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Abstract

Structural health monitoring (SHM) relies on non-destructive techniques such as
acoustic emission (AE) that generate large amounts of data over the lifespan of
systems. Clustering methods are used to interpret these data and gain insights
into damage progression and mechanisms. Conventional methods for evaluating
clustering results utilise clustering validity indices (CVI) that prioritise compact
and separable clusters. This paper introduces a novel approach based on the
temporal sequence of cluster onsets, indicating the initial appearance of potential
damage and allowing for early detection of defect initiation. The proposed CVI is
based on the Kullback-Leibler divergence and can incorporate prior information
about damage onsets when available.

Three experiments on real-world datasets validate the effectiveness of the pro-
posed method. The first benchmark focuses on detecting the loosening of bolted
plates under vibration, where the onset-based CVI outperforms the conventional
approach in both cluster quality and the accuracy of bolt loosening detection. The
results demonstrate not only superior cluster quality but also unmatched preci-
sion in identifying cluster onsets, whether during uniform or accelerated damage
growth. The two additional applications stem from industrial contexts. The first
focuses on micro-drilling of hard materials using electrical discharge machin-
ing, demonstrating, for the first time, that the proposed criterion can effectively
retrieve electrode progression to the reference depth, thus validating the setting
of the machine to ensure structural integrity. The final application involves dam-
age understanding in a composite/metal hybrid joint structure, where the cluster
timeline is used to establish a scenario leading to critical failure due to slippage.

Keywords: Clustering validity index, Acoustic emission, Clusters timeline, Structural
health monitoring

1 Introduction

Ensuring the availability of equipment and the integrity of structures is a critical con-
cern within the aeronautical and civil engineering industries, both economically and
for user safety. This necessitates the monitoring of structures as well as understand-
ing potential damage mechanisms that can indicate the integrity of the structure.
Structural health monitoring (SHM) is a research and development field aimed
at implementing and deploying solutions to monitor engineering systems such as
equipment and structures [1, 2].

During operation, systems and structures are subjected to mechanical, electrical,
or chemical stresses, which generate localised micro-deformations. These micro-
deformations may be accompanied by the release of energy in the form of elastic waves,
known as acoustic emission (AE). When these changes are irreversible and likely to
degrade performance, they are referred to as damage. Accumulated micro-damages
eventually lead to material failure, rendering the structure unusable, and potentially
leading to catastrophic failure [3, 4]. Piezoelectric transducers can be placed onto
or embedded in the host structure to record and convert these micro-vibrations into
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usable electrical signals [2, 5]. The recorded signals contain the signatures of the types
of damage from which they have been generated [6].

The AE technique is particularly well suited to localise damage [7–9]. It is a pas-
sive technique that exploits the transient signals emitted during damage occurrence.
Therefore, sensors must be continuously monitored or triggered by significant damage.
Although the sampling frequency is relatively high (typically 5 to 10 MHz, depending
on the sensors), it is possible to detect damage in real time from AE data streams,
even during continuous monitoring, thanks to modern computing capabilities. A key
challenge in real-time processing is the acoustic emissivity of the monitored mate-
rial and/or structure; the more emissive the material and/or structure, the greater
the number of AE sources it has, leading to more signals that need to be processed,
which increases computational costs. To manage this, an amplitude threshold is typ-
ically applied to limit the number of transients to be analysed. After distinguishing
between noise and meaningful data, various methodologies can be applied to interpret
AE data streams. Generally, these methodologies share a common focus on analysing
certain statistical properties, although the methods for deriving these properties vary
significantly across publications.

One approach is sample-based analysis [10–12]. For instance, Lindley et al. [12]
apply several thresholds in a probabilistic manner. Depending on how many times
these thresholds are crossed, groups are formed using a non-parametric Bayesian
approach based on the Dirichlet process. Since the algorithm can generate many clus-
ters, interpretation is done by observing the frequency of cluster assignment. This
method was demonstrated on a landing gear subjected to fatigue testing.

Samples can also be analyzed in a windowed format, as proposed by Martin-Del-
Campo et al. [13, 14] in the context of bearing monitoring with particle-contaminated
lubricant at varying rotational speeds. Acoustic emissions are analysed online using
an unsupervised feature learning method based on orthogonal matching pursuit and
dictionary learning. The dictionary consists of waveforms matched to a windowed
portion of the stream, optimised to produce a sparse and accurate code, reducing
the measurement data rate by an order of magnitude or more. This method was
developed for anomaly detection, where part of the data is labelled as ”normal,” and
the algorithm detects deviations, providing insights into structural integrity.

Data analysis can also be performed at the transient level. Transient signals must
first be detected using wave selection methods from the literature [7, 15–18]. Interpre-
tation follows and aims to address challenges such as damage localisation or clustering
for damage classification. For example, Chen et al. [19] applied dynamic time warp-
ing to measure the similarity of AE signals for source localisation when multiple AE
sources are present. Data from thermal-cracking experiments on granite were used
to validate the approach. In [20], randomly selected signals are represented by auto-
regressive hidden Markov models, subsequently applied to all transients of a dataset
to obtain scores indicating goodness-of-fit, which are then used as inputs for clustering
algorithms. This method was validated on datasets from carbon fibre composites.

One of the most frequently applied methods encountered in the literature relies
on three main steps (Figure 1): 1) hit detection - where transient signals are detected
based on signal processing tools - and feature extraction where the transient signals are
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compressed and represented in a common high dimensional space for further analysis,
2) clustering or classification, which either groups features in an unsupervised manner
or uses prior labels in a supervised approach to predict signal classes, and 3) evaluation
and validation of the groups or classes of signals.

Fig. 1: Feature-based clustering of AE data.

This methodology has been applied, for example, to carbon fibre composite pan-
els for aeronautics [8], high-performance carbon fibre-reinforced thermoset composites
in extreme environments [21], bridge and tunnel health assessment [22, 23], railway
systems [24], tribology [25, 26], and fatigue crack monitoring [27]. Deep learning
approaches, which are supervised methods, follow similar steps but typically automate
feature extraction through layers during training [28–30].

The final step, validation, which is central to this work, is more challenging for
clustering than for supervised learning due to its subjectivity [31], especially given the
lack of precise ground truth in the interpretation of AE data. Various criteria, known
as clustering validity indices (CVI), have been proposed in the pattern recognition
community [32–37] to determine whether clusters are meaningful.

For a given application, the challenge for unsupervised interpretation of AE data
is the extraction of relevant features that can link the identified clusters to damage
mechanisms. This involves answering the following key questions: What are the most
relevant features? How many clusters are needed?

An answer to these questions is provided by an algorithm used in the literature
detailed in appendix A and proposed by [38]. It uses several CVIs evaluated for differ-
ent combinations of k ·Cp

n (subsets of p features from n, considering k different cluster
counts). A majority voting scheme, weighted by the user, is used to select the best
number of clusters and subset of features.

The CVI used for AE data interpretation, such as the Davies-Bouldin index [39] or
Silhouette index [40], are exclusively focused on clusters’ shape, characterised by their
compactness and separability in the feature space. One problem with these CVIs is
that the chosen metric (such as Euclidean distance) may differ from those used in the
clustering method’s objective function (such as likelihood), potentially leading to mis-
leading interpretations [21, 41]. Sawan et al. [41] showed that acoustic emission data
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should be divided into more clusters than are expected from the number of active dam-
age mechanisms to prevent misrepresentative grouping. Similarly, the results of several
clustering methods were combined in [21] to more accurately map the feature space,
resulting in a timeline that reflects a plausible damage scenario. Another issue with
classical CVIs is that the timeline provided by compact and separated clusters is gen-
erally not related to the expected damage scenario, hence justifying novel approaches
to achieve more relevant clustering performance [5, 12, 41–46]. These works show that
damage can be described by a set of clusters, which may or may not correspond to
true mechanisms, but the common factor is that one cluster should act as a precursor
to others, following a progression.

In previous literature, clustering results are often presented as sequences after
applying shape-based CVIs. However, current methods do not assure users that the
results will be relevant in terms of the timeline. Therefore, the challenge remains: how
can we select features and determine the number of clusters to guarantee a relevant
timeline?

Our work aims to address this question by introducing a new validation criterion
based on cluster onsets. The main features and advantages of this criterion are as
follows:

• The proposed criterion is the first to formalise the ranking of cluster partitions
based on how clusters emerge over time or in relation to a physical parameter.
This approach provides a dynamic perspective on clustering behaviour, offering a
new way to assess the evolution of clusters beyond static measures. The criterion is
innovative and lacks a direct equivalent in the existing literature for selecting the
number of clusters and the feature subsets that best explain the data in terms of a
timeline.

• The proposed criterion is valuable for onset-based interpretation of AE signals
particularly in cases where materials degrade progressively under stress. Three
challenging experiments on real-world datasets demonstrate the relevance of the
proposed approach. One of the applications is a benchmark on the detection of
the loosening of bolted plates under vibration where the proposed criterion outper-
forms existing methods. It provides superior results, both quantitatively (in terms
of accuracy) and qualitatively (in terms of the positioning of estimated onsets and
cumulative occurrences).

To illustrate the positioning of our contribution, Figure 2 highlights the funda-
mental difference between shape-based and onset-based approaches for evaluating the
results of AE data clustering. In the shaped-based approach (Figure 2a), clusters may
appear compact and well-separated in a low-dimensional feature space. However, this
does not guarantee that they will correspond to relevant onsets. For example several of
them can start very early and almost simultaneously when considering the horizontal
axis. In contrast, the latter approach focuses on identifying feature subsets that high-
light onsets distributed along the horizontal axis (such as load or time). This is more
helpful for interpreting the dynamic behaviour of the material or structure under test,
as illustrated in Figure 2b.
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(a) ”Selection” (left) is based on clusters shape in the feature space in low-dimensional space
for visualization purpose. ”Representation” (right) of clusters of the timeline provides onsets
which start too early.

(b) ”Selection” (right) is based on clusters onsets. The timeline is relevant for monitoring.
The ”representation” (left) in low-dimension (2D in general) of the clusters can be useless
because the clusters are compact and separated only in higher dimensions (used in cluster-
ing). The compactness and separation of clusters is ensured during clustering.

Fig. 2: Selection and representation of clusters results.

Section 2 introduces the proposed criterion and presents an algorithm for the
implemented method, incorporating the proposed criterion for selecting the best
parametrisation and the resulting optimal cluster partition. The relevance of the
criterion is evaluated in Section 3 using a benchmark obtained from a real structure.

2 Proposed criterion: Sorting subsets of features
with respect to onsets

The AE data consist of N d-dimensional feature vectors xn ∈ ℜd. Given a subset of
features S ⊂ ℜd and a number of clusters K, a partition P is obtained by applying
a clustering method. P is represented by a vector of length N , where each element
P (n) ∈ {1, 2 . . .K} represents the cluster number assigned to each AE signal. For
fuzzy clustering methods, P (n) is the cluster with the largest membership degree.

A cluster’s onset is defined as the first occurrence of the cluster. For example, for
cluster k, the onset is the first index in P where the k-th cluster appears. Onsets can
be represented on an axis related to time, load, or other physical quantities related to
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the degradation of the material. Illustrations can be found on the right-hand side of
Figure 2 and on Figure 3.

Onset of cluster 1
For Example 

matrix cracking

Onset of cluster 2
For Example 

intra or inter ply damage

Start of
test

Time (or load)

Onset of cluster 3
For Example

fibers related damages

End of
test

No AE signal AE signal in 
cluster 1

AE signal in 
cluster 1 & cluster 2

AE signal in
 cluster 1, cluster 2 & cluster 3

Onset of 
cluster 1

Onset of
cluster 2

Start of test
Time (or load)

Onset of 
cluster 3

End of test

Fig. 3: Illustration used in examples in Section 2: Onsets (triangles) are defined as
the first occurrence of each cluster. The horizontal axis can be any monotonically
increasing information regarding the evolution of the test like, for example, time or
a damage variable. In-between onsets, several clusters, that previously occurred, can
keep growing. Reference to composite damages is only for illustration. Top figure: No
signal appears from the beginning to the first onset so this part is removed and the
starting time shifted accordingly, which leads to the bottom figure.

Let us define tk ∈ [0, T ] as the first occurrence of cluster k in a dataset. In order
to compute the criterion, the onsets are delayed so that the first one starts at t1 =
0 (Figure 3). Then, we compute the normalised difference between two consecutive
onsets as

∆k =
tk+1 − tk

T
tK+1 = T (1)

The set pest = {∆k}Kk=1, estimated by clustering, can be interpreted as a probability
distribution made of K elements since we have

K∑
k=1

∆k = 1 (2)

Example 1. As an example, consider Figure 3. We have three clusters, with onsets
positioned at t1 = 27, t2 = 57, t3 = 82, and with T = 127 (horizontal axis is with
arbitrary unit; in practice it can be related to time, load, or a physical quantity). We
can shift the onsets to t1 = 0, t2 = 30, t3 = 55 and T = 100. Then ∆1 = 30/T ,
∆2 = 25/T , ∆3 = 45/T , satisfying Eq. 2. In that case, pest = [0.30, 0.25, 0.45].

2.1 Case 1: A prior on onsets is available

Let’s first assume that the end-user can provide the expected onsets (composed of K
values). These prior onsets can, for example, be provided by a physics-based model
able to predict the onset of each damage or cluster. Prior onsets can be represented as
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a distribution, say ptrue, following the same reasoning as before. The problem is now
to compare ptrue (the prior distribution) and pest (the estimated distribution).

The degree of agreement between estimated onsets and the ground truth as quan-
tified by pest and ptrue respectively, can be evaluated by different means, for example
using the L1 norm, the Hellinger distance, the Bhattacharyya distance, the total vari-
ation distance between probabilities, the Kullback-Leibler (KL) or Renyi divergences,
among others. The KL divergence is used in the present work. KL is not symmetric
and never negative and was used in many machine learning algorithms based on prob-
ability theory and on artificial intelligence. In information theory, KL is the amount
of information lost when one distribution (for example, depending on parameters) is
used to approximate another (for example, related to a ground truth). We compute
the KL divergence as follows:

KL(pest||ptrue) =

K∑
k=1

pest(k) log2

(
pest(k)

ptrue(k)

)
(3)

In this expression, pest is dependent on S, the subset of features used for clustering,
and K the number of clusters. The KL thus comprises two terms. First, a cross entropy
loss

CE(pest||ptrue) = −
K∑

k=1

pest(k) log2 (ptrue(k)) (4)

and second, Shannon’s entropy

E(pest) = −
K∑

k=1

pest(k) log2 (pest(k)) (5)

with KL = CE − E.

2.2 Case 2: Without a prior on onsets

Even though some initial onsets could be obtained numerically (by simulations) or
experimentally (for example using infrared thermography or strain sensors), it is more
frequent, in practice, to be in the situation where there is no prior on onsets of clusters.
Therefore, one approach to set ptrue without prior is to make use of the principle of
maximum entropy, since ptrue is a distribution. This ensures that unconscious arbitrary
assumptions are not made, and the introduction of biases extrinsic to the data is
avoided [47, 48]. Therefore, in the absence of a prior on onsets, among all possible
distributions of onsets for ptrue, we should select the one with the largest entropy that
corresponds to the uniform distribution.

When using the uniform distribution of onsets for ptrue in CE (Eq. 4), we obtain

ptrue = Uniform⇒ CE(pest||ptrue) = − log2
1

K
= log2 K (6)
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which means that KL tends to:

ptrue = Uniform⇒ KL(pest||ptrue) = log2 K − E(pest) (7)

We can simplify Eq. 7 by dividing by log2 K, leading to

1

log2 K
KL(pest||ptrue) = 1− Enorm(pest) (8)

where Enorm ∈ [0, 1] is the normalised entropy of pest. Therefore, for a given K,
minimising the initial criterion in Eq. 3 divided by log2 K is equivalent to maximising
the entropy of onsets. A possible criterion to sort subsets is thus:

QONSETS
proposed (S,K) : Given K, find argmax

S

[
Enorm (pest (·|S,K))

]
(9)

where it is made explicit that E depends on K (the number of clusters) and S (subsets
of features). Therefore, for a givenK, the criterion is used to sort the subsets according
to the distribution of the onsets.

Example 2. Let us continue the previous example, with T = 100 and K = 3 we can
define three onsets distributed uniformly in order to define ptrue, located at ttrue1 = 0,
ttrue2 = T/3 = 33.33, ttrue3 = 2T/3 = 66.66, with all ∆k = 33.33/T . Therefore ptrue =
puniform = [0.33, 0.33, 0.33] (at two digits of precision, the sum must be one). Using
pest of the previous example, we get KL = 0.0454714 (Eq. 3) with CE = 1.585 and
E = 1.539. The maximum of E for 3 clusters is log2(3) = 1.585 therefore Enorm =
1.539/1.585 = 0.971.

Remark 1. One important point to observe is that the proposed CVI only requires
the partition, not the features, conversely to a shape-based CVI. Therefore, accord-
ing to [34], the proposed criterion belongs to the family of “external” CVIs whereas
shape-based CVIs are referred to as “internal”. However, the proposed criterion is a
special case because external CVIs actually require a complete reference partition to be
compared with, meaning that the ground truth must be known for all feature vectors,
whereas the proposed CVI only requires the onsets of clusters.

Remark 2. Our criterion can be used in an online setting for SHM applications,
provided T is known. T represents, for example, the maximum number of cycles for
fatigue testing, or the maximum crack size. Since in an online setting, K is assumed
to evolve, we need to iteratively store the onsets. The list of onsets will be updated
with a new value (appending a new element in a vector) when a new cluster is created.
Then, Eq. 1 and 2 can be computed, followed by Eq. 9 (for example, without prior).

2.3 Proposed algorithm

The criterion presented in the previous section is implemented within a broader pro-
cedure that incorporates the steps of the feature-based clustering method outlined in
Figure 1. This procedure proceeds as follows.
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First, a standard clustering method (in this case, K-means) is applied to the
dataset, assuming a range for the number of clusters and possible feature subsets.
Unlike other methods, for each partition an additional characteristic, called the clus-
ter onset, is defined as the first occurrence of that cluster in the dataset. The criterion,
given by Eq. 5 or Eq. 9, depending on whether prior information on the onsets is avail-
able, is then calculated for each partition. The best partitions are selected based on the
maximisation of this criterion (e.g., the top percentile of the values of QONSETS

proposed (S,K)).

Finally, the onsets of each cluster in the selected partitions are extracted and
compiled into a histogram representing the cumulative distribution of onsets across all
selected partitions. Similar to interactive clustering [49], the end-user can analyse this
histogram, and based on the positions and amplitudes of peaks, they can choose to
either accept, reject, or further refine the results—potentially triggering a re-clustering
process by using different features or alternative clustering methods.

An algorithm detailing this procedure is provided in Alg. 1.
The interpretation of the histograms can vary across applications and specificity

of the dataset. The location of the peaks can be helpful for the end-user to conclude
that some damages potentially start or grow from these locations. It can also lead to
the conclusion that the extracted features or the clustering method are meaningful or
not. Examples are provided in the following sections.

3 Experiments

Three applications have been considered. Table 1 presents the details of their param-
eterization, including the number of features per subset, the possible number of
clusters, and the clustering method. For each application, the results of the proposed
onset-based CVI (Alg.1) and the shape-based CVI [38] (Alg. 2) are presented.

3.1 Dataset #1: Monitoring of a bolted metallic structure

In this section, three state-of-the-art shape-based CVIs used in the AE community,
namely the Silhouette, Davies-Bouldin, and Calinski-Harabasz CVIs, are used to sort
the partitions with the voting scheme [38] and compared to the proposed onset-based
CVI to provide a benchmark. It is important to note that these CVIs are adapted for
hard clustering methods like K-means. Soft clustering techniques such as Gaussian
mixture models (GMM) or fuzzy C-means (FCM), which assign probabilistic mem-
berships, may not align well with these metrics. Therefore, K-means is used in both
cases as well as because it is a widely adopted method in AE literature.

3.1.1 Setup and data description

The benchmark dataset ORION-AE is presented in [50]. In this dataset, the true labels
are provided, which allowed us to evaluate the performance of the proposed criterion
and compare it with the standard solution. The data were collected on a setup designed
to reproduce the loosening phenomenon observed in aeronautics, automotive, or civil
engineering structures where parts are assembled together by means of bolted joints
(Figure 4).
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Inputs:
Matrix of features Y with size N × d
Range of number of clusters [Kmin,Kmax]
Subsets of features S

Outputs:
Criterion
Histogram of onsets

1 for K ∈ [Kmin,Kmax] do
2 for S ∈ S do
3 // Apply the clustering method and store the partition and parameters;
4 [P (S,K), θ(S,K)]← Clustering(Y(:, S), K);

5 // Compute quality according to how onsets are distributed ;
6 QONSETS

proposed (S,K) ← Onsets Clusters Quality(P );

7 end

8 // Sort and select a few subsets of subsets of features for each K using
Eq. 9. The threshold can be adapted according to the number of subsets
considered ;

9 q0.99 = quantile with probability 0.99 of QONSETS
proposed (S,K);

10 Ssub(K) = {S : QONSETS
proposed (S,K) >= q0.99};

11 // Find onsets of the selected partitions;
12 Onsets(K) = Find onsets(F (K));

13 end
14 // Accumulate evidence from various numbers of clusters using histogram;
15 // The number of intervals in the histogram depends on the application;
16 Acc = Histogram (Onsets(∀K));

17 // Present the histogram to the end-user who can then either reject, accept, or
be ignorant of the result, triggering a re-clustering of the data [49].;

Algorithm 1: Onsets-based algorithm using Eq. 9 by evidence accumulation.

The benchmark is composed of different campaigns of measurements. In the fol-
lowing, the set of measurements called “measurementSeries B” (campaign #B) was
used for illustration. The structure was submitted to a 120 Hz harmonic excitation
force. Seven tightening levels were applied on the upper bolt, starting from 60 cNm (set
with a torque screwdriver) and held during a 10-seconds vibration test. The shaker was
stopped and this vibration test was repeated after a torque modification at 50 cNm.
Torque modifications at 40, 30, 20, 10 and 5 cNm were then applied in this order. In
each campaign, three sensors are available and we used the AE sensor named “F50A”
for illustration. The raw data are illustrated in Figure 5. From the raw data (green),
the goal is to infer the tightening levels by clustering and to compare the results with
the ground truth (blue stairs).

The features are freely available at the following link [50]: https://drive.google.
com/drive/folders/1H413RxYu4ya7YMEgF lTh fHr7flvvOO?usp=sharing. They are
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Table 1: Applications used to illustrate the proposed criterion. GMM stands for Gaussian mixture
model, GK for Gustafson-Kessel, EDM for electrical discharge machining.

Application
# sensors Total # # features

# clusters
Ground Clustering

used features per subset truth method

Bolted metallic 1 19 4 {2, 3, 4 . . . 10} Yes (7 classes) K-means
structure

EDM µ-drilling 1 24 3 {4, 6, 8, 10} No GK
hard material

Glued hybrid 4 19 3 {4, 6, 8, 10} No GK
tubular structure

Fig. 4: Setup configuration for ORION-AE application.

common features used in the AE community [51]: Rise time, counts, counts to
peak, duration, MARSE and absolute energies, amplitude, average signal level, sig-
nal strength, RMS, reverberation frequency, initiation frequency, average frequency,
partial power in [0,200], [200,400], [400,600], [600,1000] kHz, peak frequency, and fre-
quency centroid. The set of feature vectors was post-filtered using a 31-sample moving
median applied to each dimension in order to ensure temporal coherence, and one
point in three were kept in order to reduce the amount of points (there are about 1200
cycles per tightening level in the original dataset).
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Fig. 5: Raw data (green) and tightening levels (in blue represented by stairs).

3.1.2 Parametrisation of algorithms

Algorithms 1 and 2 were used on every combination of 4 features within the set of 19
mentioned above, resulting in 3876 combinations for each K = 3, 4 . . . 10 value with a
total of 31008 combinations. K-means clustering was run 5 times for every combination
and the result leading to the minimum sum of squared Euclidean distances over all
points and clusters was selected. If an empty cluster was obtained, the corresponding
subset of features was not used. The set of partitions obtained was used in both
criteria. For Algorithm 2 (based on shape), the voting scheme proposed in [38] was
applied with three internal CVIs implemented in Matlab’s Statistical and Machine
Learning Toolbox: Silhouette, Calinski-Harabasz, and Davies-Bouldin. Algorithm 2
was applied for each K independently in order to sort the subsets of features and select
the best one. For Algorithm 1 (onset-based), the 20 best partitions were selected for
each number of clusters using the onset-based CVI.

3.1.3 Link between clusters onsets and change in tightening levels

We evaluated whether the clusters’ onsets coincide with the changes of tightening lev-
els. For that, we represented the distribution of the estimated onsets using histograms.
This was done in all partitions found by the previous algorithms and for all numbers
of clusters (K = 3 . . . 10). Histograms depict the ground truth with blue stairs and the
vertical dotted lines represent the instant of the true changes in the tightening level.
This ground truth is available in [50]. The stairs show the duration of each level, equal
to 10.0, 10.0, 10.0, 9.0170, 10.0, 10.0, and 10.0 seconds for 60, 50, 40, 30, 20, 10, and 5
cNm, respectively.

Histograms of onsets for shape-based and onset-based CVIs are presented in Figure
6 with a bin size of 0.5 s. These results only differ by the criterion since the same
partitions obtained by the K-means method were used to evaluate both criteria in the
same conditions. With the shape-based CVI (Fig. 6a), we can observe three missing

13



onsets (no vertical bar at 10, 30, and 60 s corresponding to 50, 30, and 5 cNm), one
delayed onset (20 s / 40 cNm) and one clear false positive (at around 44 s). Based on
this histogram, an end-user is likely to select 4 clusters, with one wrong and 3 missed
tightening levels.
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Fig. 6: Validation of the clustering provided by a K-means using the voting scheme
and onset-based criteria.

Figure 6b shows that all changes in tightening levels, except the last one, are
detected by the onset-based CVI. Four primary peaks distinctly appear, located at
expected times corresponding to changes in tightening levels at 60 cNm (0 s), 50 cNm
(10 s), 40 cNm (20 s), 20 cNm (40 s), 10 cNm (50 s). The same partitions were used
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in both cases which means that only the CVI makes the difference. The peak at 30 s is
clearly distinguishable with 17 occurrences. The secondary peaks (lower occurrence)
are globally distributed around the primary peaks and represent the variability on
onsets in the 20 partitions.

High peaks mean that changing the number of clusters and features does not
modify the location of these onsets. However, as demonstrated by Sawan et al. [41], we
expect that increasing the number of clusters gives different insights, which is clearly
not the case with the shape-based CVI. Moreover, we observe that the number of
small peaks for the onset-based CVI is larger, explained by the fact that 20 times more
partitions were used, adding variability to the results. We observe that the average
level of these peaks is below 10, representing less than 8% of values of highest peaks.
This variability highlights the difficulty in detecting the tightening level at 40 cNm,
which may be represented by more than one cluster. The high number of small peaks
at the highest tightening levels (left-hand side) can be attributed to the challenge in
accurately quantifying bolts loosening from vibration data [52–54].

3.1.4 Link between clusters onsets and clusters overall quality

We have shown above that the onset-based CVI provides more relevant onsets. To
further evaluate its performance, we assess whether the clusters generated coincide
with the ground truth. For this, the 20 best partitions provided by each criterion were
evaluated using the Rand index (RI) [55]. The RI is a value in the range [0, 1], where
”1” indicates a perfect match between the clustering assignments and the ground truth.
The number of points in each partition is 4684, based on which the RI is computed.
The results are presented in Figure 7 using boxplots whereby the red line represents
the median value, the boxes indicate variability based on the 25th and 75th percentiles,
and the outliers are marked by red crosses.

We observe that the median RI values are generally close, indicating that, on
average, both criteria provide similar cluster assignments across 4684 points. Note
that the onsets are obscured in these results: only the histograms shown earlier allow
for an assessment of their precise positions.

Concerning the variability across partitions, it differs between the two criteria.
When considering values corresponding to the ground truth (Ktrue = 7), the onset-
based CVI demonstrates better consistency, with less variability in results compared
to the shape-based CVI. This observation is confirmed in Table 2, which summarizes
the RI values for K = 6, 7, 8. The minimum RI values show a 4% to 7% improvement
for the onset-based CVI, while maximum values are comparable for both criteria.
This suggests that the worst partitions identified by the onset-based criterion are
more relevant than those produced by the shape-based CVI. Additionally, four outlier
values below the minimum were found for the shape-based CVI (11 across all K
values), representing 10% of the results. In contrast, no outliers were detected for the
onset-based criterion at K = 6, 7, 8, and only three for all K values. These results
demonstrate its superior robustness in response to feature changes.
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Fig. 7: Performance comparison evaluated by the Rand index

# cluster/perf min max median # outliers
CVI onset shape onset shape onset shape onset shape
K=6 77.7 72.3 86.2 86.6 81.2 81.7 0 0
K=7 81.0 73.8 86.0 86.0 82.2 83.9 0 2
K=8 81.8 77.0 86.5 87.1 84.1 85.9 0 2

Table 2: Rand index for onset-based and shape-based CVI with K=6,7,8
(±1 around the ground truth).

3.1.5 Case of a dataset with non-uniformly distributed onsets

In the ORION-AE dataset, the tightening levels have approximately the same dura-
tion, which is a special case. In this section, we propose to evaluate the proposed
criterion when the duration in each tightening level differs. The dataset becomes imbal-
anced. For that, we selected only a part of the data in each level so that the duration of
the levels follows a non linear evolution. Practically, it means that the metallic plates
remain tightened for a longer period for a given level compared to the subsequent lev-
els. For 60, 50, 40, 30, 20, 10 and 5 cNm, the first seconds of data were kept as follows:
10 s, 8.5 s, 7 s, 5 s, 3 s, 2 s and 1.5 s, and the remaining data were discarded.

The results are reported in Figure 8. We can observe that the proposed onset-
based CVI outperforms the standard approach by selecting relevant partitions for
which onsets are located as expected. As in the previous case, only the last onset is
not discovered by the onset-based CVI. Conversely, the shape-based CVI only found
three clear onsets. For 50 cNm (10 s) and 40 cNm (20 s) only one occurrence is found,
which is not enough to distinguish these onsets from the false positives.

The difference in behaviour of both criteria between this test (irregular timing of
damage mechanisms) and the previous one (regular timing of damage mechanisms)
is the size of the clusters. Since we shortened the duration of each tightening level,
there are fewer points in the classes. Consequently, the distribution of the features
within the classes has changed, making the clustering task more difficult. Some classes
becomes smaller relatively to others due to this change of distribution which affects
both the intra-cluster compactness and inter-cluster separability, therefore degrading
the values of the shape-based CVIs.
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Fig. 8: Case of non-uniform onsets: Validation of the clustering provided by a K-
means using the voting scheme and onset-based criteria.

3.1.6 Summary

When averaged over 20 partitions of ˜4600 points, we observed that the quality of
clusters found by the onset-based criteria is improved by 4% to 7%. Using histograms,
a distinct improvement was observed on the positioning of onsets with the proposed
CVI, which makes this criterion suitable for structural health monitoring.
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3.2 Dataset #2: Micro-drilling by electrical discharge
machining

This application is about monitoring of a manufacturing process known as micro-
electrical discharge machining (micro-EDM) used for drilling micro-diameter and deep
holes. The goal of AE clustering is to gain insights about the process, and to evaluate
if it is possible to detect when the electrode has reached the end of drilling and if the
process proceeds similarly between two drilling events.

3.2.1 Materials and method

Micro-EDM relies on electrical discharges emitted by a tool-electrode to remove mate-
rial from a work-piece immersed in a dielectric fluid (Fig. 9a). An electric arc forms
between the conducting part and the electrode, which are not in physical contact,
enabling the machining of very hard conductive materials with a high degree of flexi-
bility in terms of shape [56]. Both the feed rate of the tool-electrode and the sequence
of discharges, which are necessary to remove material and achieve a specified depth,
are controlled by proprietary software. During this process, both the work-piece and
the tool-electrode experience wear, which is challenging and time-consuming to evalu-
ate precisely and in real-time. Therefore, we used AE to collect data during drilling to
gain insights into the process. Specifically, the goal is to assess whether the chronology
of AE signals can aid in monitoring the progression of the electrode to the reference
depth.

Experiments were conducted on a SARIX EDM machine, which features auto-
regulation of input parameters for spark generation. A 0.3 mm diameter tubular
electrode was used to drill a 2 mm hole into a 0.3 mm thick cavity. The material being
drilled is a Ni-based superalloy. Figure 9b illustrates the setup on the EDM machine.
The camera, synchronised with the start of the process, records the moment when the
electrode begins drilling. It is then used to visually assess when a spark appears in
the cavity, corresponding to the hole opening (third image in Figure 9a). This event
is marked in the figures below as we anticipate specific behaviour in the AE signals
and clusters. AE data streams were acquired at a sampling frequency of 5 MHz using
a ”micro-80” sensor made by Mistras-EuroPhysical Acoustics, with an operating fre-
quency range of 200-900 kHz. Data acquisition was performed using a Picoscope from
Picotech. The AE hits were detected using the same method as in application #1
(ORION-AE) and similar features, except for the partial powers, which were consid-
ered in the following intervals: [0 20], [20 100], [100 200], [200 300], [300 400], [400
500], [500 600], [600 800], and [800 1000] kHz, resulting in a total of 24 features.

3.2.2 Results

The tests described below were conducted using a brand new electrode and after
cleaning the machine. Two tests were performed successively. Algorithm 1, which is
based on onsets, was applied to every combination of 3 features from a set of 24
(totalling 2024 combinations). The 20 best partitions for each number of clusters
K ∈ {4, 6, 8, 10} were used to generate the histograms.
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(a) Principle of EDM drilling.
(b) Illustration of the AE acquisi-
tion set-up.

Fig. 9: EDM principle and instrumentation [56].

Figure 10 presents histograms for Test #1 (with a new electrode) and Test #2
(after one use), showing peaks with more than 10 occurrences. Due to the continuous
wear of the electrode during machining, its position was estimated using a camera to
determine when the first spark appeared at the hole’s opening. The time instances
identified are: 1) Test #1: First spark at 14-15 s; drilling from 17-18 s; Test #2: First
spark at 18-19 s; drilling from 22-23 s. Cumulated energy is superimposed on the
histograms, as this feature traditionally indicates damage evolution trends.

For Test #1 (Fig. 10a), four main stages are identified by the dashed lines, based
on cumulated energy and onset positions. Stage I (0-6 s) is characterised by three
primary peaks with low energy, related to initial spark appearances. Drilling progresses
with a few sparkles until a hole is made. Stage II (6-15 s) shows significant increase
in cumulated energy in two phases (6-12 s, 12-15 s), with a primary onset around 12
s indicating the machine’s adaptation to drilling. Stage III (15-17.6 s) depicts two
primary onsets (5 and 6) and corresponds to the first spark observed by the camera,
marking the approach to the first part of the work-piece. Stage IV (18 s onwards)
shows one more onset (7) indicating the start of drilling the second part, with similar
characteristics to the first part. For Test #2 (Fig. 10b), Stage IV is shorter, and the
process is more stable, starting at about 21.5 s. The cumulated energy increases more
regularly, indicating a more stable drilling process. The rectangle highlights the first
spark (around 18.2 s), with onsets before (7) and after (8) the observed spark. The
end of this phase (just before starting drilling the next part) is marked by onset (9).

The innovative aspects of these results are supported by patented technology from
[57], which underscores the novelty and significance of this approach for industrial
applications.

3.3 Dataset #3: Hybrid composite/metal joint structure

This application is about monitoring of damages in a hybrid composite/metal joint
structure. The proposed criterion is used to evaluate when damage mechanisms occur
and how they grow during loading until the failure of the composite/metal joint.

3.3.1 Materials and method

The specimen studied is a composite tube manufactured by Collins Aerospace, featur-
ing a joint between a composite part and a metal part. The composite section consists
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Fig. 10: Histogram of onsets for the two tests.

of eight plies of filament-wound carbon fibre tows, forming a tube with a nominal
internal diameter of 45.2 mm and a wall thickness of 4 mm. This geometry was chosen
to handle loads typical of aerospace applications, where certifying bonded joints can
be challenging.

The joint technology integrates a bespoke helical screw thread, where an epoxy-
based adhesive is applied to the metal thread for lubrication during assembly.
Preloading the joint applies through-thickness contact pressure to the composite, and
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loads are transmitted in two ways: (i) through reaction forces at multiple teeth and
(ii) through friction at flat regions within the helical thread. If the frictional forces
are exceeded, relative movement between the composite and metal parts can occur.
Therefore, it is crucial to consider both slip and matrix damage in the design. The
test was designed to ensure failure occurs at the interface regions rather than within
the composite tube or metal end fitting.

The specimen was tested in a quasi-static tensile loading configuration on an
Instron 5989 electro-mechanical testing machine fitted with a 600 kN load cell. It com-
prises a composite tube and two metallic end fittings that form two joints, connected
to the loading rig via rod ends with spherical bearings, which are screwed into the
metallic end fittings. These rod ends are pinned to clevises that are screwed into the
rig. The described test set-up is shown in Figure 11-a).

Fig. 11: a) Quasi-static tensile loading of the hybrid composite/metal specimens. The
specimen is connected to the loading rig at either end via a rod end with spherical
bearings that are screwed into the metallic end fittings of the joint. b) and c) Schematic
and photograph showing the arrangement of PWAS on both specimens. d) Photograph
illustrating final failure of a hybrid composite/metal joint in the form of resin cracking
and extensive slippage due to thread crushing. The joint was subjected to quasi-static
tensile loading.

The specimen was loaded at 0.5 mm/min crosshead speed in a single cycle until
failure. The specimen failed at the instrumented joint. The breaking load was 268 kN.
The final failure consisted of significant damage caused by initial matrix cracking and
followed by slippage at the composite/metal interface of one of the two joints (Figure
11-d) where the screw threads have been almost erased during failure.
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Piezoelectric wafer active sensors (PWAS) [2] were bonded to the metal and
composite parts of the joint for AE monitoring when the specimen is subjected to
quasi-static tensile loading. PWAS of type PIC255, supplied by PI Ceramic-Germany,
with 10 mm diameter and 0.5 mm thickness – were used. The positioning of PWAS is
shown in Figure 11-b) and c).

AE data were recorded by a PCI-2 based system, and captured in the software
“AEWin” (Mistras, USA), with a sampling rate of 10 MHz and 20 dB of pre-
amplification per sensor. Hit detection was performed by the software using a threshold
of 55 dB and HDT=800 µs, PDT=200 µs and HDT=1 ms. In the following, only the
data from sensors on the composite part (number 3, 4 on Fig. 11b)) were used for the
analysis. The same 19 features as in the first application were used.

3.3.2 Results

The objective of applying the onset-based CVI in this context is to assess its capa-
bility to reveal phenomena in a complex engineering structure and to detect incipient
damages within the joint. Data-driven methods like clustering can uncover patterns in
large datasets, which is especially useful when prior knowledge is uncertain, as with
the metal/composite joint scenario. This approach is beneficial when assigning labels
is challenging and supervised algorithms are not feasible.

The Gustafson-Kessel clustering method [58] was employed in Algorithm 1, consid-
ering all combinations of 3 features out of 19 (totalling 969 combinations) and varying
the number of clusters K ∈ {4, 6, 8, 10}, resulting in 3876 partitions. The 20 best par-
titions for each K were used to construct the histograms shown in Figure 12a. Due to
the lack of ground truth for this dataset, we compared the results with the cumulated
energy from the previous application and provided the distribution of amplitudes in
clusters for K = 10 (Fig. 12b).

The analysis reveals three distinct stages before failure. Each stage shows a unique
evolution of cumulated energy and amplitude distributions. In the first two stages (0-
275 s and 265-465 s), the cumulated energy exhibits two plateaus, indicating lower
energy AE signals compared to the later stage III. This is confirmed by Fig. 12b, where
clusters in stage I have the lowest amplitudes (55-75 dB), stage II shows middle-range
amplitudes (75-100 dB), and stage III has the highest amplitudes (>100 dB).

The histogram of onsets (Fig. 12a) shows a primary peak at 270 s, closely aligning
with the initial increase in cumulated energy, marking a significant release of AE
signals. This peak corresponds to primary peaks #4 and #5 at 265 s and 305 s,
indicating incipient damage. During the plateau phase (275-465 s), fewer onsets are
observed, with a significant peak (#7) at 465 s, aligning with the start of increased
cumulated energy and subsequent damage cascade.

Simulation results using Abaqus [5, Chap. 7] show slip accumulation between
90-180 kN, followed by fatigue until failure at 280 kN (compared to 262 kN experimen-
tally). This correlates with Stage II in the AE data, involving clusters #4-8, suggesting
that damages are represented by multiple clusters. The high number of onsets before
265 s (90 kN) and the low cumulated energy during this period may indicate friction,
while the critical load accumulation at 465 s (160 kN) aligns with the fatigue period
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Fig. 12: Analysis of clustering results for the third application.

found in simulations (Stage III). Clusters around 600 s (78% of test duration, 205 kN)
represent incipient critical damages leading to final failure detected with cluster #10.

4 Conclusion and future work

This study introduces a novel approach for interpreting acoustic emission (AE) data
through a new clustering validation index (CVI) that emphasises the distribution of
cluster onsets over time, cycles, or load scales. Unlike traditional methods that priori-
tise compact and separable clusters, our approach focuses on onsets, which are crucial
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for identifying different defects, such as mechanical loosening, process stages, or com-
posite damage. This shift in focus is particularly valuable in monitoring applications
where the initiation of defects is a key characteristic.

The proposed onset-based CVI demonstrated superior performance over conven-
tional methods in a benchmark dataset, accurately detecting levels of loosening in
bolted plates and reflecting changes in loosening with high precision. This criterion’s
ability to select optimal clustering results without prior knowledge, and to incorporate
prior knowledge when available, underscores its uniqueness and applicability.

In the application to micro-drilling using electrical discharge machining, the onset-
based CVI highlighted distinct process stages, offering potential for enhanced quality
control through AE feedback. Additionally, in the analysis of hybrid composite/metal
joints, the criterion facilitated the identification of damage progression leading to
failure, which is crucial for structural health monitoring.

This work emphasises the need for specialised tools in AE data analysis to bet-
ter interpret material and system behaviour. The onset-based CVI proves to be a
valuable tool, as evidenced by its effectiveness across different applications. Future
research will explore integrating this criterion into supervised learning algorithms for
Structural Health Monitoring, aiming to detect incipient defects and trigger prog-
nostics algorithms. Additionally, we plan to develop damage models that generate
onsets and utilise this prior knowledge to enhance clustering and classification with
physically-informed algorithms.
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A Voting scheme algorithm

Algorithm 2 was proposed in [38].

1 Input: Matrix of features Y with size N × d;
2 Input: The range of number of clusters [Kmin,Kmax];
3 Input: The subsets of features S;
4 Input: The set of weights for two voting schemes W1, W2;
5 Output: Voted partition of the data P ∗;
6 Output: Clusters parameters θ∗;

7 for S ∈ S do
8 for K ∈ [Kmin,Kmax] do
9 // Apply the clustering method and store the partition and parameters;

10 [P (S,K), θ(S,K)]← Clustering(Y(:, S), K);

11 // Quality can be evaluated with one or several indices;
12 // Indices used for AE are mostly internal and focus on clusters shape;
13 QSHAPE

literature(S,K) ← Internal Shape Indices Quality(P , Y (:, S), θ);

14 end

15 end
16 // For each subset, firstly find the clusters using a voting scheme;
17 // The vote uses weights set by the end-user ;
18 for S ∈ S do
19 nb clusters(S)← argmaxk Vote (Q(S, k),W1);
20 end
21 // Then find the subset and the final number of clusters using a second voting

scheme;
22 S∗ ← argmaxS Vote (Q(S,nb clusters(S)),W2);
23 K∗ ← nb clusters(S∗);

24 // Return results;
25 P ∗ ← P (S∗,K∗);
26 θ∗ ← θ(S∗,K∗);

Algorithm 2: Evaluation of clustering methods: Shape-based internal indices with
voting scheme used in the literature [38]. The output partition is on selected by a
vote from the subset of partitions generated by clustering.
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