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ABSTRACT 

In the railway industry, digital twins based on nonlinear multibody simulations are developed to provide decision-making 

support for bogie design. A recurring challenge in the use of numerical simulations is to find an acceptable compromise 

between the complexity of the models for the different components – in terms of their capacity to adequately reflect specific 

physical effects – and the associated computational burden, so as to ensure a sufficiently accurate representation of the global 

dynamic behavior a train. This requires an investigation into the extent to which, for instance, the stiffness and damping 

characteristics of a component depend on parameters such as the displacement amplitude, the frequency or the load direction. 

Intensive experimental studies are one strategy for increasing the knowledge of components, but they are costly to implement 

or incomplete when parametric dependencies are not explored. It is then necessary to determine which factors need to be 

controlled for each component, and to what extent, in order to prioritize them. In this context, the objective of the proposed 

work is to investigate different modelling strategies integrating the complexity of a physical model in different ways, and to 

discriminate between the effectiveness of these strategies in faithfully reproducing the dynamic responses of a structure. Two 

approaches are investigated in particular to study a real yaw damper component of a motor bogie. Firstly, a rheological model 

representing the dynamic behavior of the damper is proposed, and the parameters of this model are identified on the basis of 

characterization tests. This physics-based model is integrated into dynamic simulations for sensitivity studies in order to 

identify the influential elements that need to be controlled to validate the dynamic model. A simulation-based sensitivity 

indicator is developed as a tool to implement the necessary complexity for each component and to optimize the design of the 

required experimental studies and the methodology is illustrated for the yaw damper component mounted on a locomotive’s 

motor bogie. In a second phase, an alternative model based on a multi-layer perceptron neural network is proposed to 

improve the computational efficiency of the digital twin. 
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INTRODUCTION 

The railway industry is a sector in which the search for performance and safety is an essential part of the design process. The 

growing use of digital twins is opening up new and unexplored avenues both in the preliminary design phase and in the final 

phase when railway vehicles are homologated. The bogies at the interface between the bodies and the track are critical 

components ensuring the stability and comfort of trains, and nonlinear multibody simulations provide assistance in the choice 

of suspension components at the design stage in order to guarantee good overall dynamic behavior of the train. A recurring 

challenge in the use of numerical simulations is to find an acceptable compromise between the complexity of the models and 

the associated computational burden. Simplified models may not accurately capture complex dynamic behavior, while 

models that are too detailed may incur prohibitive computational costs and be unusable in practice. In this context, the 

purpose of the research work is to investigate the level of model complexity required to validate the dynamic model of a 

railway vehicle and a specific component of a bogie, in this case a yaw damper, is considered. This question is both related to 

the problem of modeling, largely investigated in the railway domain by [1] and of quantifying model-form error that has been 

a topic of recent investigations, for example [2]. Two approaches are considered in this study. First, a physics-based model is 



developed using a rheological model for the yaw damper. Even if some references introduce 3D geometrical models for such 

components [3] [4] [5], models based on combination of viscous elements, springs, and dashpots are widely used, and well-

adapted for multibody simulations [6] [7] [8]. An automated procedure is used to determine a set of feasible values for model 

parameters in order to approximate the measured behavior of the component and a decision-support indicator for the model 

complexity is introduced. Secondly, an AI-based method is introduced to develop a simplified model, with reduced 

computational times. Neural networks are an emerging strategy to define input-output relations for complex components 

presenting nonlinear behaviors [9] [10]. The behavior of the damper is represented by a multi layer perceptron neural network 

expressing the complex relationship between force, displacement, velocity and acceleration at the component interfaces and 

experimental validation is performed in order to evaluate the model’s fidelity-to-data. 

 

PRESENTATION OF THE STUDY-CASE 

The yaw damper presented in Figure 1 is characterized using a traction-compression machine. A series of 30 tests are 

preformed imposing a mono-harmonic displacement excitation at various amplitudes and frequencies and the measured force 

data show a nonlinear behavior of the component depending of the amplitude and frequency of the excitation. The post-

processing of the experimental results allows to compute the global mechanical characteristics (the macro values): the 

complex dynamic stiffness amplitude and the loss factor. To differentiate the component behavior with the macro values, a 

third characteristic based on the force-displacement hysteresis shape is added. 
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Fig. 1 Experimental bench used for the yaw damper characterization (a). Rheological model of the yaw damper (b). 

 

A COMPLEXITY LEVEL DECISION SUPPORT INDICATOR FOR THE RHEOLOGICAL MODEL 

 

Determination of the rheological model parameters 

Figure (1b) illustrates the yaw damper modeling using a rheological model inspired by two conventional Maxwell models. 

The nonlinear damping parameter Fc1 is expressed using the experimental values. A set of values for the linear stiffness 

parameters k1 and k2, as well as the linear damping parameter c2, representative of the damper behavior, can be found using 

an exploratory phase that is defined in three steps. The process begins with the generation step is the generation of a sample 

of the k1 k2 and c2 values. Next, the simulated behavior of the component is calculated using these values and the resulting 

macro values are obtained. Finally, the latest values are compared with accepted tolerances and the sample is rejected if 

declared unsuitable.  

 

Modeling level decision support indicator 

The yaw damper model is integrated in an early design phase of a high-speed train locomotive model and 44 output features 

of interest are defined to quantify the operational safety and the comfort of the railway vehicle. The objective is to determine 

the influence of the rheological model parameters on the output features and to determine whether the model can be 

simplified. A variance-based sensitivity indicator using the previous sample based macro values tolerances is computed and 

allows to rank the parameter influence on the outputs. The results are displayed as a color matrix in Figure 2 and 

demonstrates that, for outputs 10, 12, and 16, the parameter 𝑘1 has the largest impact. This suggests that the model could be 

simplified by eliminating the secondary Maxwell branch; which is not actually possible due to the output 39 indicator which 

indicates that the parameter 𝑘2 has the highest influence. 



 

Fig. 2 Variance-based sensitivity indicator values visualized as a color matrix with parameters on the rows and outputs on the 

columns. 

 

A NEURAL NETWORK MODELING 

An alternative AI-based modeling approach is highlighted. The force is expressed as a function of the displacement 𝑥, the 

velocity 𝑣 and the acceleration 𝑎: 𝐹 = 𝑔(𝑥, 𝑣, 𝑎) and 𝑔 is determined using an artificial neural network. The retained 

architecture is a multi layer perceptron composed of 3 inputs in the input layers: the displacement 𝑥, velocity 𝑣 and 

acceleration 𝑎, 6 hidden layers, each with 30 neurons, and 1 output in the output layer: the force F. The Rectified Linear Unit 

(ReLU) function is selected as the activation function. Since the 30 data sets have a different number of values, their contents 

are interpolated to get 6 000 points in each one leading to 180 000 input values for the neural network. The whole set of input 

values is divided in the training data and the validation data in the proportion 80-20 and the Adam (adaptive moment 

estimator) optimizer is chosen. The resulting neural network model is validated using the original experimental data sets and 

the EEARTH score (Enhanced Error Assessment of Response Time Histories) metric, introduced in [11], is used to quantify 

the distance between the simulated and experimental forces as illustrated on Figure 3. The scores, above 0.949, demonstrate 

that the neural network model accurately captures the behavior of the component on the measured domain. 

 

Fig. 3 Validation of the neural network with the computation of the EEARTH criteria for the 30 sets as a function of the 

excitation frequency. 

 

CONCLUSION 

A method for the search of the level of complexity required to validate a model in railway dynamics has been introduced. It 

relies on the determination of a decision-support indicator based on sensitivity analyses and it is applied to a yaw damper 

rheological model mounted on a motor bogie. A model developed using a multilayer perceptron neural network has been 

introduced that fully represents the component behavior within its training domain. The use of this type of black-box 



modeling disregarding any physical characteristics and time efficient is a good alternative when it comes to finding an 

acceptable compromise between the model complexity and the computational load. 
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