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Abstract
In the railway industry, digital twins based on nonlinear multibody simulations are developed to provide
decision-making support for bogie design. A recurring question is to find an acceptable compromise between
model complexity and computational burden to ensure an accurate representation of the global train dynamic
behavior. The objective of the research work is to investigate different modeling strategies integrating the
complexity of a physical model, and to discriminate between the effectiveness of these strategies in faithfully
reproducing the dynamic responses of a structure. Two approaches are investigated to study a real yaw
damper component of a motor bogie. Firstly, a rheological model representing the dynamic behavior of the
damper is proposed and is integrated into dynamic simulations for sensitivity studies in order to identify
the influential elements. In a second phase, an alternative model based on a multi-layer perceptron neural
network is proposed to improve the computational efficiency of the digital twin.

1 Introduction and presentation of the study-case

The railway industry is a sector in which the search for performance and safety is an essential part of the
design process. The growing use of digital twins is opening up new and unexplored avenues both in the
preliminary design phase and in the final phase when railway vehicles are homologated. The bogies at the
interface between the bodies and the track are critical components ensuring the stability and comfort of trains,
and nonlinear multibody simulations provide assistance in the choice of suspension components at the design
stage in order to guarantee good overall dynamic behavior of the train. A recurring challenge in the use of
numerical simulations is to find an acceptable compromise between the complexity of the models and the
associated computational burden. Simplified models may not accurately capture complex dynamic behavior,
while models that are too detailed may incur prohibitive computational costs and be unusable in practice.
In this context, the purpose of the research work is to investigate the level of model complexity required
to validate the dynamic model of a railway bogie. This question is related to the problem of quantifying
model-form error that has been a topic of recent investigations, for example [1]. A specific component
of a bogie is considered, in this case a yaw damper, and the impact of the modeling of this component
on the dynamic response of the bogie is investigated. The yaw damper is presented in Figure 1 (a). It is
characterised using a traction-compression machine following the test management process defined at the
ALSTOM Test Center : the right end of the damper is clamped and the left connected to an actuator such
that the frequency, the amplitude and the speed of the excitation can be changed. A series of 30 tests are
performed imposing a mono-harmonic displacement excitation at various amplitudes from 2mm to 25mm,
speeds from 0.085mm/s to 255mm/s and frequencies from 0.0068Hz to 8.117Hz. Figure 1 (b) presents
the normalized force-displacement hysteresis curves with the damper stroke along the horizontal direction
and the resulting force along the vertical direction. All results in the article are presented in normalized
values. The shapes of the curves are very far from a regular and symmetric ellipse which characterizes the
behavior of a linear damper, indicating a the dependency of the component behavior to the amplitude and
frequency of the excitation.
The post-processing of the experimental results allows to compute the complex dynamic stiffness as:
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Figure 1: Experimental study of a yaw damper : (a) Experimental bench for the characterization of the
damper (b) Force-displacement hysteresis curves under an applied displacement of 2mm.
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Figure 2: Evolution of the dynamic stiffness and loss factor as a function of the frequency at various ampli-
tudes. (a) Dynamic stiffness; (b) Loss factor.

Kd = |H(ω)|ω0| (1)

tanϕ =
ℑ[H(ω)|ω0]

ℜ[H(ω)|ω0)
(2)

where H(ω) = F (ω)
X(ω) denotes the transfer function in the frequency domain, ω0 is the frequency of the ex-

citation, and ℜ[∗] and ℑ[∗] respectively denote the real and imaginary parts of a complex number. F (ω)
and X(ω) are the Fast Fourier Transforms of the measured force and displacement at a fixed amplitude and
frequency. In the nonlinear domain where the response to a mono-harmonic excitation is multi-harmonic,
the values of the dynamic stiffness modulus and of the loss factor are computed at the response’s first har-
monic. Figure 2 shows the experimental mechanical characteristics as a function of the frequency for various
amplitudes.
Two approaches are considered. First, a physics-based model is developed using a rheological model for
the yaw damper. Even if some references introduce 3D geometrical models for such components [2, 3, 4],
models based on combination of viscous elements, springs, and dashpots are widely used, and well-adapted



Figure 3: Modeling used for the representation of the yaw damper behavior.

for multibody simulations [5, 6, 7]. An automated procedure is used to determine a set of feasible values for
model parameters in order to approximate the measured behavior of the component and a decision-support
indicator for the model complexity is introduced. Secondly, a AI-based method is introduced to develop a
simplified model, with reduced computational times. Neural networks are an emerging strategy to define
input-output relations for complex components presenting nonlinear behaviors [8, 9]. The behavior of the
damper is represented by an multi-layer perceptron neural network expressing the complex relationship be-
tween force, displacement, velocity and acceleration at the component interfaces and experimental validation
is performed in order to evaluate the model’s fidelity-to-data.

2 Modeling of the yaw damper using a rheological model

A rheological model inspired by two conventional Maxwell models is used for the yaw damper modeling
and is shown on Figure 3. The main element is modified to take into account the nonlinearity of the behavior
with the integration of a non linear dashpot characterized by Fc1 in series with a linear spring of stiffness k1.
A second spring-dashpot element with stiffness k2 and damping c2 is connected in a parallel branch to the
main stiffness. The system of equations can be written as,

F = k1(x− x1) + k2(x− x2) = Fc1(ẋ1) (3)

k2(x− x2) = c2(ẋ2 − ẋ1) (4)

where F is the total force at the extremity of the model. The nonlinear damping Fc1 of the main Maxwell
element is determined using the experimental results measured under the various excitations. For each of
the 30 test sets, the minimum and maximum values of the measured force and velocity are retained. This
leads to 30 pairs of values [Fmin vmin] and 30 pairs of values [Fmax vmax] used to defining the force-velocity
diagram [Fexp vexp] shown in Figure 4.

The following expression is used for the definition of a nonlinear force-velocity property curve based on the
previous experimental points,

Fc1(v) =
2

π
arctan(S v)F1 + d v + F2 (5)

where the parameters S, F1, d and F2 are determined with a fitting method. The final parameter values are
given in Table 1 and the approximated curve is shown on Figure 4.
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Figure 4: Representation of the nonlinear damping curve expressed by the force as a function of the velocity:
the blue points correspond to the experimental values in blue, and the red curve corresponds to the approxi-
mation obtained after identification.

Table 1: Identified values for the analytical expression of the force-velocity curve.

S 12 017
F1 0.65
d 0.38
F2 -0.0009



3 A complexity level decision support indicator

A complexity level decision support indicator is developed to determine the lowest level of complexity of a
model with the highest accuracy required when integrating a component into a larger structure that needs to
be validated in accordance with a specified validation plan.

The indicator computation is based on the determination of the sensitivity of an output of interest to the
model’s characteristics at each step of the validation plan. A high sensitivity value confirms the need to have
an accurate model for the component, and further research is required to determine the critical range. It may
indicate that further testing is necessary to fine-tune the component’s behavior in this range. A low indicator
value suggests an opportunity to simplify the model or consider dropping certain characteristic dependencies.

3.1 Determination of feasible values for the linear parameters

The objective of this section is to determine a set of global values for the linear stiffness parameters k1 and
k2, as well as the linear damping parameter c2 representative of the behavior of the damper. This research
takes the form of an exploratory phase where the three following steps are performed:

1. a sample of k1 k2 and c2 values is generated and integrated in the numerical model,

2. the resulting simulated behavior of the component is computed,

3. the behavior is compared to the measured behavior using quantitative criteria. The sample is retained
if the values of the criteria are within predetermined limits.

The dependency towards the amplitude and the frequency of the external solicitation is qualified by the
dynamic stiffness modulus and the loss factor. Nevertheless, these two mechanical criteria are not enough to
characterize the shape of a force-displacement hysteresis curve in the nonlinear domain and a new criteria
involving the force-displacement hysteresis shape is added for the automation of the third step.

3.1.1 The exploratory phase

The set of tested {k1, k2, c2} values is created from an initial triplet {k10 , k20 , c20} arbitrarily defined, based
on an identification method for one of the experimental configurations, or based on the average of the ex-
perimental dynamic stiffness modulus. A Monte Carlo sampling procedure is retained for the definition of
the parameter variations around this initial point, ensuring to explore a larger domain than with a random
sampling procedure (step 1). The bounds of the parameter relative variations are also chosen in one or several
attempts confirming the exploratory nature of this phase.

For a given set of parameters {k1, k2, c2}, the equations (3) and (4) defining the output force of the enriched
Maxwell model are solved using one of the algorithms provided by MATLAB for the resolution of a system
of nonlinear differential equations (step 2). This operation is done for each of the 30 test sets and the
measured displacements are used as the excitations to get as close as possible to the experimental behavior.

The force is then post-processed and the dynamic stiffness modulus and the loss factor are computed with
the formulations given in equations (1) and (2), and compared to the experimental values. The shapes of the
force-displacement hysteresis curves are also compared to the experimental ones with the computation of the
shape-based criteria. The definition of limits on the elastodynamic characteristics and on the shape-based
criteria enables the filtering of the simulated behavior too far from the experimental behavior.

3.1.2 Feasible values for the linear parameters

The previous sequence is applied from the initial set of normalized parameter values {k1 = 1, k2 = 1, c2 =
1}, a log-variation in the range [0.05 20] and a generation of sample of size 800. The filtering limits of the
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Figure 5: Comparison of the values of the filtering criteria for the feasible parameter values, in grey, and the
experimental values, in color. (a) Dynamic stiffness modulus (b) Loss factor (c) Force-displacement shape-
based criteria.

elastodynamic characteristics are set to ±50% for the dynamic stiffness modulus, ±30% for the loss angle
and ±30% for the force-displacement shape-based criteria.
The application of the selection procedure leads to a final number of 136 sets of feasible values for the linear
parameters obtained after the filtering phase, i.e. 17% of the initial sample. Figure 5 shows the stiffness
dynamic modulus, the loss factor and the shape-based criteria for the sample. Table 2 gives the maximum
variations recorded in comparison to the maximum variations allowed demonstrating that the limit has been
reached for the loss factor.

4 Modeling of the yaw damper using a neural network model

Based on the validation plan and the overall model size, the determination of the optimal level of complexity
for a structure’s components may take some time to achieve. It is then convenient to work on an alterna-
tive modeling to avoid this step. Given the overall experimental data resulting from the 30 tests at various
amplitudes and frequencies under a mono-harmonic excitation, the aim of this section is to express the instan-



Table 2: Limits defined for the selection of the retained parameters values (step 3 of the procedure).

Allowed variation Max variation in the feasible sample
Dynamic stiffness modulus ±50% 14.8 %

Loss angle ±30% 30.0%
Shape-based criteria ±30% 22.7%

Table 3: Options defined for the training of the neural network using the Adam optimizer.

Number of epochs 3 000
Initial learn rate 0.001
Validation frequency 50
Learn rate schedule piecewise
Lear rate drop factor 0.9
Learn rate drop period 100
L2 regularization 1e-5
Mini batch size 10 000

taneous forces F as a function of the instantaneous displacements x, the velocities v and the accelerations a,
dropping the reference to the time step:

F = g(x, v, a) (6)

where g is a function to determine. The use of artificial neural networks is one way to achieve this goal.

4.1 The multi layer perceptron neural network

The architecture of a multi layer perceptron (MLP) neural network is a succession of hidden layers composed
of neurons allowing to transform the data of the input layer to the data of the output layer. The neurons are
fully connected, meaning that a neuron of a layer is connected to every neurons of the following layer. The
number of layers and the number of neurons per layers are two hyperparameters to determine, defining the
number of variables that should be computed during the training phase. This phase corresponds to the solving
of the optimization problem where the variables of the neural network are determined. The use of the Deep
Learning Toolbox of MATLAB enables to set up the architecture of the neural network and to train it.

4.2 Architecture and training of the neural network

After several tests, the final architecture of the proposed model is composed of 3 inputs in the input layer:
the instantaneous displacement x, velocity v and acceleration a, 6 hidden layers, 30 neurons per hidden
layer, 1 output in the output layer: the instantaneous force F . The Rectified Linear Unit (ReLU) function is
selected as the activation function. Since the 30 data sets have a different number of values, their contents
are interpolated to get 6 000 points in each one leading to 180 000 input values for the neural network. The
whole set of input values is splitted in the training data and the validation data in the proportion 80-20 and the
Adam (adaptative moment estimator) optimizer is chosen with the settings given in Table 3 for the training
phase.

4.3 Validation of the neural network model

The neural network model that defines the behavior of the component, i.e. the force as a function of the
displacement, velocity and acceleration is finally validated using the original experimental data sets. Using
the EEARTH (Enhanced Error Assessment of Response Time Histories) metric introduced in [10], a score
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Figure 6: Validation of the neural network with the computation of the EEARTH criteria for the 30 sets as a
function of the excitation frequency.

is calculated for each data set to quantify the distance between the experimental and simulated forces. It is
expressed as the weighted sum of three scores evaluating the difference in terms of magnitude, phase shift,
and slope of two signals,

E = wmEm + wpEp + wsEs (7)

where Em, Ep and Es are respectively the magnitude, phase shift and slope scores and whose the calculation
method is explained in [10] and wa, wp and ws are their respective weights with wm + wp + ws = 1. A
value of 1 indicates a perfect correlation between the signals.

Figure 6 shows the EEARTH criteria computed for the 30 data sets as a function of the excitation frequency
and the y-axis minimum limit is set to 0.7. The values are based on the following ratio weights:

wm = 0.2 wp = 0.4 ws = 0.4 (8)

The scores,which range from 0.949 to 0.976, demonstrate that the neural network model accurately captures
the behavior of the component on the measured domain.

5 Conclusion

A method for the search of the level of complexity required to validate a model in railway dynamics has been
presented. It relies on the determination of a decision-support indicator based on sensitivity analyses and it
is applied to a yaw damper rheological model mounted on a motor bogie. A model developed using a multi-
layer perceptron neural network has been introduced that fully represents the component behavior within its
training domain. The use of this type of black-box modeling disregarding any physical characteristics and
time efficient is a good alternative when it comes to finding an acceptable compromise between the model
complexity and the computational load.
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