along the fiber axis. The value of the ordinary optical
index is hence assumed to be known independently and
its value is retrieved from the literature. Our findings
represent one of the first demonstrations of determina-
tion of anisotropic Young’s moduli, shear moduli, and
Poisson’s ratio for synthetic and natural fibers using
micro-BLS.

In the following, we first describe in Section 2 the
fibers we considered and methods we used. Micro-
Brillouin light scattering gives experimental access to
the frequencies of acoustic phonons that are matched
with the incident optical wavevector. From a set of
measurement data obtained in two different incidence
planes and along the fiber axis, we discuss how the
full elastic tensor can be retrieved from Brillouin
frequencies. Other elastic constants can then be
deduced from the elastic tensor. In Section 3 we discuss
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Fiber Mass density ρ (kgm−3) Poisson’s ratio ν Ordinary optical index no

E-glass 2570 (2550− 2600) [6, 7] 0.2− 0.3 [6] 1.56 [6]
PA11 1045 [8] (0.34− 0.5) [9, 10, 11] 1.52 [8]
Silk 1400 [12] (0.1− 0.5) [13, 11, 5] 1.5587 [14]
Flax 1500 [15] (0.2− 0.5) [16, 17, 18] 1.58 [19]

Table 1. Some material constants for the fiber samples considered in this work, as found in the literature.

fiber

paper frame
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c) d)

Figure 1. Scanning electron microscope images of single fibers
fixed onto a paper frame: a) E-glass with diameter 13.4 µm, b)
PA11 or polyamide with diameter 36.8 µm, c) synthetic silk with
diameter 23.8 µm, and d) flax with diameter 17.0 µm.

in sequence the results obtained for four types of fiber:
E-glass, PA11, silk, and flax. We finally conclude
in Section 4 on the values of the elastic constants
obtained and why they may differ from results in
the literature obtained from tensile or low-frequency
vibration measurements.

2. Materials and Methods

2.1. Fiber samples

We considered four types of fiber samples, covering
a wide range of fiber categories, as listed in
Table 1. E-glass fiber typifies inorganic fibers [6];
polyamide (PA11) is a synthetic organic fibers [8]; silk
exemplifies animal-derived fibers [12]; flax serves as
a representative of plant fibers [15]. The synthetic
silk fiber considered is a regenerated cellulose fiber
(Marzotto), thus classified as a polymeric fiber; a
single fiber is manually extracted from a bundle and
tested as such, without further processing. Flax fibers
were individually isolated from an unidirectional mat
(flaxtape, Ecotechnilin), whereas other fibers were
extracted from unidirectional fabrics. All fibers were

10 µm 10 µm

10 µm10 µm
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c) d)

Figure 2. Optical microscope images of single fibers embedded
in epoxy resin: a) E-glass, b) PA11, c) synthetic silk, and d) flax.

then carefully arranged within a paper frame, see
Figure 1. All samples were stored and measured under
ambient conditions (temperature 294 K, atmospheric
pressure and humidity range 60− 80%).

For axial BLS measurements, we further prepared
samples of the four fibers embedded in an epoxy
matrix, cut normally to the fiber axis, see Figure 2.
The fibers are placed in a paper frame immediately
after extraction from a bundle, while awaiting
embedding. Once all the fibers are positioned, a
Greenpoxy (SICOMIN) matrix is prepared and the
fibers are embedded within it. The system is then
left to cure for 48 hours at room temperature and
atmospheric pressure. The sample finally undergoes
a precise polishing protocol, ensuring that the fiber is
flat and parallel to the matrix surface. We assume that
this technological operation has a negligible effect on
the mechanical properties of the fibers, compared to
their free versions, but this potential effect could not
be precisely quantified.

E-glass fiber is amorphous and hence elastically
and optically isotropic; there are thus only two
independent elastic constants in this case. For all other
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fibers, the expected behaviour is transversely isotropic
symmetry with respect to the fiber axis, a sub-case of
orthotropy. This symmetry implies five independent
elastic constants, which we take to be c11, c12, c13,
c33 and c44 [28, 29, 30], and two independent optical
indices. Prior knowledge of at least one refractive index
is essential for BLS measurements in the backscattering
geometry. In the literature, the refractive index for E-
glass fiber is known and at λ = 532 nm, no = ne =
1.56 [6]. For the other fibers, which are all optically
anisotropic, we take the ordinary index from the
literature (see Table 1) and fit the extraordinary index
from micro-BLS measurements. The birefringence
∆n = ne − no is indeed rather small but varies
depending on the conditions of preparation of the
fibers. When converting from Brillouin frequency shifts
to elastic constants, the mass density is required and is
not provided by BLS. The values listed in Table 1 for
mass densities are thus used. Hence, in the absence
of more precise information regarding uncertainties
pertaining to index of refraction and mass density, we
consider the values given in Table 1 as ideal. As a
consequence, uncertainties on elastic constants given
in later sections are underestimated in comparison to
actual uncertainties. This limitation does not apply to
the Brillouin frequencies that are the main observables
in this work.

2.2. Micro-Brillouin light scattering

Brillouin spectroscopy has emerged as a cutting-
edge analytical technique in the field of biophotonics
research and applications. Operating at a microscopic
scale and within the GHz spectral range, it offers a
novel spatial and frequency perspective for assessing
material elasticity [2]. Thermally excited acoustic
phonons at room temperature carry information on
the mechanical properties of the materials within
whom they propagate. Variations of the dielectric
constant induced by spontaneous acoustic phonons
create a periodic grating of refractive index fluctuations
on which laser light can diffract. In the case of
a monochromatic incident light beam, the grating
periodicity is determined by the acoustic wavelength
and results in a frequency shift f of the backscattered
light in the GHz range. The elastic constants at
hypersonic frequencies are probed from the Brillouin
peak frequency shifts.

To evaluate the mechanical properties of the
fibers, we used a single longitudinal mode (green) laser
with the wavelength λ0 = 532 nm in air (Figure 3).
The incident light beam passes through a polarizing
beam splitter (PBS) and reflects on mirrors M1 and
M2, is expanded through the beam expander and
reflects on mirror M3. A λ/4 wave plate provides
circular polarised light. Through the 20× objective

lens with numerical aperture 0.42 the incident probe
light is focused on the sample, with an input power of
less than 4 mW, and creates a focal spot size of 2 µm.
Long integration times at low laser power are selected
so that thermal equilibrium can be reached; we checked
the stability over time of the Brillouin response but
the sample temperature was not specifically monitored.
Backscattered light is collected by the same objective
and detected by a six-pass tandem Fabry−Perot
interferometer (TFP2-HC, JRS Instruments). Bulk
phonons with wavevector q = ks−ki are probed, where
ki and ks are the wavevectors of incident and scattered
light, respectively. Because of the small diameter of the
fibers, that varies between 10 and 40 µm (Figure 1), a
CCD camera was used in combination with a LED light
source for positioning the laser spot onto the fiber.

As Figure 3 depicts, measurements were con-
ducted in the backscattering geometry either on a sin-
gle fiber embedded in epoxy (inset 1) or on a single fiber
fixed in a paper frame (insets 2 and 3). Data analysis
was performed using a homemade Matlab code. The
reference frame is attached to the laboratory and is
noted (x1, x2, x3). The fiber sample can be rotated in
space around two axes; as a result the material frame
(X,Y, Z) is different from the reference frame. The
fiber axis is always taken as material axis Z, and axes
X and Y are equivalent per axial symmetry of the fiber.
As a result of these definitions, in Figure 3 the refer-
ence frame aligns with (X,Y, Z) for inset 1, (Z,−Y,X)
for inset 2, and (Y,Z,X) for inset 3.

In the backscattering geometry, the Brillouin
frequency shift f is related to the phase velocity of
acoustic phonons v and to the refractive index n
through the phase-matching condition

f =
2nv

λ0
. (1)

Both the refractive index and the phase velocity
depend on the angle of incidence and on the orientation
of the sample. The interferometer selects a linear
light polarization noted H that is aligned with the
x2 axis of the reference frame. The polarization
of incident light decomposes along axes H and V,
with V aligned with the x1 axis and thus in the
incidence plane. For axial incidence (inset 1), both
H and V correspond to ordinary light polarization.
For incidence in the (XZ) plane (inset 2), H (V,
respectively) is ordinary (extraordinary, resp.) light
polarization. For incidence in the (XY ) plane (inset
3), H (V, resp.) is extraordinary (ordinary, resp.) light
polarization.

2.3. Fit of the elastic tensor and birefringence

The full elastic properties are identified by an
inverse method from experimental data. Parameter
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Figure 3. Micro-Brillouin light scattering experiment and sample positioning. The insets depict the scattering geometry for the
three incidence conditions considered. PBS: polarizing beam splitter; M1, M2, M3: mirrors.

estimation is performed employing a homemade code
written in the Julia programming language and using
the Levenberg-Marquardt algorithm to minimize the
distance between experimental and computed Brillouin
frequency shifts [31]. It is well-known that elastic
stiffness constants are coupled with sound velocities
through the Christoffel’s equation [32]. Assuming
transversely isotropic symmetry, the shape of the
elastic tensor is (see Appendix A) [33]

cαβ =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 (2)

with c66 = (c11 − c12)/2. Knowledge of the optical
relative dielectric tensor is also necessary for fitting
Brillouin frequencies and expresses as

ϵij =

n2o 0 0
0 n2o 0
0 0 n2e

 (3)

with no the ordinary index of refraction and ne the
extraordinary index of refraction. For PA11, silk and
flax fibers, 5 independent elastic constants and the
value ϵ33 = n2e of the optical dielectric tensor are
considered as variables, for a total of 6 independent
variables. Considering that the value ϵ11 = ϵ22 = n2o is
known beforehand, the birefringence ne−no is obtained
in the process. As we will illustrate in Section 3,

measurement of Brillouin frequency shifts for phonons
propagating in incidence planes (XZ) and (XY ) allows
us to estimate the full elastic tensor. The m = 6
independent variables are arranged in a vector p. The
number of experimental Brillouin peak frequencies fj is
M (j = 1, · · · ,M). The fitting error that is minimized
is

e(p) =

M∑
j=1

(fj − f(αj , ψj , ϕj ;p))
2/fj , (4)

where (ψj , ϕj) are the sampling angles, αj ∈ {QL,
QS, S} is the classification of the acoustic phonons
(quasi-longitudinal, quasi-shear, or pure shear), and
f(α,ψ, ϕ;p) is a function giving the theoretical
Brillouin frequencies (see Appendix B for explicit
formulas giving the phase velocity of each phonon as a
function of the angle of incidence). As per Eq. (1),
the Brillouin frequency shift is proportional to the
index of refraction and the phonon velocity; through
Christoffel’s equation v =

√
c/ρ, with c an effective

elastic tensor value. As a whole, the fitted material
parameters depend on the assumed value for no and ρ.
The fitting error has units of frequencies (GHz). The
Levenberg–Marquardt algorithm is used to obtain the
minimum of the error e, starting from a given initial
set of material constants. The standard deviation of
each fitted parameter is evaluated as

σi =

√
e(p0)

DV −1
p [i, i]

, i = 1, · · · ,m (5)
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where e(p0) is the remaining error at the minimum
p0, Vp is the Hessian matrix at the minimum, and
D = M − m + 1 stands for the number of degrees
of freedom. As a note, the standard deviations are
indicators for the quality of the fit, expressed in the
same physical units as the fitted material parameters.

The fitting model just described assumes that each
observed Brillouin peak can be attributed to a given
bulk phonon. Appendix C specifically discusses the
photoelastic couplings active for each phonon.

2.4. Conversion between elastic tensor and elastic
constants

In the case of the E-glass fiber, due to isotropy,
the elastic constant c11 is the only one that can be
measured in the backscattering configuration. c11 is
linked to the longitudinal phase velocity by the relation

vL =

√
c11
ρ
, (6)

with ρ the mass density. For such an isotropic material
the relation between c11 and Young’s modulus E is
given by

E =
c11(1 + ν)(1− 2ν)

(1− ν)
(7)

with Poisson’s ratio ν. For a complete characterization
of elastic constants, two independent elastic constants
are required (e.g., c11 and c44). Since shear phonons
are not observed, however, c44 is not accessible and
the value of Poisson’s ratio must be assumed for the
determination of E, or the converse.

For PA11, silk and flax fibers, the five independent
elastic constants c11, c12, c12, c33, and c44 are estimated
by the fit procedure described in the previous section.
Mechanical moduli and Poisson’s ratio can then be
derived from the elastic tensor as follows [3]. The
longitudinal Young’s modulus is

EL = Ez = c33 −
2c213

c11 + c12
. (8)

The transverse Young’s modulus is

ET = Ex = Ey =
(c11 − c12)(c11c33 + c12c33 − 2c213)

c11c33 − c213
.

(9)
The in-plane shear modulus is

Gxy =
c11 − c12

2
= c66. (10)

The bulk modulus is

K =
c33(c11 + c12)− 2c213
c11 + c12 − 4c13 + 2c33

(11)

and Poisson’s ratio for loading along the polar axis is

νLT = νzx =
c13

c11 + c12
. (12)

.

a)

b) c)

d) e)

Figure 4. E-glass fiber. Experimental BLS spectra are recorded
(a) along the Z axis (at incidence angle ϕ = 90◦), and at
incidence angle ϕ = 20◦ in (b) the (XZ) and (c) the (XY )
planes. They are well represented by a fitting function (red line)
defined as the sum of Lorentzian shapes (blue and purple colors)
and an exponential function (green color). The Brillouin peaks
at ±16.8 GHz in panel (a) are for the L phonon of epoxy. The
Brillouin peaks at ±36.4 GHz in panels (a-c) are for the L phonon
of E-glass. Brillouin frequency shifts are plotted versus incidence
angle ϕ in (d) the (XZ) and (e) the (XY ) plane. Experimental
points are shown with square markers in all panels.

3. Results and Discussion

3.1. E-glass fiber

As previously noted, E-glass fiber is isotropic and
only the elastic constant c11 is accessible with micro-
BLS in the backscattering geometry. Epoxy resin
is isotropic as well. The axial BLS measurement
(incidence angle ϕ = 90◦) in Figure 4a shows
both the Stokes (negative frequency shifts) and the
anti-Stokes (positive frequency shifts) parts of the
Brillouin spectrum. The spectrum evidences both the
longitudinal phonons of the fiber (at ±36.4 GHz) and
of the epoxy matrix (at ±17.1 GHz). This observation
indicates that light injected in the sample at the top
of the fiber is not guided by the fiber but is refracted
inside the epoxy matrix. Figure 4a indicates that the
experimental spectrum is well fitted with a function
defined as the sum of Lorentzian shapes (one per each
phonon) and an exponential function accounting for
elastic (Rayleigh) scattering.

Figure 4b,c demonstrates fits to the anti-Stokes
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part of the experimental Brillouin spectrum for
incidence angle ϕ = 20◦ in the (XZ) and the
(XY ) planes, for the free standing fiber. A single
longitudinal phonon is observed at the same frequency,
confirming that ne = no in E-glass. Actually, the same
measurement was repeated for a total of 16 different
incidence angles, as reported in Fig. 4d,e, and the
Brillouin frequency shift appears to be independent of
the angle of incidence, as expected. Combining the 16
measurements, the Brillouin frequency is 36.453±0.025
GHz. The latter standard deviation gives an estimate
of experimental dispersion error, assuming the same
longitudinal acoustic phonon is involved for all angles
of incidence. Assuming the index of refraction and the
mass density to be given by the values in Table 1, the
longitudinal velocity v = 6251±4 m s−1 and the elastic
constant c11 = 100.4 ± 0.14 GPa. For comparison, we
note that for plate samples of soda-lime glass and fused
silica, the measured longitudinal Brillouin frequencies
are about 32 GHz and 33 GHz, respectively [34]. The
Brillouin frequency for the E-glass fiber reported here
is only slightly larger.

Note that BLS measurements are local: in our
setup we collect backscattered light coming from a
small volume inside the fiber of about 16 µm3, given
that the lateral resolution is about 2 µm and the
axial depth of focus is about 4 µm. Furthermore,
the fiber is mechanically unconstrained and the typical
displacements for thermal phonons are of the order of
the femtometer. Even though frequencies are rather
high, strains are still very small since the phonon
wavelength is λ/(2n) = 170 nm. These facts are to
be kept in mind when comparing the elastic constants
measured with BLS with those obtained via static
or quasi-static mechanical tests, especially when large
stress or strain is applied.

Perrin et al. [35] mention that the accepted
value for Young’s modulus for E-glass is 73 ± 2 GPa.
These authors performed vibrational analysis of fibers
using an electrodynamic shaker and obtained that the
value of the longitudinal modulus can differ up to 26%
compared to the mean value E = 74.1 GPa, for the
second vibration mode.

Based on our fitted value for c11 and assuming
Poisson’s ratio to be 0.2 (lower bound in Table 1),
relation (7) gives E = 89.5 GPa, which is larger
than the range quoted above. Conversely, assuming
E = 74.1 GPa would lead to ν = 0.3 or the upper
bound in Table 1. Hence, BLS measurement of the
elastic tensor, when combined with Young’s modulus
measured by vibrational analysis, may lead to revised
estimates of Poisson’s ratio and in any case gives access
to this parameter without requiring a tensile strain-
stress experiment under large deformations.

3.2. PA11 fiber

The axial BLS measurement (incidence angle ϕ = 90◦)
in Figure 5a shows both the Stokes and the anti-Stokes
parts of the Brillouin spectrum for the PA11 fiber.
The spectrum evidences both a longitudinal phonon
(23.9 GHz) and a shear phonon (6.0 GHz) of the fiber
and the longitudinal phonon of the epoxy matrix (17.1
GHz as in the previous section). The experimental
spectrum is well fitted with a function defined as the
sum of Lorentzian shapes (one per each phonon) and an
exponential function accounting for elastic scattering,
though the low frequency of the shear phonon makes
it more difficult to resolve faithfully with the tandem
Fabry-Perot interferometer.

Figure 5b,c demonstrates fits to the anti-Stokes
part of the experimental Brillouin spectrum for
incidence angle ϕ = 55◦ in the (XZ) and the
(XY ) planes, for the free standing PA11 fiber. The

a)

b) c)

d) e)

.

Figure 5. PA11 fiber. Experimental BLS spectra are recorded
(a) along the Z axis (at incidence angle ϕ = 90◦), and at
incidence angle ϕ = 55◦ in (b) the (XZ) and (c) the (XY )
planes. They are well represented by a fitting function (red line)
defined as the sum of Lorentzian shapes (blue, red and purple
colors) and an exponential function (green color). The blue and
red Lorentzians are for longitudinal and shear phonons of the
PA11 fiber, respectively, and the purple Lorentzian is for the
longitudinal phonon of epoxy. Brillouin frequency shifts for the
PA11 fiber are plotted versus incidence angle ϕ in (d) the (XZ)
and (e) the (XY ) plane, and are associated with the QL, QS
and S phonons of the fiber. Experimental points are shown with
square markers in all panels.
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Elastic constants (GPa) c11 7.13 ± 0.07
c12 0.00 ± 0.13
c13 4.03 ± 0.11
c33 18.98 ± 0.26
c44 1.33 ± 0.04

Relative permittivity n2e 2.26 ± 0.03

Fit error (GHz) e 0.17

Mechanical properties EL 14.42 ± 0.39 GPa
ET 6.16 ± 0.15 GPa
c66 3.56 ± 0.08 GPa
K 3.55 ± 0.08 GPa
νLT 0.56 ± 0.02

Table 2. Fitted material constants and derived mechanical
properties for the PA11 fiber.

measurements confirm the anisotropic character of the
PA11 fiber, since the Brillouin frequency shift depends
on the angle of incidence. One longitudinal wave with
a frequency of 16.43 GHz and one shear wave with a
frequency of 9.54 GHz are observed in the (XZ) plane.
In the case of wave propagation perpendicular to the
fiber axis, in plane (XY ), only the longitudinal phonon
at 14.74 GHz is detected.

Table 2 reports the mechanical and optical
properties obtained by fitting against the transversely
isotropic model. Assuming no = 1.52, the birefringence
is estimated as ∆n = ne − no = −0.017 ± 0.003.
This value induces a change of about 1% in the
Brillouin frequency of the QL phonon for ϕ = 0◦ that
is detectable with respect to the spectral resolution
(∼ 120 MHz). In the case of Nylon 11, optical
anisotropy arises from the molecular alignment of the
fiber. This is often observed in anisotropic materials
such as certain polymers when they are stretched or
aligned during processing. Nylon 11, being a semi-
crystalline polymer, can develop birefringence due to
the alignment of its polymer chains during processes
like drawing or extrusion. This phenomenon is well
documented in various types of nylon fibers, including
Nylon 6 [36, 37] and Nylon 6.6 [38, 37], and similar
behavior can be expected in Nylon 11 fibers due to their
similar molecular structure and processing methods.
According to Balcerzyk et al. [37] the birefringence
of Nylon fibers spans the range ∆n = [0 − 0.0194], in
agreement with the value obtained here.

We emphasize the more than two-fold difference
between axial (c33) and radial (c11) elastic constants
for longitudinal motion. A comparison between
phonon velocity curves obtained using the fitted elastic
constants and experiment is proposed in Figure 6. As
a note, we decided to attribute experimental peaks to
different shear phonons (QS if ϕ < 45◦ and S above).
This choice of the slowest phonon is made because the

vZ 
(m/s) 

v
X

  (
m

/s
) 

a)

v
X

  (
m

/s
) 

vY  
(m/s) 

b)

Figure 6. Velocity curves for the PA11 fiber in (a) the (XZ) and
(b) the (XY ) plane. Experimental velocities obtained with the
free-standing fiber are shown with open square markers. The
experimental S and QL velocities obtained with the fiber-in-
epoxy sample are shown with filled square markers in (a). Solid
lines are for theoretical velocity curves obtained from the fitted
material constants.

two velocity curves cross between ϕ = 40◦ and ϕ = 45◦.
It was checked numerically that the fit error is smaller
with this choice compared to any other permutation of
the classification.

Turning to the transformed mechanical properties,
the longitudinal modulus of PA11 in this study is
measured to be 14.4 GPa, significantly larger than
previously reported values that are in the range of
1 − 1.3 GPa [39, 8], but are obtained from quasi-
static mechanical tests. The discrepancy is, however,
consistent with values commonly obtained from BLS
measurements in polymers [40]. Furthermore, the
Young’s modulus for the IP-S photoresin, estimated
through the analysis of beam resonances in the MHz
frequency range, has been reported to be 10 GPa
for frequencies between 1 and 3 MHz [41]. The
viscoelastic properties of organic materials are indeed
inherently frequency-dependent, as such materials
exhibit a combination of elastic (solid-like) and viscous
(fluid-like) behaviors that shift based on the frequency
of applied stress or strain. As a combination of viscous
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and elastic effects, the apparent elastic modulus
increases with frequency. This variation in elastic
modulus with frequency reflects the interplay between
elasticity and viscosity, making it critical for accurately
characterizing viscoelastic materials under dynamic
loading conditions.

At longitudinal strain of 0.5%, the apparent
Poisson’s ratio of Nylon monofilament yarn was found
to be in the range νLT = [0.35 − 0.45] [9]. In the
case of nanocomposite modeling, a value often used
for Poisson’s ratio is 0.35 according to [10]. Zhang et
al. [11] reported that the Poisson’s ratios of various
synthetic polymer fibers, including Kevlar, Nylon 6,
and PBO (poly (p-phenylene-2, 6-benzobisoxazole),
fall within the range of νLT = [0.34 − 0.50]. The BLS
technique here estimates this value to be 0.56.

3.3. Silk fiber

The axial BLS measurement (incidence angle ϕ = 90◦)
in Figure 7a shows both the Stokes and the anti-Stokes
parts of the Brillouin spectrum for the silk fiber. The
spectrum evidences both a longitudinal phonon (25.4
GHz) and a shear phonon (10.6 GHz) of the fiber and
the longitudinal phonon of the epoxy matrix. The
experimental spectrum is well fitted with a function
defined as the sum of Lorentzian shapes (one per each
phonon) and an exponential function accounting for
elastic scattering.

Figure 7b,c presents an example of a fit to the
measurements for an incident angle ϕ = 25◦ in the
(XZ) and the (XY ) planes. A longitudinal phonon is
propagating with a frequency of 18.90 GHz and a shear
phonon at 11.10 GHz in the anisotropic (XZ) plane,
whereas in the isotropic (XY ) plane only a longitudinal
phonon with frequency 18.27 GHz is propagating.

Table 3 reports the mechanical and optical
properties obtained by fitting against the transversely
isotropic model. Our result for synthetic silk indicates
ne = 1.5232 ± 0.0066 and thus a negative birefringence
∆n = −0.0355 with the same accuracy. As for the
PA11 fiber, the sign of the birefringence is obtained
from the frequencies of the QL phonons in different
incidence planes. According to Little et al. [14],
refractive index measurements of radial silks spanned
from 1.5370 ± 0.0013 to 1.5596 ± 0.0008, illustrating
a variability of approximately 1.5% in the refractive
index of natural silk fibers. Significant birefringence,
both positive and negative, reaching up to ∆n =
0.0129 ± 0.0007, was observed in certain silks, while
others showed no discernible birefringence. Wang
et al. [4] reported the birefringence of spider silk
obtained from experiments performed in transmission
BLS geometry as ∆n = 0.06, with ne = 1.46 ± 0.02
and no = 1.40 ± 0.01.

The elastic constants for natural silk are larger by

a factor two compared to those of PA11, approximately.
c33 is almost twice as large as c11. The velocity
curves for shear phonons again cross. Direction-
dependent sound velocities for the natural silk fiber
are represented in Fig. 8.

Using in situ tensile tests and x-ray diffraction,
Krasno et al. [42] determined the mechanical
properties of the crystalline and disordered phases
of silk by adapting a linear viscoelastic model to
its semi-crystalline morphology. They observed a
strong interplay between morphology and mechanical
properties, with silk’s high extensibility primarily
resulting from the disordered phase. A linear fit of the
stress-strain curve for the fibroin crystals in silkworm
silk consistently yielded a purely elastic modulus of
E = 26.5 ± 0.8 GPa from the slope. This value is in
fair agreement with our experiment using micro-BLS
technique giving EL = 19 GPa. Spider and silkworm

.

a)

b) c)

d) e)

Figure 7. Silk fiber. Experimental BLS spectra are recorded
(a) along the Z axis (at incidence angle ϕ = 90◦), and at
incidence angle ϕ = 25◦ in (b) the (XZ) and (c) the (XY )
planes. They are well represented by a fitting function (red
line) defined as the sum of Lorentzian shapes (blue, red and
purple colors) and an exponential function (green color). The
blue and red Lorentzians are for longitudinal and shear phonons
of the silk fiber, respectively, and the purple Lorentzian is for the
longitudinal phonon of epoxy. Brillouin frequency shifts for the
silk fiber are plotted versus incidence angle ϕ in (d) the (XZ)
and (e) the (XY ) plane, and are associated with the QL, QS
and S phonons of the fiber. Experimental points are shown with
square markers in all panels.
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Elastic constants (GPa) c11 14.26 ± 0.07
c12 3.24 ± 0.22
c13 8.05 ± 0.12
c33 26.39 ± 0.25
c44 4.78 ± 0.04

Relative permittivity n2e 2.32 ± 0.01

Fit error (GHz) e 0.03

Mechanical properties EL 18.98 ± 0.34 GPa
ET 11.75 ± 0.17 GPa
c66 5.51 ± 0.11 GPa
K 8.72 ± 0.11 GPa
νLT 0.46 ± 0.01

Table 3. Fitted material constants and derived mechanical
properties for the silk fiber.
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Figure 8. Velocity curves for the silk fiber in (a) the (XZ) and
(b) the (XY ) plane. Experimental velocities obtained with the
free-standing fiber are shown with open square markers. The
experimental S and QL velocities obtained with the fiber-in-
epoxy sample are shown with filled square markers in (a). Solid
lines are for theoretical velocity curves obtained from the fitted
material constants.

silk fibers exhibit morphological similarities as semi-
crystalline nanocomposites, featuring ordered regions
composed of β-sheet protein nanocrystals embedded
within a softer matrix of disordered material (spider

silk [43], silkworm fibroin [44]).
Although BLS measurements on synthetic silk

fibers have not been documented, the longitudinal
modulus of 19 GPa and the transverse Young’s
modulus of 11.7 GPa obtained in this work match
the values obtained via BLS reported by Wang et al.
[4] for spider silk, which are 20.9 GPa and 9.2 GPa,
respectively. In the natural state of silkworm silk
fiber, furthermore, the longitudinal and the transverse
Young’s moduli of 23.4±1.0 and 10.4±0.5 GPa, as well
as shear modulus G = 4.5±0.2 GPa, were measured by
BLS by Aluculesei et al. [5]. Our values for synthetic
silk fiber thus align well with those for natural silk
fiber.

The remarkable strength of silkworm and spider
silks is attributed to β-sheet nanocrystals that rely
on hydrogen bonds, considered among the weakest
chemical bonds. Keten et al. [45] employed large-scale
molecular dynamics simulations and demonstrated
that β-sheet nanocrystals confined to nanometer scales
exhibit superior stiffness, strength, and mechanical
toughness compared to larger nanocrystals. In
addition to analyzing shear contributions relative
to nanocrystal size, Keten et al. [45] estimated
the material’s elastic moduli to be E = 22.6
GPa and G = 4.6 GPa from bending and shear
rigidity, respectively. Density functional theory (DFT)
calculations confirmed their findings, yielding slightly
higher values (E = 36.45 GPa and G = 10.32 GPa), as
expected for static calculations at zero temperature.
Their results align well with reported experimental
elastic moduli values for spider-silk nanocrystals E =
[16−28] GPa [42, 46]. While direct testing of the shear
modulus of silk β-sheet nanocrystals is lacking, torsion
experiments on silk fibers suggest similar shear moduli
(G = 2.38 GPa for Nephila clavipes dragline silk and
G = 3.81 GPa for Bombyx morisilk).

The Poisson’s ratio of the silk fiber is found to be
0.46 in this work, whereas Fraternali et al. [13] report
the range ν = [0.1−0.4] for a spider dragline silk. As a
note, Aluculesei et al. [5] determined the Poisson ratio
for Bombyx mori silkworm silk fiber to be ν = 0.51 by
BLS.

3.4. Flax fiber

The axial BLS measurement (incidence angle ϕ = 90◦)
in Figure 9a shows both the Stokes and the anti-Stokes
parts of the Brillouin spectrum for the flax fiber. The
spectrum evidences both a longitudinal phonon (53.0
GHz) and a shear phonon (10.6 GHz) of the fiber and
the longitudinal phonon of the epoxy matrix. The
experimental spectrum is well fitted with a function
defined as the sum of Lorentzian shapes (one per each
phonon) and an exponential function accounting for
elastic scattering.
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a)

b) c)

d) e)

.

Figure 9. Flax fiber. Experimental BLS spectra are recorded
(a) along the Z axis (at incidence angle ϕ = 90◦), and at
incidence angle ϕ = 20◦ in (b) the (XZ) and (c) the (XY )
planes. They are well represented by a fitting function (red
line) defined as the sum of Lorentzian shapes (blue, red and
purple colors) and an exponential function (green color). The
blue and red Lorentzians are for longitudinal and shear phonons
of the flax fiber, respectively, and the purple Lorentzian is for the
longitudinal phonon of epoxy. Brillouin frequency shifts for the
flax fiber are plotted versus incidence angle ϕ in (d) the (XZ)
and (e) the (XY ) plane, and are associated with the QL, QS
and S phonons of the fiber. Experimental points are shown with
square markers in all panels.

Figure 9b,c presents an example of a fit to
the measurements for an incidence angle ϕ = 20◦

in the (XZ) and the (XY ) planes. In the (XZ)
plane one longitudinal wave with a frequency of 20.46
GHz and one shear wave with a frequency of 16.56
GHz are observed. In the case of wave propagation
perpendicular to the fiber axis, in plane (XY ), only
the longitudinal phonon at 19.03 GHz is detected. The
characteristics of the observed phonons are similar to
the case of the PA11 and the silk fibers.

Table 4 reports the mechanical and optical
properties obtained by fitting against the transversely
isotropic model. The birefringence of the flax fiber
is estimated as ∆n = ne − no = −0.024 ± 0.019.
Paterson et al. [47] used polarized light microscopy
(PLM) to examine the refractive indices of flax fibers.
The birefringence values obtained in their study are
similar to ours, though they quote a positive sign for
the birefringence and ∆n = 0.065. Strikingly, the value

Elastic constants (GPa) c11 16.0 ± 0.6
c12 -7.6 ± 1.0
c13 6.0 ± 2.8
c33 143.3 ± 4.6
c44 7.0 ± 0.4

Relative permittivity n2e 2.42 ± 0.11

Fit error (GHz) e 2.0

Mechanical properties EL 134.8 ± 9.4 GPa
ET 11.9 ± 3.9 GPa
c66 11.9 ± 0.6 GPa
K 4.18 ± 0.6 GPa
νLT 0.7 ± 0.35

Table 4. Fitted material constants and derived mechanical
properties for the flax fiber.

of c33 is found to be almost ten times as large as c11.
This large variation is accompanied by a negative value
for c12, resulting in c66 = (c11 − c12)/2 = 11.9 GPa.
The determination of elastic constants enables plotting
the velocity curves in Figure 10. Those demonstrate
a very anisotropic dependence of phonon velocities.
The velocity curves in Figure 10a are reminiscent
of the strong anisotropy of structural composites, as
embodied by phononic crystals considered as acoustic
metamaterials [28].

Reported values for Young’s modulus of flax fibers
range from 20 GPa to 160 GPa [27, 48, 17, 18, 26,
49, 50]. Due to the frequency-dependence of the
apparent viscoelastic properties of organic materials,
as mentioned above, our BLS value is clearly in the
upper range. Flax fibers have a transverse section
that is not only nonuniform but also contains the
lumen. With the backscattering Brillouin technique,
a volume of about 16 cubic micrometers is probed,
and the response integrates all the fiber wall layers,
resulting in a homogenized response at the phonon
wavelength scale. A decrease in Young’s modulus with
increasing fiber diameter has been observed in flax
fibers [27]. This reduction in mechanical properties
was partially attributed to the presence of the lumen at
the fiber’s center, which enlarges as the fiber diameter
increases. The lumen size is often excluded from cross-
sectional calculations due to the difficulty in accurately
determining its dimensions. As a note, it is however
included in the value of the mass density given in Table
1 [15]. Richely et al. [26] investigated the diameter
dependence of Young’s modulus in elementary hemp
fibers using a mathematical model. They found
that the surface area proportion of the lumen does
not exhibit a positive dependency on fiber diameter,
suggesting that Bourmaud et al.’s [27] assumption
could only partially explain the modulus-diameter
relationship.
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Figure 10. Velocity curves for the flax fiber in (a) the (XZ)
and (b) the (XY ) plane. Experimental velocities obtained with
the free-standing fiber are shown with open square markers. The
experimental S and QL velocities obtained with the fiber-in-
epoxy sample are shown with filled square markers in (a). Solid
lines are for theoretical velocity curves obtained from the fitted
material constants.

As a note, a recent report estimates c33 = 47 GPa
for a flax fiber, from a single BLS measurement in
the 90a-scattering geometry [51] – different from our
180a or backscattering geometry. This is almost three
times less than the value we find. The origin of the
discrepancy remains unclear to us, but since we have
not used the same samples and scattering geometries,
a precise comparison can only be left as a perspective.
Finally, we observe that the Poisson’s ratio obtained
in our study, using the micro-BLS technique, is 0.7
with a rather large standard deviation. The range
of values reported in the literature spans from 0.2
to 0.5 [16, 17, 18]. The large standard deviation of
our estimate notably originates from the uncertainty
associated with the estimation of c13. Unfortunately,
this uncertainty is connected to the range of available
incidence angles and could not be reduced for the flax
fiber.

3.5. Final remarks

The components of the elastic tensor of a material must
satisfy certain stability constraints to ensure that any
deformation increases the strain energy potential. For
transversely isotropic materials these conditions read
[3] c11 > |c12|, (c11+c12)c33 > 2c213, and c44 > 0. These
stability inequalities are satisfied for the flax fiber as
well as for the other fibrous materials measured in this
work.

The accuracy of the fit procedure used for the
anisotropic fibers depends on the available set of
experimentally observable Brillouin peaks. In order
to obtain BLS measurements of shear and longitudinal
phonons propagating along the axis of the fibers, we
had to rely on samples with the fiber embedded in
an epoxy matrix. Those measurements significantly
and directly improve the estimation of elastic constants
c33 and c44. Other incidence angles were obtained
with free-standing fibers. For incidence normal to the
fiber axis, only the elastic constant c11 is involved but
additional information on the birefringence is gained
as well. Information on elastic constants c13 and c12
(or equivalently c66) is provided by varying the angle
of incidence in the (XZ) plane. As a perspective, it
would be interesting to prepare free-standing samples
that can be measured both axially and from the side,
since this would allow one to obtain the elastic tensor
for a single sample.

4. Conclusions

The elastic properties of E-glass, silk, PA11 and flax
fiber samples were investigated using micro-Brillouin
light scattering. The methodology involves performing
multi-angle backscattering measurements in different
incidence planes, accounting for optical birefringence,
and carefully assigning phonon modes. All material
constants were fitted against the transversely-isotropic
model, except for E-glass fiber that was checked to be
isotropic. Comparison of simulation and experimental
data reveals a clear agreement with the symmetry-
driven models. Limitations in the methodology arise
from the need to assume the value of one of the
indices of refraction and of the material density. The
accuracy with which these constants are known directly
translates into a possible bias for elastic constants.
That limitation aside, elastic constants can be assessed
precisely, without contact, and locally. The micro-
Brillouin light scattering approach thus holds promise
for extension to other synthetic and natural materials
with known orientation and symmetry.



Anisotropic elastic properties of synthetic and natural fiber 13

Acknowledgments

The authors acknowledge Linificio e Canapificio Nazio-
nale for providing silk fibers and the University of
South Britany for providing PA11 fibers. FP and
PB acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-
22-CE51-0001 (proje-ct MIDIFIC). This work has
been supported by the EIPHI Graduate school (grant
ANR-17-EURE-0002) and by the Bourgogne-Franche-
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Appendix A. Group of symmetry

The group of symmetry for wave propagation along
a fiber is A∞, which means revolution symmetry
or transverse isotropy. According to the tables of
crystallography [52], if axis x3 is the axis of revolution,
the symmetric elastic tensor assumes the following
shape

cαβ =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 (A.1)

with c12 = c11 − 2c66. There are 5 independent
constants The shape of the elastic tensor is thus the
same as for hexagonal crystals with point group 6, 6̄ or
6/m.

The shape of the photoelastic tensor is more

complicated, since it is not symmetrical:

pαβ =


p11 p12 p13 0 0 p16
p12 p11 p13 0 0 −p16
p31 p31 p33 0 0 0
0 0 0 p44 p45 0
0 0 0 −p45 p44 0

−p16 p16 0 0 0 p66

 (A.2)

with p12 = p11 − 2p66. There are 8 independent
photoelastic constants.

Appendix B. Christoffel equation

The reference frame (x1, x2, x3) is here taken as the
crystallographic frame (X,Y, Z). We consider inci-
dence in the (13) plane, with angle of incidence ϕ de-
fined with respect to axis 1. The direction of incidence
(propagation) is thus [c, 0, s] = [cosϕ, 0, sinϕ]. The
Christoffel tensor is

Γil =

c2c11 + s2c44 0 sc(c13 + c44)
0 c2c66 + s2c44 0

sc(c13 + c44) 0 c2c44 + s2c33


(B.1)

There are thus three eigenvalues and eigenvectors
yielding the possible bulk acoustic phonons. There
is one pure shear wave, denoted by S and polarized
along axis 2 for all angles of incidence. That wave
produces S4 and S6 strains. The pure shear velocity√

(c2c66 + s2c44)/ρ depends on c44 and c66. There
is also one (QL, QS) pair of waves, polarized in the
(1, 3) plane. Those waves produce S1, S3 and S5

strains. Putting ∆ = (Γ11 − Γ33)
2 + 4Γ2

13, the QL

velocity is
√

1
2 (Γ11 + Γ33 +

√
∆)/ρ and the QS velocity

is
√

1
2 (Γ11 + Γ33 −

√
∆)/ρ. Both velocities depend on

c11, c44, c13 and c33.

Appendix C. Photoelastic coupling

We don’t know the numerical values of the photoelastic
constants, but can we anyway understand which
phonons are seen in the experiments from symmetry
considerations? The H direction is imposed to be axis
2 by the interferometer. The V direction is then in the
plane (1, 3), orthogonal to the direction of incidence,
hence given by [−s, 0, c]. As a result, we have the
possibilities

• HH: α = 2 only,

• HV: α = 4 or 6.

If incidence is along [100], then in this case c = 1
and s = 0. H direction is axis 2, V direction is axis 3.
Hence HV corresponds to α = 4 only. The possible
photoelastic couplings are summarized in Table C1.
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HH (α = 2) HV (α = 4)
QL (β = 1) p21 ̸= 0 p41 = 0
QS (β = 5) p25 = 0 p45 ≪ 1
S (β = 6) p26 ≪ 1 p46 = 0

Table C1. Possible photoelastic couplings for incidence along
direction [100].

Since no shear phonons are observed in experiments
for direction [100], we conclude that p45 ≪ 1 and
p26 ≪ 1. The photoelastic tensor then simplifies to
a form similar to hexagonal crystals:

pαβ =


p11 p12 p13 0 0 ≈ 0
p21 p11 p13 0 0 ≈ 0
p31 p31 p33 0 0 0
0 0 0 p44 ≈ 0 0
0 0 0 ≈ 0 p44 0

≈ 0 ≈ 0 0 0 0 p66

 (C.1)

HH (α = 2) HV (α = 6)
QL (β = 3) p23 ̸= 0 p63 = 0
QS (β = 5) p25 = 0 p65 = 0
S (β = 4) p24 = 0 p64 = 0

Table C2. Possible photoelastic couplings for incidence along
direction [001].

If incidence is along [001], then in this case c = 0
and s = 1. H direction is axis 2, V direction is axis 1.
Hence HV corresponds to α = 6 only. The possible
photoelastic couplings are summarized in Table C2.
This time, we unexpectedly see experimentally a shear
phonon when the photoelastic coupling is exactly zero
for plane wave incidence. To solve the apparent
paradox, we assume that for incidence slightly different
from s = 1, we have some HV polarization along axis
3 as well, or α = 4, because of the finite numerical
aperture. In this case the S shear phonon is associated
with p44 ̸= 0. The same reasoning for incidence along
axis 1 leads to the conclusion that p66 ≪ 1, because no
shear phonon is observed in this case.

Finally, in the general case of incidence along
[c, 0, s], the possible photoelastic couplings are sum-
marized in Table C3.

HH (α = 2) HV (α = 4, 6)
QL/QS (β = 1, 3, 5) p21, p23 0

S (β = 4, 6) 0 p44

Table C3. Possible photoelastic couplings for incidence along
direction [c, 0, s].

Combining these results with the analytical shapes
of the velocity curves lead to the following observations
regarding the fit process. Elastic constants c33 and
c44 are strongly determined by axial measurements

(s = 1). Elastic constant c11 is strongly determined
by measurements orthogonal to the fiber axis (c = 1).
The remaining independent elastic constants c12 (or
c66) and c13 are determined by measurements with
intermediate incidence angles; c66 is determined by
S phonon velocities and c13 is determined by QL/QS
phonon velocities.
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