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Abstract. Phononic crystals (PCs) and elastic metamaterials (EMs)
have been viewed as innovative solutions for wave manipulation in vari-
ous applications. By exploiting periodicity, engineering structures can be
designed to enable various interesting functionalities such as bandgap for-
mation, energy localization, “diode” mechanisms, and more which are not
readily found in conventional materials. Accordingly, this paper devel-
ops a modeling technique for hydroelastic PCs, combining reduced-order
unit cell models with the Wave-based Finite Element Method (WFEM),
and investigates the influence of fluid filling levels on their dynamic be-
havior. The baseline unit cell is three-dimensional and features an in-
ternal void that allows the confinement of fluid (water) within its struc-
ture. Results from numerical simulations illustrate the good accuracy of
reduced-order models and the WFEM in predicting the dynamic behav-
ior of hydroelastic PCs. Besides, dispersion analyses and forced responses
showed that the propagation of waves is significantly affected by varying
the fluid filling level, shifting stopbands and enhancing bandgap forma-
tion. Therefore, this work opens new avenues for the design of advanced
metastructures with strong potential for wave manipulation, including
tunable bandgaps and waveguides, adaptive vibration control, reconfig-
urability, and other functions.

Keywords: Hydroelastic phononic crystals · Model order reduction ·
Wave-based finite element method.

1 Introduction

Periodic structures have attracted increasing interest over the years due to their
ability to manipulate wave propagation for various applications. Typically de-
signed using repetitive units, known as unit cells, periodic structures can exhibit
spatial periodicity in one, two, or three dimensions, giving rise to the so-called
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phononic crystals (PCs) or elastic metamaterials (EMs). These engineered sys-
tems are commonly used to passively control vibrations, offering novel and ad-
vanced strategies for vibration mitigation and control.

The literature abounds with studies on periodic structures for various pur-
poses. Khelif et al. [1], for example, designed a two-dimensional (2D) PC to
guide ultrasonic waves by exploiting specific patterns of defects. Li et al. [2] in-
vestigated the dispersion relations of fluid-filled PCs with both weak and strong
fluid-structure coupling. Spadoni et al. [3], in turn, focused on the dynamic
behavior of closed-cell crystalline foams and demonstrated that they exhibit su-
peranisotropic properties, behaving either as a fluid or a solid. Dorodnitsyn and
Spadoni [4] studied wave propagation within micrometer-scale poroelastic PCs.
The same authors also investigated elastic wave propagation in 2D porous and
cellular (non-porous) micrometer-scale square PCs, with and without entrained
fluid in the former [5].

Dorodnitsyn and Damme [6] investigated an acoustic metamaterial with a
negative refraction index incorporating entrained fluid. Jensen and Kook [7]
studied the existence of coupled elasto-acoustic bandgaps in corrugated plate
structures and acoustic channels. The dynamic behavior of hollow pillars selec-
tively filled with water and periodically arranged on a square foundation was
considered by Wang et al. [8], who also investigated acoustoelastic resonators
consisting of a solid matrix with fluid-filled cavities for the design of reconfig-
urable phononic circuits [9]. Later, Zhang et al. [10] developed a tunable acousto-
elastic metamaterial consisting of local resonators hosted in plate-like unit cells.

Afterwards, Elmadih et al. [11] investigated simultaneous acoustic and elastic
bandgaps in PCs composed of solid and fluid (air) media. Yu et al. [12] designed
a PC pipe by exploiting Bragg scattering and local resonance phenomena in pur-
suit of vibration reduction. Dai et al. [13] also investigated the dynamic behavior
of periodic fluid-conveying pipes for similar purposes. Helmholtz resonators, pe-
riodically arranged in a fluid-filled pipe, were studied by Yu et al. [14]. Hu et al.
[15] similarly investigated vibration control in a locally resonant fluid-conveying
pipe system, but by exploiting both Bragg and resonant-type bandgaps.

Although numerous works exist on the dynamic behavior of a variety of PCs
and EMs, not much is known about hydroelastic PCs — i.e., periodic struc-
tures that combine solid and liquid media. Hydroelastic metamaterials can offer
several advantages over conventional PCs, as well as more sophisticated metama-
terials that incorporate piezoelectric patches or other technologies, for instance.
To name a few: (1) hydroelastic PCs can allow for continuous tuning of their
mass, which might be achieved by altering the fluid level within the lattice; (2)
hydroelastic PCs are highly versatile due to the shapeless nature of fluids, which
allows them to conform to virtually any cavity or geometry, even highly complex
ones, thereby enhancing their applicability across a wide range of problems; (3)
a broad range of parameters governs the coupling intensity between elastic and
pressure waves in hydroelastic PCs, such as the fluid level and type, the geometry
and material of the host unit cell, and even magnetic forces in magnetorheolog-
ical fluids [16], thus enabling a highly flexible design of this interesting class of
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metamaterials for wave manipulation. All these features make hydroelastic PCs
promising alternatives for vibration control, especially in applications involving
water availability, such as those in oceans, among other environments.

In this respect, this work investigates the dynamic behavior of hydroelastic
PCs with one-dimensional periodicity, taking into account the occurrence of fluid
sloshing in partially filled unit cells. The baseline unit cell is three-dimensional
and features an internal void that allows the confinement of fluid (water) within
its structure [17], as shown in Fig. 1 for three different fluid filling levels. Numer-
ical simulations are carried out using the Wave-based Finite Element Method
(WFEM), combined with a novel model order reduction (MOR) scheme that ac-
celerates simulations and mitigates the occurrence of numerical issues commonly
encountered in the WFEM. Due to sloshing at the fluid free surface in partially
filled unit cells, pressure variations are induced in the surrounding medium, and
therefore, one accounts for such an effect as increased inertia [18].

(a)

(b)

(c)

Fig. 1: Samples of hydroelastic PCs investigated in this work, with cavities: (a)
lacking fluid, (b) partially filled, and (c) fully filled.

The remainder of this paper is organized as follows. Section 2 presents the
mathematical modeling of hydroelastic PCs using reduced-order unit cell models
and the WFEM. The results of numerical simulations are presented in Section
3. Finally, the main findings of this work are summarized in Section 4, followed
by the acknowledgment and reference sections.

2 MODELING
This section presents the mathematical modeling of hydroelastic PCs using
reduced-order unit cell models and the WFEM.
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2.1 Full- and reduced-order finite element models of unit cells

Firstly, this subsection discusses the modeling of a single unit cell of a hydroe-
lastic PC, including a MOR scheme.

Equations of motion The equations of motion for a single unit cell of a hy-
droelastic PC can be written as [5]:[

M̂U 0

ρ R̂
T
M̂P

]{
¨̂qU
¨̂qP

}
+

[
K̂U −R̂

0 K̂P

]{
q̂U

q̂P

}
=

{
f̂U
f̂P

}
, (1)

where q̂U and q̂P collect structural and pressure degrees of freedom (DoFs),
respectively; f̂U and f̂P are load vectors applied to q̂U and q̂P DoFs, respectively;
M̂j and K̂j (j ∈ {U, P}) stand for mass and stiffness matrices of structural (U)
and acoustic (P) parts, respectively; R̂ stands for the fluid-structure coupling
matrix; ρ is the fluid density; ( )T is the transpose operator; and ¨( ) represents
second-order derivatives with respect to time. In partially filled cells, M̂P in Eq.
(1) is updated to account for linear fluid sloshing as follows: M̂P → M̂P + ŜP,
where ŜP is the acoustic sloshing mass matrix [18].

The equations of motion of the unit cell are then partitioned according to
the scheme illustrated in Fig. 2, where q̂U and q̂P are separated into sets of
DoFs located at the left (L) and right (R) interfaces of the cell, as well as in
its interior (I). These DoFs are further distinguished by their location at the
fluid-structure interface, Γ, i.e., q̂Γj

for j ∈ {L, R, I}. Each set of DoFs at the
fluid-structure interface is further divided into structural and acoustic parts, i.e.,
q̂ΓL
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Fig. 2: Partitioning of DoFs based on node location (L, R, and I) and medium
type (U and P) for the finite element mesh of a unit cell of a hydroelastic PC.

In accordance with the previous partitioning, Eq. (1) is rewritten as follows:

M̂¨̂q+ K̂q̂ = f̂ , (2)
where:
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Reduction of q̂UI
and q̂PI

DoFs using the CB method The set of DoFs
q̂UI

and q̂PI
in Fig. 2 are uncoupled from each other due to the fluid structure

interface between them. Therefore, their reduction can be performed using an
adapted version of the Craig-Bampton (CB) MOR method [19]:

q̂ = αCBq̃, (5)
where:
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, (6)

qUI
and qPI

denote vectors in modal coordinates related to their physical coun-
terparts q̂UI

and q̂PI
, and αCB represents the CB projection matrix (including

fixed-interface modes and static/constraint modes).
Using Eq. (5) and pre-multiplying Eq. (2) by αT

CB, one obtains:

M̃¨̃q+ K̃q̃ = f̃ , (7)

where M̃ = αT
CBM̂αCB, K̃ = αT

CBK̂αCB, and f̃ = αT
CBf̂ .

Reduction of q̂ΓI
DoFs using an local-level characteristic constraint (L-

CC) MOR method The reduction of DoFs collected in q̂ΓI
can be performed

using the L-CC MOR method [20]:
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q̄, (8)
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qΓI
denotes a vector in modal coordinates related to its physical counterpart

q̂ΓI
, and αL-CCΓI

is the L-CC projection matrix, derived similarly to [21].
Thus, using Eq. (8) and pre-multiplying Eq. (7) by αT

L-CCΓI
, one derives:
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Reduction of boundary DoFs using an L-CC MOR method The reduc-
tion of boundary DoFs is also performed using the L-CC MOR method [22]:
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q, (11)

where:
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,

respectively, and αL-CCB
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Hence, using Eq. (11), and pre-multiplying Eq. (10) by αT
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2.2 The WFEM applied to hydroelastic PCs
The application of the WFEM [23,24] to reduced-order unit cell models of hy-
droelastic PCs can be performed as summarized next.

First, Eq. (13) is reformulated by considering qP = −ρq̇ϕ, where qϕ denotes
the acoustic velocity potential [25]. Afterwards, it is recast in the frequency
domain, yielding the following eigenvalue problem after further manipulations:(

S− µjI
)
φj = 0, (14)

where S is the unit cell transfer matrix, and µj and φj are wave modes (propaga-
tion constants and wave shapes, respectively). Bloch wavenumbers are obtained
as kj = (lnµj)/(−i∆), where ∆ is the unit cell length in the direction of wave
propagation. To address numerical issues in solving Eq. (14), various approaches
exist in the literature — the S+ S−1 have been used in this work [23].

Wave modes from Eq. (14) can then be used to calculate forced responses of
finite hydroelastic periodic structures upon enforcing boundary conditions [24].
Thereafter, responses in physical coordinates can be retrieved.

3 RESULTS
The following subsections present the results of numerical simulations conducted
to: (1) verify the reduced-order unit cell models derived in accordance with
Subsection 2.1; and (2) investigate the dynamic behavior of hydroelastic PCs
under varying fluid filling levels.

Simulations were performed considering a hydroelastic PC with unit cells
measuring 60mm × 10mm × 30mm (∆ = 60mm), each featuring a perfectly
centered internal void with dimensions 53.6mm× 6mm× 23.6mm [17]. Several
fluid filling levels are considered, namely 0mm (empty), 1mm, 2mm, 3mm,
4mm, 5mm, and 6mm (completely filled) — Fig. 1 illustrates three of these
conditions. The structural material is polycarbonate, with an elastic modulus of
2.64GPa, a density of 1200kgm−3, and a Poisson’s ratio of 0.38, while the fluid
is water, with a density of 998.2 kgm−3 and a sound velocity of 1482.1m s−1.
Dissipation effects are accounted for only in the polycarbonate, where KU →
(1 + iη)KU in Eq. (13), with η = 1%. For all scenarios, finite elements with
quadratic interpolation functions and an element size of 2.5mm are employed.
The maximum frequency of interest is limited to 5000Hz.

3.1 Model verification
First of all, Fig. 3 shows frequency response functions (FRFs) computed using the
WFEM with reduced-order unit cell models, and the FEM, for finite hydroelastic
PCs with six unit cells, considering fluid fillings of 1mm, 3mm and 5mm —
results for other fluid fillings are omitted for brevity. As one may notice, the
FRFs obtained from the WFEM closely match those computed using full FEM
models. In all cases, reductions from physical to modal equations of more than
93% were achieved, along with decreases in computation time exceeding 100-fold,
demonstrating the great performance of the proposed MOR approach.
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Fig. 3: Frequency response functions computed using the WFEM, with reduced-
order unit cell models, and the FEM for three different fluid filling conditions:
(a) 1mm, (b) 3mm, and (c) 5mm. In all cases, the output acceleration occurs
at the DoF indicated in (d), while the fluid response is calculated at the fluid
free surface, as schematized in the same subfigure for the case with 3mm filling.

3.2 On the wave propagation in hydroelastic PCs

We now investigate wave propagation through the hydroelastic PCs. First, Fig. 4
presents dispersion curves and FRFs obtained for an empty and a fully filled PC.
For the calculation of FRFs, the same input and output (acceleration) locations
shown in Fig. 3d are considered. As one may notice in Fig. 4, the bending
bandgaps predicted by the Bloch-Floquet theorem for infinite PCs align with the
stopbands observed in the FRFs. In addition, Fig. 4 shows that fluid inclusion
increases inertia, thereby shifting all bandgaps to lower frequencies.
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Fig. 4: Dispersion curves (left) and FRFs (right) calculated for (a) empty and (b)
fully filled PCs (6mm). For the calculation of FRFs, the same input and output
(acceleration) locations shown in Fig. 3d are considered.

To assess the impact of fluid filling on the dynamic behavior of hydroelastic
PCs, Fig. 5 presents FRFs for various fillings, based on the input and output
(acceleration) locations shown in Fig. 3d, with colors indicating the amplitude
of vibration. First, Fig. 5 shows that partially filled hydroelastic PCs exhibit
distinct changes in their responses compared to the empty and fully filled cases.
They appear to display more frequency bands where wave propagation is for-
bidden due to bandgap formation, especially for higher fluid fillings. It is also
evident from Fig. 5 that wave propagation can be manipulated by adjusting the
fluid level, opening new avenues for the design of tunable periodic structures.
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Fig. 5: Magnitude of accelerance FRFs computed using WFEM with reduced-
order unit cell models, for locations indicated in Fig. 3d and various fluid levels.
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4 CONCLUDING REMARKS

This paper presented a modeling framework for hydroelastic PCs, combining
reduced-order unit cell models with the WFEM, and investigated the influence
of fluid filling levels on their dynamic behavior. Numerical simulations demon-
strated that the forced responses obtained using the reduced-order unit cell mod-
els and the WFEM are in very good agreement with reference results from tra-
ditional FEM. The proposed framework led to substantial reductions in compu-
tational time and model size, further highlighting its capability for the efficient
and accurate analysis of hydroelastic periodic structures. Dispersion analyses
and FRFs showed that fluid inclusion significantly modifies wave propagation in
hydroelastic PCs, shifting stopbands and enhancing bandgap formation. These
findings open new avenues for the design of advanced metastructures with strong
potential for wave manipulation, including tunable bandgaps and waveguides,
adaptive vibration control, reconfigurability, and other functions.
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