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Problem
Second strain-gradient elasticity introduced by Mindlin [1] to describe surface
effects, but restricted to isotropic materials because of complexity (18 consti-
tutive parameters). Experimental approach :

• is very difficult for isotropic (amorphous) materials ;
• is already achieved for crystals, but no framework available to interpret.

Goal :
Optimal parametrization of second

strain-gradient elasticity with cubic symmetry
O × Z2

(denoted as m3m in Hermann–Mauguin notation)

Constitutive law

◦
u : Ω ⊂ R3 −→ R3 : displacement field on Ω. The free energy density
depends on three state tensors :

ψ
(
•
ε1,

•◦
ε2,

••
ε3
)

(1)

•
•
ε1 ∈ S2(R3) is the usual small-strain tensor (dimension 6);

•
•◦
ε2 =

◦
∇ ⊗

◦
∇ ⊗

◦
u ∈ S2(R3) ⊗ R3 is an order 3 tensor, symmetric with

respect to the 2 first indices (dimension 18);
•

••
ε3 =

◦
∇ ⊗

◦
∇ ⊗

◦
∇ ⊗

◦
u ∈ S3(R3) ⊗ R3 is an order 4 tensor, symmetric

with respect to the 3 first indices (dimension 30).

Generalized stresses are conjugate of the state tensors with respect to the
energy density :
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∂εi
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Assuming that ψ is a second order polynomial : •
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• Odd-order tensors vanish because of centro-symmetry
•

•
α is usually zeroed by choosing the initial configuration •
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••
T0 is denoted as the cohesion tensor.

Explicit Clebsch-Gordan problem
As the material is assumed centro-symmetric, the sole rotationsO leaving the
cube unchanged are considered. U, V and W are irreducible representations
of O :

• Does W appear in the decomposition of U ⊗ V ?
• If yes, what is the multiplicity ?
• What is a basis for W?

Solution :

• Character formula [2] allows to split a given representation into irre-
ducible representations

• Projection formula [2] is used to build a basis for W .

Decomposition
1. Decompose the state tensors on a basis consistent with the material

symmetries

• S2(R3) : U = V = R3

• S2(R3)⊗ R3 : U irreducible representation of S2(R3), V = R3

• S3(R3)⊗ R3 : U irreducible representation of S3(R3), V = R3

2. Build the constitutive tensors basis from the tensorial product of the
decomposition of the state tensors, and build their basis using the pro-
jection formula.

Results
• Decomposition of state tensors on subspaces compatible with O has

been obtained (projectors) ;
•

••
T0 is in particular shown to depend on two cohesion moduli ;

• An orthogonal basis for the constitutive tensors is obtained :

–
••
E depends on 3 elastic moduli,

•••
A requires 11 parameters ;

–
•••
C is described by 9 parameters,

••••
B depends on 26 parameters.

Surface relaxation
The surface relaxation problem is solved, considering a half-space, whose
normal is x1. For any crystal orientation, and for any displacement compo-
nent ui, the equilibrium imposes(

1− l2i1
d2

dx21

)(
1− l2i2

d2

dx21

)
d2ui
dx21

= 0 (5)

• The characteristic lengths lij are real or complex functions of the con-
stitutive parameters and of the crystal orientation ;

• Only u1 is nonzero because of the boundary conditions.

Low-energy electron diffraction (LEED)
• IV-LEED may be used to retrieve the surface structure of crystals
• Many surface structures, resulting from surface relaxation, have been

compiled [3]. Ex : Cu(711) [4]

Conclusion
• Parametrization of second strain-gradient elasticity for centro-

symmetric cubic materials
• Clear physical meaning of the parameters
• Towards the experimental identification of the parameters
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