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Quantum transmission links are central elements in essentially all protocols involving the exchange of quan-
tum messages. Emerging progress in quantum technologies involving such links needs to be accompanied by
appropriate certification tools. In adversarial scenarios, a certification method can be vulnerable to attacks if too
much trust is placed on the underlying system. Here, we propose a protocol in a device independent framework,
which allows for the certification of practical quantum transmission links in scenarios where minimal assump-
tions are made about the functioning of the certification setup. In particular, we take unavoidable transmission
losses into account by modeling the link as a completely-positive trace-decreasing map. We also, crucially,
remove the assumption of independent and identically distributed samples, which is known to be incompatible
with adversarial settings. Particular emphasis is put on a one-sided device-independent scenario, in which the
sender possesses trusted resources. Finally, in view of the use of the certified transmitted states for follow-up
applications, our protocol moves beyond certification of the channel to allow us to estimate the quality of the
transmitted quantum message itself. To illustrate the practical relevance and the feasibility of our protocol with
currently available technology, we provide an experimental implementation in the one-sided device-independent
setting, based on a state-of-the-art polarization entangled photon pair source in a Sagnac configuration and ana-
lyze its robustness for realistic losses and errors.

Introduction
The ability to send and receive quantum information is at
the heart of the rapidly developing quantum technologies.
Transmitting quantum information over quantum networks
promises unparalleled efficiency and security [1], as well as
new functionalities such as the delegation of quantum com-
putation [2] and quantum sensing [3]. Within quantum com-
puters themselves we will need to input, share and distribute
quantum information to different parts, particularly impor-
tant for architectures relying on multiple quantum proces-
sors [4, 5]. The reliable transmission of quantum information
is thus an essential building block for future quantum tech-
nologies, and, as such, we must be very sure of its working.
When the physical devices used to test and use these quantum
channels are trusted, this question can be answered by stan-
dard quantum channel authentication [6], and there are var-
ious approaches to this end, from those requiring incredibly
expensive entangled resources [6–8], to those more achiev-
able, but at cost to security scaling [9–12]. In this work, we
consider a much stronger requirement, where some or all de-
vices used are not trusted, in a so-called device independent
setting. This will be a crucial step for testing the transmission
through quantum channels for future applications.

Device independence uses Bell-like correlations to imply
correct behaviour of quantum hardware, without the need to
understand or trust their inner workings [13, 14], that is, in-
dependently of the physical device used. It is motivated by
the inevitable situation where the user of a quantum tech-
nology is not necessarily the one who built all the hardware
and does not necessarily want to trust it to behave as spec-
ified. It has first been applied in quantum information to
prove security in quantum key distribution devices, thus mak-

ing them secure against potential hardware hacks. It has then
expanded in many directions, including random number gen-
eration [15], verification of quantum computation [16], and
more [17, 18]. The application to quantum channels is rela-
tively recent [19] (but see also [20]), however there are some
important missing elements in order to obtain useful certi-
fication. Measurement-device-independent approaches have
been successfully demonstrated [21–23], but these do not di-
rectly quantify the channel quality and its ability to faithfully
transmit arbitrary quantum information.

Here, we address the main remaining obstacles to certify
the transmission of quantum information in the device inde-
pendent framework. First, in our approach we explicitly take
into account loss. This is particularly important in optical
implementations (which is the most natural choice for quan-
tum channels). It is not addressed in current schemes[19, 20],
which effectively assume that any loss is innocent; this is
somewhat against the goals of device independence and opens
a security loophole if the loss is controlled by malicious par-
ties. Second, we remove the assumption that each time a
channel is used, it is done so in an independent, uncorrelated
way, known as identical independent distribution (IID). This
assumption similarly makes us vulnerable in terms of secu-
rity so should be avoided in general. Third, we certify the
transmission of quantum information itself. Previous works
assume IID, and they certify that the channel that was used
during the test was good but without a statement on actual
transmitted quantum information [19, 24]. We develop the
treatment of loss as a non trace preserving channel, bound-
ing the diamond fidelity between an untrusted channel and an
ideal one. We use this to build protocols certifying a trans-
mitted quantum message using this channel. Our protocols
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are secure in the one-sided device independent setting (where
the sender’s devices are fully trusted, but not the receiver’s),
and also in the fully device independent setting when IID is
assumed on the source; in both cases no IID needs to be as-
sumed on the uses of the channel.

We also demonstrate the feasibility of our protocol and
experimentally validate the main elements of one-sided
device independent certified transmission with an implemen-
tation exploiting a high-quality entangled photon source with
polarization encoding obtained in a Sagnac configuration.
This allows us to explore the behavior of the minimum
fidelity that we can certify for realistic losses in honest
channels and confirm the robustness of the protocol against
simulated errors introduced by dishonest channels.

Results
Certification protocol. In our framework, a player Alice
wishes to send a qubit state from Hilbert space Hi to Bob,
through a local unitary quantum channel E0. This quantum
message is possibly entangled with another system of Hilbert
space S of arbitrary dimension, so the global state reads
ρi ∈ L(Hi ⊗ S). The channel takes any qubit from L(Hi)
to another qubit from L(Ho), the output qubit space, with
output global state ρo = (E0 ⊗ I)[ρi] = (U ⊗ I)ρi(U

† ⊗ I),
where U is a local unitary and I is the identity. This model
describes a perfect unitary gate in a quantum computer, quan-
tum transmission link (carried on through quantum teleporta-
tion or a simple optical fiber) or quantum memory. Without
loss of generality, we take U = I and (E0 ⊗ I)[ρi] = ρi, as
this case encompasses all unitaries in a device independent
scenario [19]. This channel is called the reference channel.

In real world situations, the channel would be lossy, noisy,
or even operated by a malicious party Eve. Also, Alice and
Bob normally do not have access to isolated qubit spaces,
but operate with physical systems such as photons or atoms,
displaying other degrees of freedom. This way, without fur-
ther assumptions, Alice and Bob have access to a completely
positive trace-decreasing (CPTD) map E , i.e. a probabilistic
channel, that sends density operators from an input Hilbert
space HA1

to positive operators of trace smaller than 1 on an
output Hilbert space HB. This channel is called the physi-
cal channel. Alice also possesses a source of bipartite states
Φi shared between HA1

and a secondary Hilbert space HA2
,

that we call the probe input state. She can send one part of Φi

through the channel E , resulting in the probe output state Φo,
shared with Bob:

Φo = (E ⊗ I)[Φi]/t(E|Φi), (1)

where t(E|Φi) = Tr(E ⊗ I)[Φi] is the transmissivity of E
which a priori depends on the input state, as it does in polariz-
ing channels for instance. Note that the transmissivity can be
defined for any given quantum channel, and thus no assump-
tion is made to formalize it. For more details on this rela-
tively new notion, the reader can refer to SUPP. MAT. A [25].
Finally, the players can measure states with 2-outcome pos-
itive operator-valued measures (POVMs) {MP

l|q}l=0,1 where

P = A1,A2 or B indicating the Hilbert space on which the
measurement is acting, and q indicates which POVM is mea-
sured, see Eqs. (9) to (12) below. Fig. 1 illustrates our setting.

FIG. 1: Sketch of the problem. Alice’s goal is to send a
qubit, potentially part of a larger system, in state ρi, through
an untrusted quantum channel E (green path). To do so, she
sometimes tests the channel by sending half an entangled
state (blue path). Alice and Bob can then measure the out-
put state Φo, to assess how close the action of the physical
channel E is to an ideal reference channel E0 on the transmit-
ted state ρi.

In an adversarial scenario, Alice and Bob wish to draw
device independent conclusions, meaning they make no as-
sumption whatsoever on the states or the measurements. In
particular, physical Hilbert spaces are of arbitrarily big di-
mensions, which include all degrees of freedom of the phys-
ical systems and possible entanglement with the rest of the
universe. In this way, players can only certify objects up to lo-
cal isometries, which associate finite-dimension qubit spaces
Hi and Ho, to these infinite-dimension physical spaces HA1

,
HA2

, HB. As a device independent procedure, self-testing is
actually "blind" to local isometries such that it does not cer-
tify a single state, but a whole equivalence class of quantum
states mutually related by locally isometric transformations.
As shown in [19], similar conclusions can be drawn in or-
der to device-independently test the equivalence between the
physical channel E ⊗ I and the reference operation E0 ⊗ I.
Note, however, that as a quantum channel is associated to
two Hilbert spaces (one in input and the other in output),
two isometries are involved in order to extract a qubit-to-qubit
channel from a physical channel. This way, the input isom-
etry brings a qubit input state to a physical state that can be
fed into the physical channel, while the output isometry ex-
tracts a qubit state from the physical channel’s output state.
However, this formalism, in principle, only applies to com-
pletely positive trace-preserving (CPTP) maps. In our case,
a trace-decreasing physical channel only returns a state with
a certain probability, such that it can only be compared to
the reference channel multiplied by a constant t ≤ 1. Then,
one can only make a statement about equivalence between the
physical and reference channels, when considering rounds in
which the transmission was successful. We capture this intu-
ition with the following definition.
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Definition 1 (Self-testing of a CPTD map). Let us consider
a physical channel E : HA1 −→ HB. With two local isome-
tries Γi : HA1 ⊗Hi −→ HA1 ⊗Hext

i (encoding map) and
Γo : HB −→ Ho ⊗Hext

o (decoding map), and an ancillary
state ρA1

∈ L(HA1
), we can define an extracted qubit chan-

nel Ei,o as:

Ei,o : ρ ∈ L(Hi) −→ Trext
(
(Γo ◦ E ◦ Γi)[ρA1

⊗ ρ ]
)
, (2)

where the trace is taken over Hext
i and Hext

o [26]. The self-
testing equivalence between a probabilistic channel E and the
reference channel E0 is established if there exists t ∈]0; 1]
giving:

Ei,o = tE0. (3)

Note that we exclude the value t = 0, otherwise the null
quantum channel, that never outputs any quantum state what-
ever the input, would be equivalent to all quantum channels.
In addition, we highlight that the transmissivity is invariable
on the encoding and decoding maps chosen in the definition.
The reader can refer to SUPP. MAT. A 2 for more details on
the lossy channels’ equivalence classes. In experiments, we
can never perfectly certify E , therefore we quantify the ability
of this probabilistic channel to implement the deterministic
channel E0 by generalizing the diamond fidelity to probabilis-
tic quantum channels:

FΓi,o
⋄ (E , E0) = F⋄(Ei,o, E0)

= inf
|ϕ⟩

F ((Ei,o ⊗ I)[ϕ]/t(Ei,o|ϕ), (E0 ⊗ I)[ϕ]),
(4)

where F (ρ, σ) = Tr
(√

ρ1/2σρ1/2
)2

is the Ulhmann fi-
delity for quantum states, and the lower bound is taken over
all pure states |ϕ⟩ from H⊗2

i such that t(E1|ϕ) ̸= 0 and
t(E2|ϕ) ̸= 0. Note that the left state is normalized by the
transmissivity. Consequently, contrary to CPTP maps fideli-
ties, F⋄(Ei,o, E0) = 1 does not imply Ei,o = E0, but only that
there exists t ∈]0, 1] such that Ei,o = tE0, meaning that the
channels are equivalent in the sense of our definition. Phys-
ically speaking, these two channels output the same states,
under the condition those were not lost. The diamond fidelity
is particularly useful here, as it can be interpreted as the min-
imum probability that E ⊗ I successfully implements the op-
eration E0 ⊗ I on any state, under the condition that a state
successfully passes through the channel. The main goal of
our protocol is therefore to certify that fidelity.

For that purpose, let us consider the situation where Alice
can certify the probe input state Φi up to two local isometries
ΓA1/A2 : HA1/A2

−→ HA1/A2
⊗ Hi with the following

fidelity to a maximally entangled state:

F i = F
(
(ΛA1 ⊗ ΛA2)[Φi],Φ+

)
, (5)

where Φ+ is a maximally-entangled state (for instance
|Φ+⟩ = |00⟩+|11⟩√

2
) and Λj [·] = Trj(Γj [·]). We next con-

sider the situation that Alice and Bob are able to certify

the probe output state Φo up to local isometries ΓA2 and
ΓB : HB −→ HB ⊗Ho with the following fidelity:

F o = F
(
(ΛB ⊗ ΛA2)[(E ⊗ I)[Φi]]/t(E|Φi), (E0 ⊗ I)[Φ+]

)
.

(6)
Given Eqs. (5) and (6), we show in SUPP. MAT. D 2 that there
exist isometries Γi,Γo such that Alice and Bob are able to
lower bound the diamond fidelity on the corresponding ex-
tracted channel Ei,o:

F⋄(Ei,o, E0) ≥ 1−4 sin2
(
arcsin

(
Ci/t(E|Φi)

)
+arcsinCo

)
,

(7)
where Cj =

√
1− F j are sine distances associated to their

corresponding fidelities [27]. In this way, checking the in-
put and output fidelities allows us to assess the fidelity of
the channel itself. This bound generalizes what is shown in
[19] to probabilistic channels. It also uses the diamond fi-
delity, which informs on the behavior of the channel on any
state, instead of the Choi-Jamiołkowski fidelity, which only
informs on the behavior of the channel on a maximally entan-
gled state.

This bound gives the direction for estimating the fidelity
of a quantum channel. The idea is to evaluate the fidelity F i

of the probe input state to a Bell state, then send one part
of that probe state through the channel Alice wishes to send
ρi through, and finally evaluate the fidelity F o of the corre-
sponding output state to the same Bell state. Such procedure
is possible using recent self-testing results [28], but requires
a very large number of experimental rounds in the absence
of the IID assumption, as both input and output probe states
require certification. We significantly decrease that number
by making the IID assumption on the probe state, or by leav-
ing its full characterization to Alice’s responsibility. Still, as
we make no IID assumption on the channel, optimal security
cannot be reached by first testing that channel, and only then
using it to send the message state ρi, as Eve may change the
channel’s expression in the last moment. Our protocol works
around this problem by allowing Alice to hide the message ρi
among a large number of probe states, at a random position
unknown to Eve. In that case, we show in SUPP. MAT. D 5
that the bound (7) holds for the average channel Ēi,o over the
whole protocol. Then the transmission fidelity between the
output quantum message ρ̄o = (Ēi,o ⊗ I)[ρi]/t(Ē |ρi) and the
input quantum message ρi is certified:

F (ρi, ρ̄o) ≥ F⋄(Ēi,o, I). (8)

As long as the message’s position among the probe states re-
mains hidden, we can use ρ̄o to describe accurately any statis-
tics that would occur when processing the output state of the
protocol, and estimate the quality of an actual transmitted
state, instead of a verification of a channel only (see SUPP.
MAT. D 1 for more details).

In SUPP. MAT. C we give detailed protocols where we ap-
ply these ideas to test a transmitted quantum message under
the device independent (DI) and one-sided device indepen-
dent (1sDI) scenarios. In Table I, we provide a detailed com-
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parison of the level of trust put in the 1sDI and full-DI sce-
narios.

Protocol Elements 1sDI DI

Quantum Channel Untrusted,
Non-IID

Untrusted,
Non-IID

Alice’s Source Trusted, IID,
Characterized

Untrusted,
IID

Alice’s Measurement
Apparatus

Trusted,
Characterized Uncharacterized

Bob’s Measurement
Apparatus Uncharacterized Uncharacterized

Classical
Communication Channel

Trusted,
Private

Trusted,
Private

TABLE I: Summary of the assumptions made on the elements
of the protocol, in the ideal 1sDI and DI scenarii. Additional
assumptions are made in the experimental implementations,
which are summarized in Methods. Fair-sampling assump-
tions are made on the measurement apparatuses which are
detailes in SUPP. MAT. E 3.

For the purpose of our demonstration, we focus on an one-
sided device independent scenario. A summary of the pro-
tocol in this case is given in Fig. 2 (for a detailed recipe,
the reader can refer to the Supplementary Material). Here,
Alice’s measurement setup is trusted, such that her Hilbert
spaces are qubit spaces HA1 = HA2 = Hi, her isometries
are trivial Γi = ΓA1 = ΓA2 = I, and she performs measure-
ments in the Pauli X and Z bases:

A0 = MA2

0|0 −MA2

1|0 = Z, (9)

A1 = MA2

0|1 −MA2

1|1 = X. (10)

This fits a variety of scenarios where Alice is a power-
ful server, trying to provide states to a weaker client, Bob,
whose measurement apparatus is still untrusted. For that rea-
son, Bob’s observables, defined as:

B0 = MB
0|0 −MB

1|0, (11)

B1 = MB
0|1 −MB

1|1, (12)

are a priori unknown. We refer to such measurements as un-
characterized. In order to bound F o, Alice and Bob use self-
testing through steering [29]. Namely, the maximal violation
of the steering inequality [30]:

β = |⟨A0B0⟩+ ⟨A1B1⟩| ≤
√
2, (13)

self-tests the maximally entangled pair of qubits. We then
combine recent self-testing results [28] with further finite
statistics methods in a non-IID setting and with a lossy chan-
nel, in order to estimate F o in bound (7) with high confidence,

FIG. 2: Protocol sketch in a one-sided device independent
scenario: Alice prepares N copies of the probe state Φi, and
sends them through the untrusted channel E that varies with
time, as well as ρi at a random secret position r. Some states
are lost such that Bob only receives a fraction of them. Al-
ice tells Bob the value of r. If ρi was lost, then the protocol
aborts. Otherwise, Bob stores ρi and, together with Alice,
tests the violation of the steering inequality with the output
probe states. They deduce the average channel’s quality over
the protocol, which informs on the probability that the mes-
sage ρi was accurately transmitted to Bob, up to isometries.

when a close-to-maximal violation β = 2− ϵ is measured:

F o ≥ 1− αf(ϵ,K) ≃ 1− αϵ, (14)

with f a function of ϵ and the number K of states measured
by Alice and Bob during the protocol (see Eq. (27) in
Methods), and α = 1.26 [28]. This outlines the protocol: by
sending N characterized probe states through the channel,
Alice and Bob estimate Fo and thus the diamond fidelity
between the extracted channel and the identity channel, and
therefore the transmission fidelity of an unknown state ρi, as
a function of N , ϵ, and the number K of transmitted states.

Experimental implementation. In order to test the feasibil-
ity of our protocol, we perform a proof-of-principle experi-
ment based on photon pairs, emitted at telecom wavelength
via type-II spontaneous parametric down-conversion (SPDC)
in a periodically-poled KTP crystal (ppKTP). Photons are en-
tangled in polarization thanks to a Sagnac interferometer [31],
encoding in this way a close-to-maximally entangled pair of
qubits. Details of the setup are given in Fig. 3. [32]

The states emitted by the source are characterized at each
iteration of the protocol via quantum state tomography [33],
without inserting any untrusted quantum channel (green box
in Fig. 3). Polarization analyzers (PA) are trusted for that
task, as it is performed by Alice. This way we measured
a fidelity of the probe’s polarization state to a Bell state of
F i = 99.19%±0.03% on average over all protocol attempts,
with a maximum reached fidelity of F i = 99.43% ± 0.05%.
We then send the probe states through an untrusted quantum
channel. For this first demonstration we use a variable opti-
cal attenuator (VOA) in order to simulate a lossy but honest
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FIG. 3: Experimental setup for photonic certified quantum communication through an unstrusted channel. Photon pairs
are generated via type-II SPDC, in a ppKTP crystal (30mm-long, 46.2 µm poling period), and entangled in polarization in a
Sagnac interferometer. The source is pumped with a 770 nm continuous laser. Signal and idler photons are emitted around
1540 nm, separated from the pump by a dichroic mirror, and from each other by the polarizing beam splitter (PBS) of the
interferometer. They are then coupled into single-mode fibers, and sent to the different players. The idler photon is both used
as Alice’s part of the maximally-entangled pair and to herald the probe state. The signal photon is sent to Bob through the
untrusted lossy channel. A variable optical attenuator (VOA) allows to simulate an honest channel with a tunable amount of
loss. The biphoton state is measured with polarization analyzers, each made of two waveplates (WPs), a fibered PBS, and
> 80%-efficiency Superconducting Nanowire Single-Photon Detectors (SNSPDs). The WPs are mounted on motorized stages,
allowing to both regularly randomize the measurement basis and implement dishonest channels. Detection events are then sent
to a fast coincidence counter which gathers all the data required in order to evaluate the quantum correlations and channel’s
transmissivity.

channel that requires certification. Detecting an idler photon
in Alice’s PA heralds a signal photon being sent through the
quantum channel, which is then detected in Bob’s PA. In each
protocol attempt, the transmissivity is identified as the prob-
ability that Bob detects a state, knowing Alice heralded that
state, and is also known as the heralding efficiency ηs:

t(E|Φi) ≃ ηs = Rsi/Ri, (15)

where Rsi is the pair detection rate and Ri the idler detection
rate. We measure the pairs in random bases A0B0 or A1B1,
and evaluate a close-to-maximum violation of steering in-
equality β = 2−ϵ, with an average deviation ϵ = 1.42 · 10−2

over all protocols, a minimum deviation measured in a pro-
tocol attempt ϵmin = 1.34 · 10−2, and a maximum deviation
ϵmax = 1.48 · 10−2.

For each protocol attempt we set a different transmissiv-
ity of the VOA, such that ηs ranges from 21.9% to 47.3%,
the maximum value corresponding to the replacement of the
VOA by a simple fiber connector. Following the 1sDI set-
ting, Alice trusts her devices, so we are allowed to take losses
originating from her equipment as trusted. However, the ex-
perimental set up makes it difficult to distinguish between the
source of losses. To allow for all cases we consider that a cer-
tain fraction of the losses is not induced by the channel itself,
but by other components which are characterized by Alice,
as part of the source. These act as an unbiased filter, which
losses are considered homogeneous and trusted, so the overall

channel reads

E = (1− λc)E ′, (16)

with λc the amount of losses that is trusted and state-
independent, and E ′ a quantum channel that is strictly equiv-
alent to E by definition, and therefore returns the same output
states; see Fig. 4. In that case we can certify E ′ instead of E ,
and evaluate the transmissivity in bound (7) as

t(E ′|Φi) = t(E|Φi)/(1− λc) = ηs/(1− λc). (17)

This tightens the bound compared to the naive approach
where all losses are attributed to the channel. Adopting this
interpretation is quite realistic, considering that Alice pre-
forms a full characterization of the probe states, which po-
tentially includes a lower bound on the coupling losses. In
the most paranoid scenario, we can always set λc = 0 we
attribute all loss (including Alice’s coupling and detection
losses) to the quantum channel.

We show the results of our implementations in Fig. 5.
Thanks to our close-to-maximum violation of steering in-
equality and relatively high coupling efficiency, we are able
to certify the transmission of an unknown qubit state through
the untrusted channel, with a non-trivial transmission fidelity
F (ρi, ρo) > 50%. This is true even when Alice attributes all
losses to the channel, i.e. λc = 0, for channels with the high-
est transmissivities. The certified fidelity increases as Alice
trusts a larger amount of homogeneous losses λc, reaching
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FIG. 4: Schematic decomposition of the untrusted channel
E , into an equivalent channel E ′ that the protocol effectively
certifies, and a trusted channel, corresponding to the charac-
terized and homogeneous losses λc trusted by Alice.

F (ρi, ρo) ≥ 77.1% ± 0.6% when she assumes a maximum
value λc = 0.526 and the channel is close to lossless. In any
case, the certified fidelity decreases as the channel gets more
lossy, as a direct consequence of bound (7), highlighting the
difficulties of certifying lossy channels. This gives further
motivation to assume that a fraction of the losses is trusted, in
order to certify, for example, long-distance quantum commu-
nications. In our implementation, assuming maximum trusted
losses λc = 0.526, we could certify a non-trivial transmission
fidelity F (ρi, ρo) > 50%, for total transmissivities as low as
t(E|Φi) = ηs ≃ 0.263, while such certification was possible
only for ηs ≳ 0.44 with no trusted losses λc = 0.

FIG. 5: Minimum fidelity F (ρi, ρo) certified via our protocol
as a function of the measured heralding efficiency, tuned with
a VOA, and for different trusted losses λc (colored curves).
The curves are plotted by taking the average fidelity of the
probe state to a Bell state Fi, and the average of the deviation
from maximum violation ϵ, over all protocol attempts. Ex-
perimental results deviate from these curves, as F i and ϵ vary
between experiments. Errors induced by the finite statistics
are directly subtracted from the certified fidelity, as detailed
in Methods (see Eqs. (28) and (29) in particular). Error bars
include effects induced by the unbalance in detectors’ effi-
ciency and the propagation of errors on F i. We also display
the fidelity F (ρi, ρo) measured via quantum state tomogra-
phy, for ρi = Φi.

In order to fully demonstrate the protocol, one should send
a single quantum message ρi through the channel, hidden
among the probe states. The value of that state does not
matter in our implementation as we do not use it in a later

protocol, so we choose ρi = Φi and consider that a random
copy of the probe state is actually the quantum message. To
check the correctness of our protocol, we fully characterize
the corresponding transmitted message ρo after the channel,
by quantum state tomography. Note that this procedure is
done after the protocol ends, and in the same experimental
conditions, though placing full trust in our laboratory. Hence
this could not be performed inside an untrusted quantum net-
work. The full trust placed in our measurement apparatus
enables a more precise evaluation of the transmission fidelity,
which we thus estimate at F (ρi, ρo) = 99.64% ± 0.08% on
average over all protocol attempts, with a minimum value of
F (ρi, ρo) = 98.6% ± 0.6%. As displayed on Fig. 5, this is
far higher than the values certified by our protocol (due to
the trust added during the quantum state tomography), which
shows the state was indeed properly transmitted. Note that,
in this case, the channel and measurement stations are trusted
during the tomography of ρo, as it is performed outside of the
protocol. This allows us to measure numerous copies of ρo,
which is necessary for a full characterization of the state. In
order to show that the correctness of our certification proto-
col would hold for other quantum messages ρi, we perform
a full-process tomography of the quantum channel [34], and
lower-bound the fidelity between the physical channel and the
identity F⋄(E , I) ≥ 94%±3%. We expect this bound to be far
from tight, as it is evaluated using the equivalence between di-
amond and Choi-Jamiołkowski distances [35] (see Lemma 2
in Methods). Still, the fidelity is greatly above the values cer-
tified by our protocol, showing the certification procedure is
indeed valid for any quantum message ρi.

The resilience of the protocol is further shown by experi-
mentally simulating examples of dishonest channels. Let us
first recall that the operator of the channel has no information
on the position of the quantum message ρi before the end of
the protocol. This way, a typical attack consists in applying
a disruptive transformation with small probability, hoping it
will be applied to ρi and stay undetected by Alice and Bob.
Here we consider such a transformation to be a bit flip and/or
a phase flip. For this experimental demonstration, we remove
the VOA and consider that all losses are trusted. Note that
performing a phase flip is equivalent to turning Bob’s first
measurement B0 into −B0:

B0 = MB
0|0 −MB

1|0 −→ −B0 = MB
1|0 −MB

0|0. (18)

Similarly, a bit flip is equivalent to turning Bob’s second mea-
surement B1 into −B1. Thus, we perform these flips in prac-
tice by randomly changing the waveplate angles in order to
get the opposite measurement bases. This simulates dishon-
est channels of the form:

Ep,q[ρ] = (1− p)(1− q)ρ+ p(1− q)XρX

+ pqY ρY + (1− p)qZρZ,
(19)

with p the bit flip probability and q the phase flip probability.

The certification results are displayed in Fig. 6, for
different bit and phase flip probabilities. These show that
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FIG. 6: Minimum fidelity F (ρi, ρo) certified via our proto-
col, for malicious channels Ep,q , where p is the probability
of applying gate X and q is the probability of applying gate
Z. Here we measured a probe state fidelity to a Bell state of
F i = 99.12% ± 0.1%, and we trust a maximum amount of
losses λc = 0.526.

our implementation is quite sensitive to these attacks, such
that a flip probability of 0.01 induces a collapse of 16% of
the certified fidelity, and we only certify F (ρi, ρo) ≥ 58%.
The certified fidelity falls below the trivial value 50% for flip
probabilities as low as 0.016. In this way, any attempt of
Eve to disrupt the input state ρi with such a method can only
succeed with very small probabilities p, q < 0.02, or it will
be detected by Alice and Bob.

Discussion
In this work, we have provided a protocol to certify the trans-
mission of a qubit through an untrusted and lossy quantum
channel, by probing the latter with close-to-maximally entan-
gled states and witnessing non-classical correlations at its out-
put. In the DI case these are Bell correlations, in the 1sDI they
are steering correlations. Our theoretical investigations rely
only on assumptions made on the probe state’s source and the
sender’s measurement apparatus (in the case of 1sDI), while
relaxing assumptions made on the quantum channel and the
receiver’s measurement apparatus. This setting proves to be
an interesting trade-off between realistic experimental condi-
tions and reasonable cryptographic requirements. It also em-
bodies a practical scenario in which a strong server provides
a weaker receiver with a quantum bit.

Compared to previously proposed verification procedures,
our protocol not only certifies the probed channels, but also
an unmeasured channel through which a single unknown state
can be sent. As quantum measurements deteriorate the quan-
tum states, this task can only be performed at the price of
measuring a large amount of probe states, which limits the
repeatability of the protocol. With our experimental param-
eters, certifying the transmission of a single qubit thus takes

1 h to 2 h, depending on the channel’s transmissivity. In these
conditions the protocol can still serve as a practical primitive
for other single-shot protocols that require a single quantum
state, such as the recently demonstrated quantum weak coin-
flipping [36, 37]. Additionally, we show in SUPP. MAT. E 5
that the duration of the protocol can be reduced to a few sec-
onds, by increasing the probe states’ quality and emission rate
within attainable performances for current technologies. Fur-
ther scientific advancements such as the development of mul-
tiplexed photon-pair sources [32, 38–41], or the emergence of
bright and deterministic single-photon sources [42–44], could
improve our protocol’s repeatability by drastically increasing
the entangled photon-pair generation rate.

Our proof-of-principle implementation shows the correct-
ness of this certification procedure, and its feasibility with
current technology. This way we could certify non-trivial
transmission fidelities for a wide range of losses induced by
the channel, by making some mild but realistic assumptions,
such as the characterization of a fraction of trusted losses, in-
duced for instance by the coupling of probe states inside op-
tical fibers. By implementing random bit and phase flips, we
could show that even a small probability attempt to disrupt
the quantum information degrades the certified transmission
fidelity, and is therefore detected by the players.

Future developments could demonstrate the feasibility of
a fully device independent version of our protocol, in which
Alice’s measurement or even the probe states’ source are not
trusted. Such a protocol could be achieved by linking the
probe state quality to that of the corresponding output state,
or by making the IID assumption on the probe state’s source.
Also, more investigation on quantum-memory-based attacks
could give a sharper idea on the possibilities of deceiving the
certification procedure.

Our work opens the way to certification of a wide variety
of more sophisticated lossy quantum channels. In particular,
the rapid improvements of quantum technologies could soon
provide possible applications of this protocol to the authen-
tication of quantum teleportation, memories or repeaters.
The development of the latter could also temper the losses in
large-scale quantum transmission links, making our protocol
particularly suited for the certification of long-distance
quantum communications [45–47].

Methods
Two Useful Lemmas. The proof of bound (7) relies on two
lemmas, which give fundamental results on lossy quantum
channels, and that we provide here.

Lemma 1 (Extended Processing Inequality). For any prob-
abilistic channel E (CPTD), and any input states ρi and σi,
the following inequality holds for the sine distance C(ρ, σ) =√

1− F (ρ, σ):

C(ρi, σi) ≥ t · C(ρo, σo), (20)

where ρo = E [ρi]/t(E|ρi) and σo = E [σi]/t(E|σi) are the
output states of the channel, and t = t(E|ρi) or t = t(E|σi).
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This first lemma generalizes to CPTD maps the
well-known fidelity processing inequality F (ρ, σ) ≤
F (E [ρ], E [σ]), which holds for any CPTP map E .

Lemma 2 (Channel’s Metrics Equivalence). For any proba-
bilistic channel E1, and any E2 that is proportional to a de-
terministic channel (CPTP map), both acting on L(Hi), we
have the following inequalities:

CJ(E1, E2) ≤ C⋄(E1, E2) ≤ dimHi × CJ(E1, E2), (21)

where the CJ , resp. C⋄, are the Choi-Jamiołkowski, resp. dia-
mond, sine distances of probabilistic quantum channels:

CJ(E1, E2) = C
( (E1 ⊗ I)[Φ+]

t(E1|Φ+)
, (E2 ⊗ I)[Φ+]

)
, (22)

C⋄(E1, E2) = sup
|ϕ⟩

C
( (E1 ⊗ I)[ϕ]

t(E1|ϕ)
, (E2 ⊗ I)[ϕ]

)
. (23)

This lemma shows the equivalence between Choi-
Jamiołkowski and diamond distances, which is fundamen-
tal when trying to link the behaviour of the channel on a
maximally-entangled state, to its behaviour on any quantum
state. We also use this lemma in order to bound the dia-
mond fidelity after performing a full process tomography of
the channel, by evaluating the more straightforward Choi-
Jamiołkowski fidelity.

Note that both these lemmas also apply to the trace distance
D(ρ, σ) = 1

2Tr|ρ − σ|, and are proven in SUPP. MAT. B 1
and B 2.

Protocol Security. In our protocol, the quantum channel is
allowed to evolve through time, with some potential mem-
ory of the experiment’s past history. This way we define the
channel Ek|[k−1], where [k − 1] = k − 1, k − 2, ..., 1, that
operates on the k-th state sent by Alice through the protocol.
In particular, Alice sends the quantum message ρi at a ran-
dom position r through channel Er|[r−1]. We then define the
expected channel over the protocol:

Ē =
1

N + 1

N+1∑
k=1

Ek|[k−1]. (24)

As ρi is sent at a random position that stayed concealed from
the channel’s operator, the expected transmitted message is
ρ̄o = (Ē ⊗ I)[ρi]/t(Ē |ρi). As long as r stays hidden and
random, any measurement performed on the transmitted mes-
sage later after the protocol would follow the same statistics
as if it was performed on ρ̄o (see SUPP. MAT. D 1 for more
details). This way, we derive the protocol security by apply-
ing bound (7) to the average channel Ē , in order to bound the
fidelity of ρ̄o to ρi, up to isometry. In particular, the output
probe state fidelity to a maximally entangled state now reads

F o = F
(
(ΛB ⊗ ΛA2)[(E ⊗ I)[Φi]]/t(Ē |Φi), (E0 ⊗ I)[Φ+]

)
.

(25)
Using recent self-testing results in a non-IID setting

[28] applied to the output probe state, we show in SUPP.

MAT. D that for any x > 0, Co =
√
1− F o can

be bounded by two terms, with confidence of at least
cx = (1− e−x) · (1− 2e−x)2:

arcsinCo ≤ arcsin
√
αfx(ϵ,K) + ∆x(ηs,K), (26)

where K is the number of pairs measured by Alice and Bob,
ηs is the measured heralding efficiency, ∆x(ηs,K) is an error
function that goes to 0 for high values of K, αfx gives self-
testing bound on the output state, in a non-IID regime, with

fx(ϵ,K) = 8

√
x

K
+

ϵ

2
+

ϵ+ 8/K

2 + 1/K
−−−−−→
K→+∞

ϵ, (27)

and α = 1.26. We choose x = 7 to get a confidence
cx > 99.5%, and measure K ≃ 109 copies of the probe state,
in order to reach the asymptotic values, which takes from 1 to
3 hours in our experiments depending on the channel trans-
missivity. Note that the error function is due to both the non-
IID regime and the lack of information on channels that do
not output any state. A similar error occurs when we evaluate
the transmissivity as the measured heralding efficiency:

t(Ē |Φi) ≳ τx(ηs,K), (28)

where τx(ηs,K) ≃ ηs for high values of K. This way, the
actual bound on the fidelity between the input and output state
reads, with confidence cx,

F (ρ̄o, ρi) ≥ 1− 4 · sin2
(
arcsin

(
Ci/τx

)
+

arcsin
√
αfx(ϵ,K) + ∆x

)
,

(29)

which includes additive error terms compared to bound (7).
In the analysis of our data, we include these terms that are
minimized thanks to the large number K of states measured
for each implementation. Note that the expressions for all the
mentioned functions are detailed in SUPP. MAT. D 4.

Assumptions. For clarity we highlight the assumptions made
in our security analysis.

First, we assume Alice and Bob can communicate via a
trusted private classical channel. It allows the players to agree
on their measurement settings, Alice to send Bob the posi-
tion r of the quantum message ρi, and Bob to tell Alice if
the states were properly received. Players can hence perform
measurements on the fly. Alternatively, Bob could use quan-
tum memories to store all the states sent through the quantum
channel, and then only perform the measurements in agree-
ment with Alice. This would however require a large number
of trusted quantum memories, which would raise important
security issues, as well as practical realization problems.

Secondly, the fair sampling assumption is required on the
measurement apparatus for the self-testing procedure, as we
allow a large amount of losses to be induced by the quan-
tum channel. Alice’s measurement apparatus is completely
trusted and characterized, according to the one-sided device
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independent scenario. On Bob’s side, we assume the effi-
ciency of the measurement apparatus to be independent of the
measurement setting B0 or B1. If the efficiency depends on
the state measured, then we consider that dependence to be
part of the quantum channel. A slight unbalance of efficiency
is allowed between the two different measurement outcomes,
and we show in the SUPP. MAT. E 3 that the error induced by
this unbalance is negligible.

Finally, in keeping with the 1sDI setting, we make the IID
assumption on the probe state source, during each attempt of
the protocol. To show the legitimacy of this assumption in
our implementation, we performed a series of quantum state
tomography measurements, during 8 hours, in order to char-
acterize the fluctuation of the probe state with time. This char-
acterization shows the probe states are stable at the scale of
one protocol (see SUPP. MAT. E 1 for the detailed results).

Loopholes. Depending on the scenario, important loopholes
may remain open when self-testing the quantum states in-
volved in the protocol. Most notably, the freedom-of-choice
loophole is open in our experimental implementation, as the
measurement basis is randomized every 1 s only, by using the
simulated randomness of our classical computer. Closing this
loophole would require the use of certified quantum random
number generators [48], which goes out of the scope of this
study. For this first demonstration, we thus assume the results
are not affected by the loophole.

The detection loophole also remains open due to the chan-
nels’ losses, whatever the implementation. Fair-sampling as-
sumptions are thus required, as mentioned earlier.

Finally, the locality loophole is irrelevant in 1sDI and
thus the experimental implementation, as Alice’s apparatus
is trusted and does not communicate with Bob’s. In a full-DI
setting, closing the loophole requires Alice to send her states
over long distances to ensure spacelike-separated detection
events during certification procedures. More quantum chan-
nels are thus required to carry these states, which have to be
assumed trusted in order to perform the protocol.

Source and Detection. Probe states are generated via type-
II SPDC in a ppKTP crystal combined with a Sagnac in-
terferometer. We maximized the heralding efficiency ηs =
Rsi/Ri, with Ri the idler photon detection rate and Rsi the
pair detection rate, following the method proposed in [49, 50].
For that purpose, the pump’s spatial mode and focus as well as
the pair’s collection modes, were tuned carefully when cou-
pling to single-mode fibers, and losses on the signal photon
path were minimized. This way the pump is in a collimated
mode at the scale of the crystal, close to a gaussian mode
of waist wp ≃ 315 µm, which maximizes the heralding ef-
ficiency [50, 51]. The signal photon’s coupling mode has a
waist ws ≃ 190 µm, and the idler photon’s is wi ≃ 218 µm.
We also used high-efficiency SNSPDs to detect the photons.
Losses on the idler photon were not limiting, so we selected
the best components and detectors for the signal photon. All
detection events were recorded by a time tagger, and dated
with picosecond precision. Two detection events were con-
sidered simultaneous when measured within the same 500 ps

coincidence window. In this way, we detect idler photons
in Alice’s detectors with a rate Ri = 600± 40 kHz (vary-
ing from one protocol attempt to another), for a brilliance of
≃ 670± 50 kHzW−1 nm−1. SNSPDs display dark count
rates of ≤ 500Hz, such that the probability of falsely herald-
ing a probe state is negligible. Finally, 1 nm-bandwidth spec-
tral filters were used to limit the spectrum spread that would
otherwise degrade the polarization state because of birefrin-
gence and dispersion in optical fibers.

Quantum State Tomography. We perform quantum state
tomographies via linear regression estimation [52] and fast
maximum likelihood estimation [53]. Photon counts are cor-
rected by measuring relative efficiencies of the detectors. We
use this method in order to reconstruct the probe state Φi, and
to calculate the probe state fidelity to a maximally entangled
state F i. For this calculation, we maximize the fidelity

F i
U = F

(
(I⊗ U)Φi(I⊗ U†),Φ+

)
(30)

on a local unitary U , to evaluate the maximum fidelity up to
isometries, as defined in Eq. (5).

The estimation of uncertainties on the reconstructed states
takes into account different factors (see SUPP. MAT. E 4). We
use the Monte Carlo method to evaluate the influence of pho-
ton counting statistics and systematic errors on measurement
bases [54]. Calibration of the measurement stations allows to
estimate the maximum deviation from the ideal measurement.
Then, we generate 1000 new data samples from simulated ex-
periments, including random deviation on measurement bases
within the characterized interval, and photon-counting Pois-
sonian statistics. We thus reconstruct 1000 new density ma-
trices from which we compute the fidelity to the target state.
The standard deviation on the resulting fidelities gives an es-
timation of the uncertainty. In addition, the resulting average
fidelity a priori deviates from F i, so we take this deviation as
another uncertainty. Finally, slow thermal fluctuation also in-
duce some uncertainty on the fidelity, as our experiment lasts
for a relatively long period of time. By continuously perform-
ing quantum state tomographies for 8 hours, we are able to
evaluate the fluctuations in the quantum state on time spans
of the order of a protocol duration. This way, we measure
an additional 0.02% error on the quantum state fidelities to
Bell states, due to thermal fluctuations. The reader can refer
to SUPP. MAT. E 1 for more details on the evaluation of these
thermal fluctuations and the drift of the quantum state through
time. Note that throughout the manuscript, all error bars on
fidelities are enlarged by a factor 2, giving a 95% confidence
level.

Steering measurement. When testing the violation of steer-
ing inequality, players should in principle pick a random mea-
surement basis between A0B0 and A1B1 for each new photon
pair. However, because of technical limitations of our motor-
ized waveplate stages, we only operate this randomization at
a limited rate of 1Hz. A fully secure protocol would therefore
require faster electronics and active optical components.

For the implementation of malicious channels, we perform
a 7-hours measurement run. From this single run we generate
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the data that could be acquired in the certification procedure
of a variety of channels Ep,q , as defined in Eq. (19). For this
run, we randomize the measurement basis, with equal prob-
abilities between A0B0, A1B1 (the channel chooses to act
honestly), and −A0B0, −A1B1 (the channel chooses to dis-
rupt the state). In order to simulate a larger variety of data
samples, we perform that randomization at a 5Hz-rate. We
then generate the data for the certification of channel Ep,q , by
picking a random set of samples, with the following propor-
tions:

• q/2 in basis −A0B0,

• p/2 in basis −A1B1,

• (1− q)/2 in basis A0B0,

• (1− p)/2 in basis A1B1.

The data acquired in basis −A0B0 and −A1B1 is treated
as if it was acquired in basis A0B0 and A1B1, respectively,
when calculating the average violation of steering inequality
β = |⟨A0B0⟩+ ⟨A1B1⟩|.

Note added. While finishing this manuscript we became
aware of a related work by Bock et al. [55].
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125, 260507 (2020).
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