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Abstract
Periodic structures have been attracting increasing interest due to their potential for manipulating waves. The
Wave-based Finite Element Method (WFEM) is typically employed to model such systems, involving the
examination of a finite element mesh of a single unit cell of the periodic lattice. However, the utilization
of the WFEM with more challenging problems, encompassing unit cell models with several degrees of
freedom, can be challenging, as it involves operating with large-sized matrices. To tackle this matter, one
developed a modified generalized Bloch-mode synthesis that, in conjunction with the WFEM, can efficiently
and accurately model periodic structures. Simulations were performed on a plate-like elastic metamaterial,
where relative errors between resonances of the reduced model and the reference solution less than 0.5%
and cross signature scale factor close to one across frequency were found, demonstrating the outstanding
performance of the MGBMS and WFEM in computing dispersion curves, wave shapes, and forced responses.

1 Introduction

Periodic structures are defined as those systems that exhibit geometric or material periodicity [1, 2]. They
manifest in various engineering structures, such as airplane fuselages, rotating machines, pipeline systems,
and numerous other examples. Interestingly, they can exhibit several phenomena that can be used as in-
novative solutions in engineering [3, 4]. For instance, periodic structures may reveal phenomena such as
waveguiding [5], cloaking [6], Anderson’s localization [7], confinement [8], negative refraction index [9],
non-reciprocity [10], mode conversion [11], bandgap formation [12], and more.

The mathematical modeling of periodic structures can be approached in various ways, such as the Finite Ele-
ment Method (FEM) [13, 14], Wave-based FEM (WFEM) [15, 16], Plane Wave Expansion (PWE) [17, 18],
Extended PWE (EPWE) [19, 20], Spectral Element Method (SEM) [21, 22] and Bloch-Floquet-based tech-
niques [23, 24, 25, 26]. Among them, the WFEM is well recognized as an efficient numerical method for
analyzing complex periodic structures [27, 28], including, e.g., phononic crystals (PCs) and elastic meta-
materials (EMs) in general. By employing the WFEM, the dynamic behavior of periodic structures can be
investigated by analyzing a finite element (FE) mesh of a single unit cell within its lattice. This wave-based
modeling procedure significantly reduces computational time during subsequent calculations compared to
the standard finite element method (FEM) [29], where the number of degrees of freedom (DoFs) is related
to the quantity of unit cells in the periodic system.

However, the utilization of the WFEM may become very challenging when analyzing PCs and EMs in the
mid- to high-frequency bands, where a fine mesh is required, resulting in FE models that can reach millions
of DoFs. The application of the WFEM can also be challenging for unit cell FE models with several boundary



DoFs, as the calculation of eigenvalues and eigenvectors, utilized to compute forced responses for a finite
system, involves operating with matrices of order dependent on the number of boundary equations. To tackle
this matter, and therefore, speed up the analysis of periodic structures using the WFEM, it is of utmost
importance to consider size-reduced unit cell FE models, obtained through model order reduction (MOR).
They can be obtained by resorting to Component Mode Synthesis (CMS)-based approaches, inspired by the
seminal works published in the sixties by Hurty [30], and Craig and Bampton [31], as well as by using
system-/local-level characteristic constraint (S-CC or L-CC) modes [23, 24].

Krattiger and Hussein [23] developed an ultrafast strategy for elastic band-structure calculations called Bloch
mode synthesis (BMS), where both boundary and interior DoFs of unit cells of periodic structures are rep-
resented as a set of reduced, yet accurate, modal DoFs. Interior DoFs are expressed as a combination of
fixed interface modes and constraint modes, whereas boundary DoFs are reduced using S-CC interface re-
duction — a procedure which is applied after enforcing the Bloch-Floquet boundary conditions (BCs), and
therefore becomes frequency-dependent. Four years later, Krattiger and Hussein introduced a novel MOR
approach to compute dispersion curves of periodic systems called Generalized BMS (GBMS) [24]. Within
this approach, the interior DoFs of unit cell FE models are reduced as in BMS, and the boundary DoFs are
represented as a linear combination of interface/local vibration modes using L-CC MOR, prior to enforcing
the Bloch-Floquet periodicity conditions, thereby avoiding the frequency dependence encountered in BMS.

More recently, Aladwani [32] extended the BMS method to electroelastic metamaterials with piezoelectric
resonant shunt damping. The BMS technique was further developed by Aladwani et al. [33] for application
to generally damped phononic materials, resorting to the classical state-space formulation. Van Belle et al.
[34] employed the GBMS to accelerate the calculation of dispersion curves of a two-dimensional EM. Cool
et al. [35] applied the BMS and GBMS methods to compute vibro-acoustic dispersion curves of periodic
structures in a solid-air medium. Xi and Zheng [36] proposed improvements to the GBMS method by
exploiting algebraic condensation, introducing the GBMS with algebraic condensation (GBMS-AC). Cool
et al. [37] investigated the impact of the unit cell choice on the computational efficiency of band structure
calculations using the GBMS. Van Belle et al. [38] used the GBMS method with substructuring to compute
the forced response of a plate-type metamaterial. Zhu et al. [39] developed the Improved GBMS, employing
algebraic condensation (IGBMS-AC). Jiang et al. [28] devised the Hybrid BMS (HBMS) MOR technique
by considering hybrid Bloch-Floquet BCs.

The developments reported so far concerning the use of reduced models following the BMS and its variant
approaches primarily focus on the analysis of PCs and EMs by examining dispersion curves. However, in
real-life scenarios, structures are not infinite as implied by the Bloch-Floquet theorem. Hence, calculation
of forced responses is a fundamental task to investigate wave propagation characteristics in finite periodic
structures. Accordingly, in this work, we introduce a new version of the GBMS, denoted as Modified GBMS
(MGBMS), which differs from the method developed by Krattiger and Hussein [24] in two aspects: (1)
interface modes are calculated for the unit cell at a global level, and therefore, a frequency-based truncation
criterion is effective in delimiting the space of the lowest frequency eigenvectors utilized to locally reduce
boundary DoFs via L-CC MOR; (2) the Modal Assurance Criterion (MAC) is employed to remove redundant
equations from the L-CC projection matrix while respecting the periodicity condition between adjacent unit
cells required by the Bloch-Floquet theorem. Unit cell modal models, reduced as done in the MGBMS, can
then be invoked in the WFEM, facilitating the analysis of wave propagation throughout periodic structures.

Figure 1 summarizes the main steps to model periodic structures using the MGBMS and WFEM efficiently.
In summary, internal and boundary DoFs of a unit cell in a periodic structure are first reduced using the
Craig-Bampton (CB) and L-CC MOR methods. Following the WFEM procedures, dispersion curves can
be calculated, proceeded by the computation of forced responses, harmonic deformed patterns, and other
results of interest for a finite periodic system. The numerical simulations presented afterward consider the
application of the MGBMS and the WFEM to a plate-type EM assuming one-dimensional wave propagation
behavior. However, the method is general and can potentially be applied to various periodic systems.

In the remainder of this paper, theoretical aspects relevant to the research work are summarized, including a
detailed exposition about unit cell model reduction and a brief review related to the WFEM. Subsequently,
results from numerical simulations are presented, followed by a summary of our findings and conclusions.
Acknowledgments and references are provided at last.
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Figure 1: Flowchart illustrating the various steps employed for the ultra-fast analysis of periodic structures.



2 Modeling

The following subsections summarize the mathematical developments necessary for the efficient and accurate
modeling of periodic structures using MGBMS and the one-dimensional WFEM. They cover the mathemat-
ical modeling of unit cells of periodic structures using FEM, topics related to the reduction of interior and
boundary DoFs following the MGBMS, and a review of fundamental aspects related to WFEM, focusing on
the calculation of wave modes and the computation of forced responses.

2.1 Equations of motion of a unit cell

As depicted in step (1) of Fig. 1, the first task for the efficient modeling of periodic structures using MGBMS
and WFEM consists of identifying the smallest repeating structure of the periodic lattice, called unit cell.
This unit cell can be spatially discretized using any discretization method, such as the FEM. Thereafter,
following the WFEM, the related DoFs and load vectors, q̂ and f̂ , respectively, can be labeled according to
their locations within the cell, i.e., left (L), internal (I), and right (R), as illustrated in Fig. 2.

q̂I, f̂ I

q̂L, f̂L q̂R, f̂R

Figure 2: Mesh of a unit cell of a periodic structure with degrees of freedom and load vectors labeled.

The resulting set of discretized undamped equations of motion (EoMs), which describe the dynamic behavior
of the unit cell, can be written as:M̂LL M̂LR M̂LI

M̂RL M̂RR M̂RI

M̂IL M̂IR M̂II


¨̂qL(t)
¨̂qR(t)
¨̂qI(t)

+

K̂LL K̂LR K̂LI

K̂RL K̂RR K̂RI

K̂IL K̂IR K̂II

q̂L(t)
q̂R(t)
q̂I(t)

 =


f̂L(t)

f̂R(t)

f̂ I(t)

 , (1)

where M̂ij and K̂ij are the mass and stiffness matrices, respectively, with i and j accounting for the DoFs
locations introduced in Fig. 2, i.e., L, R, and I; q̂j(t) represents time-dependent vectors of DoFs for the
unit cell, possibly collecting displacements and rotations in the general case; f̂ j(t) are the corresponding
time-dependent load vectors encompassing forces and moments; and ˙( ) denotes time derivatives.

Seeking to introduce the MOR theory afterwards, in Subsections 2.2 and 2.3, Eq. (1) can be rewritten in
a more convenient way, respecting the partitioning of DoFs into boundary and internal quantities [40], as
illustrated in step (2) of Fig. 1:

M̂

{
¨̂qB(t)
¨̂qI(t)

}
+ K̂

{
q̂B(t)
q̂I(t)

}
=

{
f̂B(t)

f̂ I(t)

}
, (2)

where B collects boundary DoFs, i.e., B ∈ {L,R}, and therefore:

M̂ =

[
M̂BB M̂BI

M̂IB M̂II

]
, K̂ =

[
K̂BB K̂BI

K̂IB K̂II

]
, q̂B(t) =

{
q̂L(t)
q̂R(t)

}
, f̂B(t) =

{
f̂L(t)

f̂R(t)

}
. (3)

2.2 Model reduction of interior degrees of freedom

In accordance with step (3) of Fig. 1, the next task for achieving efficient modeling of periodic structures in-
volves reducing interior DoFs using the CB MOR method [23, 24, 30, 31, 40, 41], while preserving boundary



equations. This can be accomplished by establishing the following transformation matrix:{
q̂B(t)
q̂I(t)

}
= TCB

{
q̂B(t)
qI(t)

}
=

[
I 0
Γ Ξ

]{
q̂B(t)
qI(t)

}
, (4)

where qI represents a set of reduced internal modal DoFs; Ξ is the matrix of fixed interface modes, obtained
by solving (K̂II − κjM̂II)ξj = 0 for the low-frequency eigenvectors; and Γ is the matrix of constraint

modes, given by Γ = −K̂
−1
II K̂IB.

Accordingly, the reduced set of EoMs describing the dynamic behavior of the unit cell, with internal DoFs
reduced by the CB MOR method and boundary DoFs preserved, can be written as:

M̄

{
¨̂qB(t)
q̈I(t)

}
+ K̄

{
q̂B(t)
qI(t)

}
=

[
I ΓT

0 ΞT

]{
f̂B(t)

f̂ I(t)

}
, (5)

where M̄ = TT
CBM̂TCB, K̄ = TT

CBK̂TCB, and ( )T is the transpose operator.

2.3 Model reduction of boundary (interface) degrees of freedom

Even after performing the reduction of internal DoFs, excessive number of boundary equations might hin-
der the application of the WFEM. Therefore, reducing the boundary DoFs is a crucial task for efficiently
modeling periodic structures, as illustrated in step (4) of Fig. 1. Therefore, the following projection holds:{

q̂B(t)
qI(t)

}
= TL-CC

{
qB(t)
qI(t)

}
=

[
L 0
0 I

]{
qB(t)
qI(t)

}
, (6)

where L is a block diagonal matrix, with two submatrices ΨLR = [ψL ψ̃R] lying along its diagonal, with
ψL and ψ̃R determined by obtaining the low-frequency eigensolutions of the following eigenvalue problem:(

K̄− γjM̄
)
ψj = 0, (7)

Ψ =

ψL1 ψL2 ψL...
ψR1 ψR2 ψR...
ψI1 ψI2 ψI...

 =
[
ψL

T ψR
T ψI

T]T
. (8)

In particular, ψ̃R is determined from the set of mode partitions gathered in ψR, for which the MAC number
between ψLi and ψRi, given by [42]:

MAC (ψLi,ψRi) =

∣∣ψT
Liψ

∗
Ri

∣∣2(
ψT

Liψ
*
Li

) (
ψT

Riψ
*
Ri

) , (9)

is lower than a user-defined threshold value. In the equation above, | | denotes the absolute value of a scalar
and ( )∗ the complex conjugate of a vector. This procedure is of utmost importance when applying the
reduction of boundary DoFs, as it reduces the number of redundant equations utilized in the L-CC projection
matrix. Such unnecessary equations usually lead to numerical issues when calculating forced responses for
a finite periodic system using the WFEM, if not appropriately removed from the projection basis. To ensure
that ΨLR is not singular, it can be orthogonalized via QR or singular value decomposition [24].

Therefore, the EoMs for the unit cell, reduced through L-CC MOR after its internal DoFs have been repre-
sented in modal coordinates using the CB method, can be expressed as:

M

{
q̈B(t)
q̈I(t)

}
+K

{
qB(t)
qI(t)

}
=

[
LT LTΓT

0 ΞT

]{
f̂B(t)

f̂ I(t)

}
, (10)

where M = TT
L-CCM̄TL-CC and K = TT

L-CCK̄TL-CC.



A single transformation matrix encompassing both the CB and L-CC MOR methods can also be derived,
allowing for the straightforward representation of physical DoFs into modal ones, as follows:{

q̂B(t)
q̂I(t)

}
= T

{
qB(t)
qI(t)

}
=

[
L 0
ΓL Ξ

]{
qB(t)
qI(t)

}
. (11)

Even though the flowchart depicted in Fig. 1 suggests that the reduction of interior DoFs must be carried out
prior to reducing boundary equations, steps (3) and (4) are independent in the MGBMS. This means that L
can be obtained without the need for reducing interior DoFs, for example, because Eq. (7) is solved at the
unit cell’s global level and not locally, as done in the GBMS [24].

2.4 A review on the one-dimensional wave-based finite element method

In this section, we delve into the mathematical formulation of the one-dimensional WFEM, encompassing
the final phase shown in Fig. 1 (step (5)). This review primarily draws insights from [43, 44], augmented by
our own experiences in applying the WFEM to various problems over the years.

2.4.1 Basic developments

The time-domain reduced EoMs derived previously, given by Eq. (10), can be written in the frequency
domain as D̃

(n)
(ω)q(n)(ω) = F(n)(ω), where D̃

(n)
(ω) = −ω2M + K represents the unit cell’s dynamic

stiffness matrix, q(n)(ω) and F(n)(ω) denote displacements/rotations and forces/moments, respectively, and
ω is the circular frequency. Dissipation effects (damping) due to material behavior, joints, and other sources
can be accounted for by making the unit cell’s stiffness matrix complex, i.e., K → (1+ iη)K, where η stands
for the hysteretic damping coefficient and i is the imaginary unit [45]. Accordingly, the unit cell DSM can
be partitioned following the DoFs locations introduced before in Subsection 2.1 (cf. Fig. 2), as follows:D̃

(n)
LL (ω) D̃

(n)
LR (ω) D̃

(n)
LI (ω)

D̃
(n)
RL (ω) D̃

(n)
RR (ω) D̃

(n)
RI (ω)

D̃
(n)
IL (ω) D̃

(n)
IR (ω) D̃

(n)
II (ω)



q
(n)
L (ω)

q
(n)
R (ω)

q
(n)
I (ω)

 =


F
(n)
L (ω)

F
(n)
R (ω)

F
(n)
I (ω)

 . (12)

After performing some mathematical manipulations, including dynamic condensation, and DoFs and load
equilibrium between neighboring unit cells (n) and (n + 1) of a periodic structure, one obtains (with fre-
quency dependencies omitted from now on for convenience) [46]:

u
(n+1)
L = Su

(n)
L + b(n), (13)

where u, S, and b are known as the unit cell’s state vector, transfer matrix, and load vector, respectively,
given by:

u
(n)
L =

{
q
(n)
L

−F
(n)
L

}
, S =

[
−D−1

LRDLL −D−1
LR

DRL −DRRD
−1
LRDLL −DRRD

−1
LR

]
, b(n) =

{
DqIF

(n)
I

DfIF
(n)
I − F

(n)
B

}
, (14)

with DqI = −D−1
LRDLI and DfI = DRI −DRRD

−1
LRDLI.

From the recurrence relation embedded in Eq. (13), one can derive the following relationships that support
subsequent mathematical developments:

u
(n+1)
L = Snu

(1)
L +

∑n

k=1
Sn−kb(k), (15)

u
(N+1)
L = SN+1−nu

(n)
L +

∑N

k=n
SN−kb(k), (16)

where N accounts for the number of unit cells of a finite periodic structure.



2.4.2 Computation of wave modes

Computing wave modes is a crucial task in the WFEM. Unfortunately, this step is highly prone to numerical
issues, as reviewed in this subsection. First, the Bloch-Floquet periodicity condition for problems encom-
passing one-dimensional wave propagation behavior allows us to write [29]:

u
(n+1)
L = µu

(n)
L , (17)

where µ = exp(−ik∆), k is the corresponding wavenumber, and ∆ is the unit cell length along the direction
of wave propagation. Considering external loads are zero in Eq. (13), one obtains [47]:

(S− µjI)ϕj = 0. (18)

The solution of this standard eigenvalue problem allows obtaining µj and ϕj ∝ u
(n)
L , which are called wave

modes and represent the propagation constant and wave shapes, respectively. Of great interest in structural
dynamics and many other areas are the so-called wavenumbers, computed as kj = (lnµj)/(−i∆).

In general, solving Eq. (18) can be challenging, as ϕj collects displacements/rotations and forces/moments
(cf. Eq. (14)), whose order of magnitude can be quite disparate [48, 49]. To mitigate this issue, one can resort
to Zhong’s eigenvalue problem [43, 50]:(

NJLT + LJNT − λjLJL
T) zj = 0, (19)

where:

N =

[
DRL 0

−(DLL +DRR) −I

]
, L =

[
0 I

DLR 0

]
, J =

[
0 I
−I 0

]
. (20)

Mencik and Ichchou [51] demonstrated that the eigenvalues of Eq. (19) are related to propagation constants,
such that µj can be retrieved as µj = 1

2

(
λj ±

√
λ2
j − 4

)
. Regarding the eigenvectors of the standard

eigenvalue problem in Eq. (18), they can be obtained as follows [43]:

ϕj =

[
I 0

DRR I

]
wj , with wj = J

(
LT − 1

µj
NT

)
zj . (21)

Wave modes computed previously can then be grouped into matrices according to the direction of wave
propagation, i.e., into those related to positive-going (µj ,ϕj) and negative-going waves (µ∗

j ,ϕ
∗
j ) [49, 52]:

µ = diag(µ1 µ...), µ∗ = diag(µ∗
1 µ∗

...), Φ = [ϕ1 ϕ...] =

[
Φq
ΦF

]
, Φ∗ = [ϕ∗

1 ϕ∗
...] =

[
Φ∗

q
Φ∗

F

]
, (22)

where q and F denote the displacements/rotations and forces/moments partitions of Φ and Φ∗, respectively.

2.4.3 Computation of forced responses due to harmonic loads

The forced response of a finite structure can be obtained by expressing the state vector and the vector of
external loads as a linear combination of wave amplitudes, utilizing the computed wave modes, as follows:

u
(n)
L = ΦQ(n) +Φ∗Q∗(n), (23)

b(n) = ΦQ
(n)
B +Φ∗Q

∗(n)
B , (24)

where Q(n), Q∗(n), Q(n)
B and Q

∗(n)
B are amplitude vectors gathering amplitudes related to the wave modes’

expansion of u(n)
L and b(n). By manipulating Eqs. (15) and (16), one arrives at:

Q(n) = µn−1Q(1) +
∑n−1

k=1
µn−k−1Q

(k)
B , (25)



Q∗(n) = µN+1−nQ∗(N+1) −
∑N

k=n
µk−n+1Q

∗(k)
B , (26)

with Q
(k)
B and Q

∗(k)
B obtained after manipulating Eq. (24), expressed as:

Q
(k)
B =

(
µΦ∗T

q DLI +Φ∗T
q DRI

)
F
(k)
I −Φ∗T

q F
(k)
B , (27)

Q
∗(k)
B = −

(
µ∗ΦT

qDLI +ΦT
qDRI

)
F
(k)
I +ΦT

qF
(k)
B . (28)

Once the state vector u(n)
L is written in terms of DoFs and loads, q(n)

L and F
(n)
L (cf. Eq. (14)), and considering

the partitions introduced in Eq. (22), combining Eqs. (23), (25), and (26) yields the following result:

q
(n)
L = Φqµ

n−1Q+Φ∗
qµ

N+1−nQ∗ +Φq
∑n−1

k=1
µn−k−1Q

(k)
B −Φ∗

q

∑N

k=n
µk+1−nQ

∗(k)
B , (29)

−F
(n)
L = ΦFµ

n−1Q+Φ∗
Fµ

N+1−nQ∗ +ΦF
∑n−1

k=1
µn−k−1Q

(k)
B −Φ∗

F

∑N

k=n
µk+1−nQ

∗(k)
B , (30)

with Q ≡ Q(1) and Q∗ ≡ Q∗(N+1) related to wave mode amplitudes for the first (1) and fictitious (N + 1)
unit cells of a finite periodic structure.

As the numerical simulations shown afterward have been conducted assuming the plate-type elastic meta-
material is in a “free-free” condition, for which F

(1)
L = 0 and F

(N+1)
L = 0, the following linear system of

equations holds for determining Q and Q∗:[
I Φ−1

F Φ∗
Fµ

N

Φ∗−1
F ΦFµ

N I

]{
Q
Q∗

}
=

{
Φ−1

F Φ∗
F
∑N

k=1 µ
kQ

∗(k)
B

−Φ∗−1
F ΦF

∑N
k=1 µ

N−kQ
(k)
B

}
. (31)

Solving this system enables the determination of any response of a periodic structure, in reduced coordinates,
by considering expressions introduced in Eqs. (29) and (30), as well as relations which can be derived from
Eq. (12). Physical responses can afterward be obtained by considering Eq. (11).

3 Numerical simulations

The numerical simulations presented below were conducted to demonstrate the outstanding performance
of the MGBMS and WFEM in computing dispersion curves, wave shapes, and forced responses due to
harmonic loads in periodic structures. In particular, the study addresses the propagation of bending waves
through a plate-type EM designed to exhibit locally-resonant bandgaps.

Relevant dimensions of the considered EM are provided in Figs. 3a and 3b (∆ = 30mm), whereas the com-
plete unit cell design, including both the bare cell and the resonator, is illustrated in Fig. 3c for convenience.
The EM is assumed to be made of structural steel, for which the elastic modulus, Poisson’s ratio, density,
and hysteretic damping coefficient have been taken as 200GPa, 0.3, 7850 kg m−3 and η = 1%, respectively.

Numerical simulations presented hereafter were performed between 0 Hz and 5000 Hz, using frequency
increments of 5 Hz. Convergence analysis of the FE mesh of a single unit cell of the EM was conducted
to ensure the reliability and accuracy of the numerical simulations within the considered frequency range.
Target convergence was assumed to be achieved when the relative error between the highest natural frequen-
cies obtained using two successive mesh refinements was less than 1%. In this context, Fig. 3d illustrates
the FE mesh used for conducting numerical simulations on the EM in the following subsections. Regarding
the modeling of the unit cell, it was carried out using four-noded Reissner-Mindlin plate elements, with a
thickness input of 2mm, assuming linear behavior for both material and interpolation functions.

Lastly, Fig. 3e illustrates the finite EM considered in our study, comprising a periodic system made with
N = 10 identical unit cells. It also depicts the input and output locations, associated with the z-direction,
which are used to compute forced responses later.
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Figure 3: Details about the plate-type EM: dimensions in millimeters of the (a) bare unit cell and (b) res-
onator; (c) complete cell design; (d) FE mesh; and (e) EM with 10 identical cells investigated in this work.

The error between forced responses calculated by the WFEM with MGBMS (HWFEM + MGBMS) and the refer-
ence solution obtained by the FEM (HFEM) was quantified using the relative error between the jth resonance
frequencies (frj) identified in the forced responses, measuring mass and stiffness variations, given by:

REfr j =
fWFEM + MGBMSj − fFEMj

fFEMj

. (32)

On the other hand, discrepancies between the amplitudes of forced responses were assessed using the Cross
Signature Scale Factor (CSF) metric, calculated as follows [53]:

CSF(ω) =
2
∣∣HH

WFEM + MGBMSH
T
FEM

∣∣
HH

WFEM + MGBMSH
T
WFEM + MGBMS +HH

FEMHT
FEM

, (33)

where the superscript ( )H denotes the Hermitian operator. This indicator ranges from zero to one and
operates similarly to the MAC number, implying that a value of zero indicates that the transfer functions are
completely uncorrelated, while values near one indicate a high degree of similarity between them.

Numerical simulations were conducted on a DELL XPS 8920 desktop computer equipped with an Intel(R)
Core(TM) i7-7700 CPU running at 3.60GHz and 32.0GB of RAM. Additionally, our codes were developed
in MATLAB®, and very few optimizations were implemented.

3.1 Unit cell model order reduction

The EoMs of a unit cell of the plate-type EM, given by Eq. (1), were reduced using the theory described in
Subsections 2.2 and 2.3. Fixed interface modes gathered in Ξ (cf. Eq. (4)) and low-frequency eigensolutions
of Eq. (7) were determined using frequency-based truncation criteria, where vibration modes with natural
frequencies less than 5 and 2 times the maximum frequency of analysis were retained, respectively. Table 1
summarizes the unit cell model-size details before and after applying the MOR procedure, where significant
reduction levels of boundary and internal equations are observed, with an overall reduction rate of 99.90%.

Table 1: Unit cell model-size details.

Set of equations Full FEM (NF ) MGBMS (NR) NR/NF (%)

Boundary 1452 52 3.58
Internal 73794 24 0.03

Complete 75246 76 0.10



3.2 Computation of dispersion curves and wave shapes

The reduced order model derived previously was then used to compute the dispersion curves illustrated in
Fig. 4, which relate to xz-plane bending and twisting motion of a plate-like EM of infinite extent. The figure
also depicts, in shaded areas, the bandgap frequency ranges encountered between 0 and 5000 Hz, determined
using the indicator of minimal evanescence ratio [54, 55, 56]. As the geometry of the resonators favors the
coupling between twisting and bending motion, wave shapes related to each branch in Fig. 4 exhibit mode
conversion along the frequency range.
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Figure 4: Dispersion curves with frequency ranges of bandgaps highlighted in lighter colors corresponding
to those used to plot each curve.

Of particular interest in this study is the application of the WFEM with MGBMS to investigate the bending
behavior of the EM in the xz-plane. Bandgaps affecting the bending behavior of the plate-like EM can be
identified in Fig. 4 for 1290–1640 Hz, which comprise the first complete bandgap between the red dashed
and blue solid lines; 2675–2875 Hz, corresponding to the second complete bandgap between the green dash-
dotted and red dashed lines; and 3945–4445 Hz. To aid comprehension, Fig. 5 illustrates wave shapes for the
previously seen dispersion curves, calculated for the central frequencies of each bending-related bandgap.

(a) 1465 Hz ( ) (b) 1465 Hz ( ) (c) 2775 Hz ( )

(d) 2775 Hz ( ) (e) 4195 Hz ( )

Figure 5: Wave shapes corresponding to dispersion curves in Fig. 4, calculated for the central frequencies of
each bending-related bandgap, for finite periodic structures with 10 unit cells.



3.3 Computation of forced responses due to harmonic loads

Following the steps summarized in Fig. 1, the final task in the analysis of periodic structures using the
WFEM and MGBMS involves calculating forced responses of finite systems. Therefore, Fig. 6a shows fre-
quency response functions (FRFs) calculated using the traditional FEM using the direct method and WFEM
+ MGBMS, considering the input and output locations depicted in Fig. 3e. Clearly, both forced responses
are in very good visual agreement across the entire frequency range. Additionally, the bandgap frequency
ranges determined using the Bloch-Floquet theory before (cf. Fig. (4)), highlighted in shaded gray in Fig. 6a,
precisely coincide with the forbidden bands in the forced responses.
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Figure 6: Calculation of FRFs using the FEM and WFEM + MGBMS and error evaluation.

The relative error analysis between the resonance frequencies of the reference model and the WFEM reduced
one is depicted in Fig. 6b, confirming minimal frequency discrepancies in Fig. 6a. It also reveals that these
discrepancies are primarily concentrated at higher frequencies, which is an expected result consistent with
most MOR methods, due to the neglect of less-important high-frequency content in the MOR process. The
maximum relative error identified in Fig. 6b is less than 0.5% and occurs at the 6th resonance frequency, being
mainly attributed to the frequency discretization with increments of 5Hz employed during simulations. The
CSF values shown in Fig. 6c further support these conclusions, with values close to one across the whole
frequency range. Slightly lower CSF values can be observed near 1500Hz and 5000Hz in Fig. 6c, indicating
minimal amplitude discrepancies between the FRFs obtained by the reduced WFEM model and the full FEM
one. In the former case, disparities are related to inaccuracies when calculating some high-order evanescent
wave modes, whereas in the latter, they are a consequence of truncation of higher frequency modes (residual
modes), as previously discussed.

Aiming to investigate the performance of the MGBMS when applied in conjunction with the WFEM com-
pared to the traditional FEM, the computational time needed for calculating the FRFs shown in Fig. 6a is
summarized in Table 2. It can be observed that most of the time required for the calculation of the forced
response using WFEM + MGBMS is related to the reduction of interior DoFs by employing the CB MOR
method. This involves solving an eigenvalue problem necessary to assemble the matrix of fixed interface
modes Ξ and performing a system solution to find the matrix of constraint modes Γ (cf. Eqs. (4) and (5)).
Time related to data reading and matrix manipulations, denoted by the task “Other” in Table 2, is the next



on the list. It should be pointed out that this category does not include the generation of the FE model of
the unit cell or the export process of related EoMs. The remaining tasks involve negligible computational
effort, which includes the computation of wave modes ((µ,Φ) and (µ∗,Φ∗)), reduction of boundary DoFs
using the L-CC MOR technique, calculation of wave mode amplitudes (Q and Q∗) utilizing Eq. (31), and
evaluation of physical responses.

Table 2: Timing data in seconds related to the calculation of the magnitudes of FRFs depicted in Fig. 6a.

CB MOR L-CC MOR
Computation of

wave modes
Calculation of wave

mode amplitudes
Post-processing: evalu-
ation of physical DoFs Other Total

Related equations (4)–(5) (6)–(11) (19)–(22) (31) (29)–(30), (12), (11) - -

WFEM + MGBMS 91.54 5.94 6.33 2.12 0.35 10.92 117.20
FEM - - - - 9539.00 - 9539.00

Lastly, Table 2 also shows that when the CB and L-CC MOR methods are combined with the standard
WFEM, considerable time reduction is achieved for evaluating forced responses of a finite periodic sys-
tem compared to the traditional FEM. In particular, the analysis of the plate-type EM using the WFEM +
MGBMS is approximately 82 times faster compared to the FEM. This result seems very promising for ob-
taining an harmonic deformation pattern of the complete EM, since one would need to evaluate a maximum
of N × 75246 = 752460 responses, related to the physical DoFs of the structure, which would require
approximately 0.35/1000× 752460 ≈ 260 s to obtain a deformation pattern related to a given frequency.

4 Concluding remarks

In this work, we demonstrate the use of the MGBMS and WFEM for the efficient and accurate modeling
of periodic structures. Internal and boundary DoFs of a unit cell were reduced using the CB and L-CC
MOR methods, respectively. In the latter case, the reduction of boundary DoFs was performed respecting
the application of the Bloch-Floquet theorem. Simulations have demonstrated the outstanding performance
of size-reduced unit cell models, with only 0.10% of modal DoFs, for analyzing periodic systems using the
WFEM. Relative errors between resonance frequencies identified in FRFs using the WFEM + MGBMS and
the FEM were less than 0.5%, indicating good accuracy of the reduced modal model in terms of mass and
stiffness matrices. Amplitude discrepancies were evaluated using the CSF, with values approaching one in
the entire frequency range, confirming the remarkable performance of the proposed modeling approach.
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