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Abstract 

About 20 years ago was demonstrated at NIST the first chip-scale atomic clock [1]. This microwave clock, 

based on coherent population trapping (CPT), relying on the interaction of alkali atoms confined in a 

microfabricated vapor cell with an optically-carried microwave signal obtained by direct modulation of a 

vertical-cavity surface-emitting laser (VCSEL), achieved a fractional frequency stability of 2.5x10-10 at 1 s 

and 2x10-9 at 10 000 s. Definitely, this prototype has stimulated the emergence of a very active and intense 

research field targeting the deployment of low-power miniaturized atomic clocks. Intense research efforts 

are still pursued today in this domain by a large number of academic and industrial groups [2]. 

 

The stability of microcell-based CPT atomic clocks is often degraded after about 100 s by two main 

contributions, identified to be light-shifts and buffer-gas pressure collisional shifts. At FEMTO-ST, over the 

last years, we have invested numerous efforts to mitigate these contributions. For mitigation of light-

shifts, we have implemented and demonstrated the efficiency of pulsed Ramsey-based interrogation 

sequences. With advanced Auto-Balanced Ramsey sequences, we have demonstrated a reduction of the 

clock frequency to all parameters of the light-field (laser power, microwave power, laser frequency) by 

more than two orders of magnitude, in comparison with the usual continuous interaction regime [3]. 

Recently, we have successfully implemented such protocols through direct modulation of the laser 

current, such that no external optical shutter or AOM is needed, confirming their compatibility to be used 

in fully-integrated CSACs [4]. In addition to light-shift mitigation techniques, we had to reduce buffer gas 

permeation issues through the cell glass windows. For this purpose, we have investigated the use of cells 

built with alumino-silicate glass (ASG) windows, instead of borosilicate glass [5]. We have also explored 

the possibility to use Al2O3 coatings on the cell windows. By combining ASG and 20-nm thick Al2O3 

coatings, we have achieved a reduction of helium permeation rate by more than 3 orders of magnitude 

[5]. Studies were also performed to investigate the impact of the Al2O3 coating thickness on the gas 

permeation rate [6]. By combining pulsed Ramsey-based sequences and low permeation glass cells, we 

have demonstrated a microcell CPT clock with a fractional frequency stability of 7x10-11 at 1 s and 

averaging down below 2x10-12 at 1 day integration time [7]. Currently, some studies are in- progress to 

increase the buffer-gas induced turnover temperature point of the microcell. These cells are planned to 

be obtained through the use of laser-actuated break-seal and make-seals reported in [8]. 

 

Over the last years, we have also started at FEMTO-ST the development of "new-generation" microcell 

optical frequency references. These references are based on sub-Doppler spectroscopy techniques, 

attractive due to their simple architecture (1 laser, 1 cell, no laser cooling), and high potential for 



miniaturization with MEMS cells and integrated lasers/photonics. Two microcell optical references are in-

progress at FEMTO-ST. The first one is based on the excitation of the two-photon transition at 778 nm of 

the Rb atom. In this reference, atoms are promoted with an external-cavity diode laser to the 5D5/2 excited 

state and emit during their radiative decay blue fluorescence photons at 420 nm detected by a 

photomultiplier. Using this method, a frequency stability of 3x10-13 at 1 s and below 3x10-14 at 100 s has 

been achieved [9]. Limitations on the short-term stability and mid-term stability are well identified and 

some room for improvement does still exist. The second system is based on saturated absorption 

spectroscopy of the Cs atom 6S1/2 - 7P1/2 transition at 459 nm [10]. Two quasi-identical ECDLs, each 

stabilized onto a microcell, have been mounted. An encouraging preliminary short-term stability lower 

than 2x10-13 at 1 s for a single laser has been obtained.  

 

Latest results will be presented at the conference and future perspectives will be discussed. 
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