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Distributed dynamic event-triggered time-varying
resource management for microgrids via practical

predefined-time multiagent methods
Tingting Zhou, Salah Laghrouche, Youcef Ait-Amirat

Abstract—This paper investigates the problem of time-varying
(TV) resource management in microgrids (MGs) under TV
demand, employing a multi-agent system (MAS) approach. A
novel TV resource management model is introduced, explicitly
accounting for dynamic constraints and demand variations to
ensure real-time resource allocation while effectively handling
load fluctuations and renewable energy variability. To address
this problem, a fully distributed predefined-time (PDT) optimiza-
tion algorithm is developed, incorporating a time-base generator
(TBG) to guarantee convergence within a PDT, independently
of initial conditions and system parameters. Additionally, a
novel dynamic event-triggered (DET) communication mechanism
is designed to reduce unnecessary data exchange and ensure
scalability under limited communication resources. The effec-
tiveness of the proposed approach is assessed through extensive
simulations, which confirm its ability to achieve robust operation,
fast convergence, reduced communication overhead, and adapt-
ability to structural changes in the MG, including plug-and-play
functionality.

Index Terms—Distributed optimization for time-varying mi-
crogrids, Time-varying demand, Dynamic event-triggered mech-
anism, Predefined-time optimization in multi-agent microgrids.

Nomenclature
ϱ(t) Binary variable (1: grid-connected, 0: islanded)

Pi(t) Power output of agent i (kW)

PC,i, PR,i, PE,i Power outputs of CDG, REG, ESS i (kW)

PDL,i, PNDL,i Power consumption of DL and NDL i (kW)

Pgrid Net power exchange with main grid (kW)

P+
x , P−

x Positive/negative part of Px (kW)

Pmax
i , Pmin

i Upper and lower power bounds of agent i (kW)

δi(t), ηi(t), ϑi(t) TV cost coefficients ($/kW2h, $/kWh, $/h)

λR(t) Renewable generation benefit ($/kWh)

Com(t) Operation and maintenance cost ($/kWh)

γcu(t) Curtailment penalty coefficient ($/kWh)

P av
R,i(t) Forecasted available power of REG i (kW)

λE(t) Environmental benefit of ESS operation ($/kWh)

ηch(t), ηdi(t) Charging/discharging efficiency of ESS

λre(t) Reserve value coefficient (based on SOC)

ccycle(t) Battery degradation-related cycling cost ($/kWh)

cde SOC tracking penalty coefficient ($/h)

CE
om Operation and maintenance cost coefficient ($/kWh)
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SOCref Reference SOC

ccy(t) DL degradation cost ($/kWh)

P ref
NDL,i Reference power for NDL i (kW)

pin(t), pbu(t) Internal and grid electricity prices ($/kWh)

pcarbon Carbon tax price ($/tonCO2)

EC,i Carbon emissions of CDG i (tonCO2/h)

Pmax
buy , Pmax

sell Grid exchange limits (kW)

WC,i,WR,i,WE,i SWFs for CDG, REG, ESS ($/h)

WDL,i,WNDL,i SWFs for DL and NDL ($/h)

Wgrid SWF of main grid interaction ($/h)

Abbreviations
TV Time-Varying

MG Microgrid

SET Static Event-Triggered

DET Dynamic Event-Triggered

SWF Social Welfare Function

PDT Predefined-Time

MAS Multi-Agent System

DER Distributed Energy Resource

REG Renewable Energy Generator

ESS Energy Storage System

SOC State of Charge

NDL Non-Dispatchable Load

DL Dispatchable Load

TBG Time Base Generator

PnP Plug-and-Play

FT Finite-Time

FXT Fixed-Time

RMP Resource Management Problem

I. INTRODUCTION

IN contemporary grid management, MGs have garnered sig-
nificant attention due to their flexibility and sustainability.

As a crucial component of the electrical grid, MGs are capable
of operating independently in the event of power outages
or other grid failures [1]. However, effective resource man-
agement, especially in scenarios involving renewable energy
sources, remains a major challenge. Traditional centralized
control methods, though widely adopted, exhibit notable limi-
tations in handling dynamic changes, real-time responsiveness,
and system robustness [2].

To address these limitations, scholars have introduced MAS
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into MG management, significantly enhancing the system’s
capabilities for distributed decision-making and autonomous
regulation. One of the key advantages of MAS in MG re-
source management lies in its ability to model the MG as
a collection of autonomous agents, each managing specific
components such as distributed generators, energy storage
units, and loads. These agents coordinate their actions through
local communication to optimize resource use and improve
energy distribution efficiency [3, 4].

In recent years, the study of RMP has garnered substantial
interest among researchers due to its critical role in optimizing
operations across various industries. Scholars have exten-
sively explored various aspects of RMP, developing strategies
and models to enhance efficiency and reduce costs [5–7].
Traditional RMP formulations often assume static objective
functions and constraints. However, in practice, resource avail-
ability, demand, and operational constraints vary dynamically
over time [8, 9]. To better capture these variations, TV
cost functions and dynamic constraints have been introduced,
allowing models to more accurately reflect renewable energy
fluctuations, price volatility, shifting operational costs, and
demand-side responses [10, 11]. For example, in [9], Huang
et al. investigated the TV economic dispatch by using a
prediction-correction method. The distributed continuous-time
algorithms were proposed to solve the RMP with TV quadratic
cost functions.

In MG RMP within cyber-physical systems, optimizing
communication resources is crucial due to limited bandwidth.
Event-triggered communication strategies have been shown
to be more efficient than traditional continuous strategies,
as they significantly reduce the need for constant data ex-
change and bandwidth usage [12, 13]. Unlike static event-
triggered (SET) methods [14–17] that rely on fixed triggering
conditions regardless of system context, DET strategies adapt
their triggering rules based on real-time data, thereby offering
more robust performance in managing the complex dynamics
of MGs. DET mechanisms can respond more flexibly to
changes in system states or external conditions, enabling com-
munication only when performance deviates from predefined
thresholds or when significant events occur [18–22]. In [19],
a DET fixed-time (FXT) distributed strategy was presented
for RMP. A novel DET condition and a TBG distributed
predefined-time (PDT) algorithm were designed for RMP in
[22]. However, these works [5, 6, 19–22] have only focused on
time-invariant resource management issues. Therefore, using a
fully distributed DET mechanism to solve RMP with TV cost
functions and constraints remains a challenging issue.

The rate of convergence is a critical aspect of algorithm
performance, particularly in applications such as MG systems,
where rapid adjustments are essential due to the inherent
variability of renewable energy sources. In recent years, var-
ious distributed optimization algorithms have been developed
with different convergence properties, including asymptotic
[6, 23, 24], finite-time (FT) [25–29], and FXT [30–34] con-
vergence. However, asymptotic convergence algorithms lack
explicit bounds on settling time, and the convergence times
of FT and FXT algorithms typically depend on the system’s
initial conditions and parameters. These limitations hinder

their applicability in time-sensitive scenarios. To address this
issue, the PDT optimization approach has been introduced
for solving RMPs [35]. Specifically, the TBG-based PDT
algorithm constructs a strongly time-dependent gain function
that compresses the system state convergence process into a
finite duration. This directly couples the convergence time with
physical time. Consequently, users neither need to consider the
influence of initial conditions nor manually tune parameters to
guarantee system convergence within the PDT. This ensures
timely and predictable system responses, which is essential for
maintaining stability in highly dynamic environments.

Despite the advancements made in the cited papers, several
unresolved challenges persist and require further investiga-
tion. For instance, [9–11] addressed TV cost functions but
neglects the TV constraints, and it also overlooks significant
communication overhead caused by continuous communica-
tion demands. Similarly, although some works have explored
DET strategies, [12, 13] use asymptotic convergence with-
out explicit settling time bounds. [18] adopts exponential
convergence, and [20, 21] rely on linear convergence, both
of which lead to slow convergence near equilibrium. These
convergence properties limit the responsiveness of the system
and may increase operational costs under dynamic and time-
sensitive conditions. The works in [25–27, 30–32, 35] focus
on improving convergence speed but do not consider the TV
characteristics inherent in real-world RMPs in MGs. Notably,
to date, few studies have explored TV RMP in MGs under
a fully distributed DET-based PDT optimization framework
leveraging MASs. Indeed, such research could significantly
enhance the efficiency and adaptability of MG operations by
reducing communication overhead, accelerating convergence,
and enhancing the ability to manage the dynamic integration
of renewable energy sources [36, 37].

To address the aforementioned limitations, this paper in-
vestigates the time-varying TV RMP in MGs using a MAS
framework. We propose a fully distributed DET-PDT optimiza-
tion algorithm to effectively manage the challenges arising
from dynamic system characteristics, limited communication
resources, and renewable energy variability. This approach
differs substantially from existing studies on RMPs. The main
contributions of this work are summarized as follows:

1) A novel distributed practical DET-PDT optimization
algorithm is developed. Compared with existing methods for
RMPs [5, 6, 6, 8–11, 19–21, 23–27, 32, 35], the proposed
algorithm simultaneously achieves PDT convergence, reduced
communication overhead, and enhanced scalability.

2) A new DET mechanism is designed, which differs from
[12, 13, 18–21], by incorporating a TBG-based with TV gain.
This mechanism significantly reduces unnecessary transmis-
sions, ensures fast convergence within PDT, and avoids Zeno
behavior.

3) This paper focuses on TV RMP with TV equality
constraints. Unlike conventional static resource management
[5, 6, 6, 19–22, 24–27, 32, 35], the proposed model better
captures the dynamic nature of renewable energy sources
in MGs, enabling real-time resource allocation adjustments
aligned with practical operational demands.

The remainder of this paper is organized as follows. Sec-
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tion II presents the necessary preliminaries on graph theory,
basic definitions, and lemmas, as well as an overview of the
MAS framework. Section III introduces the modeling of the
TV RMP. The proposed distributed DET-PDT optimization
algorithm is described in detail in Section IV. Section V
provides simulation results. Finally, Section VI concludes the
paper.

Notation: Throughout this paper, let R, RN , and RN×M

denote the set of real numbers, the N -dimensional real vector
space, and the set of N ×M real matrices, respectively. Let
1N ∈ RN denote the vector with all entries equal to 1. diag{·}
denotes a diagonal matrix. For a given vector x ∈ RN , the
Euclidean norm is defined as ∥x∥ =

√
x⊤x.

TABLE I
FEATURE COMPARISONS BETWEEN THE DESIGNED

ALGORITHM AND EXISTING RESULTS

Ref. TV objective
function DET Convergence

Type
TV

demand
Initializa-
tion free

[8] ✓ × Asymptotic ✓ ×
[10] ✓ × FT × ×
[11] ✓ × FT ✓ ×
[19] × ✓ FXT × ×
[21] × ✓ Exponential × ×
[22] × ✓ PDT × ✓
[35] × × PDT × ✓

Herein ✓ ✓ PDT ✓ ✓

II. PRELIMINARIES

A. Graph Theory

Let G = (V, E,A) be an undirected graph with N nodes,
where V is the set of nodes, and E ⊂ V × V denotes the
set of edges. The connectivity between the nodes is described
by the adjacency matrix A = [aij ] ∈ RN×N , where aij = 1
if there exists an edge between nodes i and j, and aij = 0
otherwise. Since the graph is undirected, A is symmetric, i.e.,
aij = aji. The neighbor set of node i is defined as Ni =
{j ∈ V : (i, j) ∈ E}. The Laplacian matrix L = [lij ] ∈
RN×N of the graph is defined by lij = −aij for i ̸= j, and
lii =

∑N
j=1 aij . If the graph is connected, the eigenvalues of

L satisfy 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN (L). Moreover, L
admits the spectral decomposition L = D⊤HD, where D is
an orthogonal matrix and H = diag{0, λ2(L), . . . , λN (L)}.

B. TBG-Based PDT Convergence

Consider the following scalar dynamic system:

ẏ(t) = −ξT (t, tm) y(t), y(0) > 0, (1)

where y : R → R, ξ > 0, tm is the predefined convergence
time, and T (t, tm) : R≥0 × R+ → R is a TBG function, as
introduced in [38]. Specifically, the TBG is defined as:

T (t, tm) = dζ(t, τ)/dt, (2)

where ζ(t, τ) satisfies the following conditions:
(1) 0 < τ ≪ 1,
(2) limτ→0+ [ζ(t

+
m, τ)− ζ(0, τ)] = +∞,

(3) ζ(t, τ)− ζ(t+m, τ) ≥ 0 for all t > tm,
(4) limt→+∞[ζ(t, τ)− ζ(0, τ)] = +∞.
In this paper, the choice of T (t, tm) follows the formulation
proposed in [39].

Lemma 1 ([38]). The system (1), with the TBG defined in (2),
can achieve practical PDT convergence within tm.

Definition 1 ([38]). A system of the form ẏ(t) =
−ξT (t, tm)f(y(t)), with t ≥ 0, is said to achieve practical
PDT convergence within tm if, for any initial condition y(0),
there exists 0 < ν = ν(y(0)) ≪ 1 such that the following
conditions hold:

1) limt→t+m
∥y(t)∥ ≤ ν,

2) ∥y(t̃)∥ ≤ ν, for all t̃ ≥ tm,
3) limt→+∞ ∥y(t)∥ = 0.

C. MAS framework

As shown in Fig. 1, the proposed MAS-based control
framework consists of three primary layers: the Device Layer,
the Control Layer, and the Communication Layer.

Fig. 1. MAS-Based Three-Layer Structure of a MG with DET Coordination.

The Device Layer comprises various components in the
MG, including conventional dispatchable generators (CDGs),
photovoltaic (PV) systems, wind turbines (WTs), commercial
and industrial loads, and energy storage systems (ESSs). These
components form the physical infrastructure of the microgrid,
responsible for energy generation, storage, and consumption.

The Control Layer serves as the intermediary between the
physical devices and the communication system. It processes
control signals and status updates, ensuring that the power
output of the devices aligns with the reference signals provided
by the optimization algorithm.

The Communication Layer facilitates information ex-
change among agents. Each agent communicates with its
neighbors to share locally computed decisions and updated
system states. This layer integrates a DET mechanism, which
significantly reduces communication overhead by transmitting
updates only when specific conditions, determined by real-time
system requirements, are satisfied.

The key to the control process is the calculation of the opti-
mal reference signal generated by the optimization algorithm
in the communication layer, which is then transmitted to the
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control layer. The control layer adjusts the power output of the
device layer to align with the optimal reference signal, thereby
achieving optimal system operation and efficient resource
utilization.

D. Useful Lemmas
Lemma 2 (Young’s Inequality). For any vectors a, b ∈ Rn

and any scalar ϵ > 0, the following inequality holds:

a⊤b ≤ ϵ

2
∥a∥2 + 1

2ϵ
∥b∥2.

Lemma 3 (Laplacian Spectral Decomposition [22]). Let L ∈
RN×N be the Laplacian matrix of a connected undirected
graph. Then there exists an orthogonal matrix Q = [q1 Q2] ∈
RN×N , with q1 = 1√

N
1N , such that

L = Q

[
0 0
0 J

]
Q⊤,

where J = diag(λ2, . . . , λN ) contains the nonzero eigenval-
ues of L.

III. TV RMP FORMULATION

A. Economic modeling of devices in MGs
To formulate the TV RMP in MGs, we consider the social

welfare functions (SWFs) of various components, including
CDGs, renewable energy generators (REGs), ESSs, loads, and
grid interaction mechanisms. The model is designed to accom-
modate both islanded and grid-connected MG configurations.
To this end, a binary function ϱ(t) ∈ {0, 1} is introduced to
indicate the operational mode:

ϱ(t) =

{
0, islanded mode,
1, grid-connected mode.

(3)

When ϱ(t) = 1, the MG is allowed to interact with the main
grid; otherwise, it operates in isolation. The value of ϱ(t) is
predefined based on the MG’s operating mode and remains
constant during each optimization process.

1) CDGs: CDGs refer to controllable generation units such
as natural gas generators and diesel generators, capable of
actively regulating their power output. To better align with
practical conditions, the associated generation costs are mod-
eled as a TV quadratic function of active power, expressed as
follows [27, 32]:

CC,i(PC,i, t) = δC,i(t)P
2
C,i + ηC,i(t)PC,i + ϑC,i(t), i ∈ C,

(4)
where δC,i(t), ηC,i(t), and ϑC,i(t) are time-varying coeffi-
cients representing the nonlinear generation cost, marginal
cost, and fixed cost, respectively. The generation output is
subject to physical constraints:

Pmin
C,i ≤ PC,i ≤ Pmax

C,i . (5)

Where Pmin
C,i and Pmax

C,i are the lower and upper power output
limits. Then, the SWF of CDG can be defined as:

WC,i =pin(t)PC,i − CC,i − pcarbonEC,i. (6)

Where pin(t), pcarbon and EC,i denote the MG internal elec-
tricity price, carbon tax price and carbon emissions intensity,
respectively.

2) REGs: For REGs such as PV and WT units, the SWF
accounts for environmental benefits, electricity sales revenue,
curtailment penalties, and operational costs. Specifically, in-
spired by the modeling approaches in [40], the welfare of agent
i ∈ R is defined as:
WR,i(t) =

(
λR(t) + pin(t)− Com(t)

)
PR,i − CR,i(t),

CR,i(t) = ηR,i(t)PR,i + δR,i(t) exp
(
γcu(t)(P

av
R,i − PR,i)

)
,

(7)

subject to:
0 ≤ PR,i ≤ P av

R,i. (8)

Here, λR(t) denotes the per-unit environmental value of re-
newable energy, Com(t) is the operation and maintenance cost
per unit of electricity, ηR,i(t) and δR,i(t) are TV nonnegative
cost coefficients; γcu(t) is the curtailment penalty coefficient,
and P av

R,i(t) is the forecasted maximum available renewable
output.

3) ESSs: Dynamic modeling of ESSs plays a vital role
in improving system-level economy and reliability. This pa-
per presents a TV optimization framework for ESSs that
jointly considers energy arbitrage, environmental benefits,
and degradation costs. The model integrates key operational
constraints such as charging/discharging efficiency, state of
charge (SOC), and power exchange limits. It also supports both
grid-connected and islanded modes by dynamically adjusting
grid interaction strategies, enhancing system resilience to price
fluctuations and external disturbances. The SWF of ESS agent
i ∈ E is defined as:

WE,i = Bar,i +Ben,i +Bba,i − Clo,i − Cma,i, (9)

where each term represents the following components:
Bar,i(t): Arbitrage benefit; Ben,i(t): Environmental benefit;
Bba,i(t): Backup capacity value; Clo,i(t): Loss and degrada-
tion cost; Cma,i(t): Operation and maintenance cost. These
components are defined as follows:

Bar,i(t) = ϱ(t)
(
pin(t)P

+
i,E − pbu(t)(P

−
i,E)

)
, (10)

Ben,i(t) = λE(t)
(
ηch(t)(P

−
i,E)− (1/ηdi(t))P

+
i,E

)
, (11)

Bba,i(t) = λre(t) · SOC(t), (12)

where P+
i,E = 1

2 (Pi,E(t) +
√

P 2
i,E(t) + ϵ) and P−

i,E =

1
2 (Pi,E(t)+

√
P 2
i,E(t) + ϵ) represent the discharge and charge

power of ESS i, respectively, with ϵ being a small constant.
The exchanged power is bounded by:

−Pmax
i,E ≤ Pi,E ≤ Pmax

i,E . (13)

Here, pbu(t) denote the external electricity prices, respectively.
λE(t) represents the equivalent environmental benefit per unit
of stored energy, while ηch(t) and ηdi(t) denote the charging
and discharging efficiencies. λre(t) captures the reserve value
associated with the SOC level.

The cost terms are given by [41, 42]:

Clo,i(t) = ccycle(t)
√
P 2
i,E + ϵ+ cde (SOC(t)− SOCref)

2
,

(14)

Cma,i(t) = CE
omP

2
i,E , (15)
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where degradation cost Clo,i(t) is a simplified approximation
that considers only the primary effects of cycle-related degra-
dation and SoC deviation. ccycle(t) reflects degradation-related
cycling loss,

√
P 2
i,E + ϵ is used as a smooth approximation of

the absolute value function and cde is a penalty coefficient
that encourages SOC tracking to prolong battery life. SOCref
denotes a reference SOC target for long-term health optimiza-
tion. The parameter CE

om represents the unit operational and
maintenance cost during charging or discharging.

4) Load Devices: To accurately capture the impact of
different load types on system performance, this paper
distinguishes between dispatchable loads (DLs) and non-
dispatchable loads (NDLs), and develops corresponding SWFs
for each category.

1) DLs: For DLs, the SWF is modeled as a TV function of
active power consumption, incorporating economic benefits,
diminishing marginal utility, electricity cost, and degradation
effects. Specifically, motivated by the formulation in [42], the
SWF of agent i ∈ D is given by:

WDL,i = ηDL,i(t)PDL,i − δDL,i(t)P
2
DL,i − CDL,i(t),

CDL,i(t) = (pin(t) + ccy(t))PDL,i,
(16)

where PDL,i(t) is the power consumed by DL i, subject to:

0 ≤ PDL,i ≤ Pmax
DL,i . (17)

Here, ηDL,i(t) denotes the marginal utility of load consump-
tion (e.g., comfort or productivity gain), δDL,i(t) represents
the marginal utility reduction coefficient, and ccy(t) captures
degradation-related cycling cost.

2) NDLs: NDLs represent critical or inflexible loads that are
not subject to real-time optimization. Their SWF formulation
prioritizes consumption stability while accounting for energy
costs and deviations from a reference profile. For agent i ∈ N ,
the SWF is defined as:

WNDL,i(t) =ηN,i(t) log

(
1 +

PNDL,i(t)

P ref
NDL,i

)

− δN,i(t)

(
PNDL,i

P ref
NDL,i

− 1

)2

− pin(t)PNDL,i,

(18)

subject to:
0<PNDL,i(t) ≤ Pmax

NDL,i. (19)

In this model, ηN,i(t) quantifies the importance of meeting the
electricity demand of NDL i at time t, serving as a preference
weight in the utility function, δN,i(t) penalizes deviations from
the preferred consumption level P ref

NDL,i, and pin(t) represents
the energy cost.

5) Grid Interaction (GI): The SWF for grid interaction
aims to optimize the economic performance of power ex-
change between the MG and the main grid, while maintaining
operational flexibility under different grid conditions. It ac-
counts for both electricity purchase costs and power selling
revenues, adjusted dynamically by real-time market prices
[42]:

Wgrid(t) = ϱ(t)
(
pin(t) · P−

grid(t)− pbu · P+
grid

)
−δg,i(t)P

2
grid(t),

(20)

where δg,i(t) is positive TV correction coefficient, Pgrid(t) is
the net power exchanged with the grid, constrained by:

−ϱ(t)Pmax
sell ≤ Pgrid(t) ≤ ϱ(t)Pmax

buy . (21)

Here, P+
grid(t) = 1

2

(
Pgrid(t) +

√
P 2

grid(t) + ϵ
)

and P−
grid(t) =

1
2

(
−Pgrid(t) +

√
P 2

grid(t) + ϵ
)

denote the power from and
sold to the grid, respectively. Pmax

sell and Pmax
buy represent

the maximum power sale and maximum power purchase,
respectively. The formulation (20) captures both the economic
incentives associated with real-time electricity trading and
the potential operational risks arising from excessive grid
interaction.

B. Social welfare maximization model for MG operation

For both islanded and grid-connected modes, the overall
SWF of the MG is defined as the aggregate of the individual
SWFs of all constituent components, including generation
units, storage systems, loads, and grid interaction. Meanwhile,
the MG must satisfy a power balance constraint to ensure
stable operation, as well as various inequality constraints that
reflect physical and operational limitations. Accordingly, the
social welfare maximization problem is formulated as follows:

max
{Pi(t)}

∑
i∈C

WC,i(t) +
∑
i∈R

WR,i(t) +
∑
i∈E

WE,i(t)

+
∑
i∈D

WDL,i(t) +
∑
i∈N

WNDL,i(t) +Wgrid(t) (22)

s.t. (5), (8), (13), (17), (19), (21)∑
i∈C

PC,i(t) +
∑
i∈R

PR,i(t) +
∑
i∈E

PE,i(t) + ϱ(t)Pgrid(t)

=
∑
i∈D

PDL,i(t) +
∑
i∈N

PNDL,i(t)

In this study, we investigate an MAS-based RMP for a
system comprising the main grid and a MG with N agents. For
notational simplicity, we denote Pi(t), di(t), and Wi(Pi(t), t)
as the output power, demand, and TV SWF of agent i, respec-
tively. The agents include CDGs, REGs, ESSs, DLs, NDLs,
and GI. Each agent optimizes its local power dispatch while
collectively maintaining system-wide balance. The operational
bounds are given by Pmin

i ≤ Pi(t) ≤ Pmax
i .

Remark 1. The proposed model (22) captures key dynamic
features of MG operation and supports real-time social welfare
optimization. It incorporates: (i) TV cost/benefit functions,
enabling adaptation to load and renewable fluctuations; (ii)
equality constraints for real-time power balance; (iii) inequal-
ity constraints ensuring operational feasibility; and (iv) seam-
less switching between islanded and grid-connected modes. By
allowing dynamic adjustment of power and pricing strategies,
the model achieves a balance between accuracy and compu-
tational efficiency. Its structure also enhances robustness and
practical applicability across diverse MG scenarios.
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IV. DET PDT DISTRIBUTED SOLUTION FOR THE RMP
A. Model formulation

Based on this MAS framework, Social welfare maximiza-
tion problem (22) is reformulated as follows:

min −
N∑
i=1

Wi(Pi(t), t)

s.t.
N∑
i=1

Pi(t) =

N∑
i=1

di(t)

Pmin
i (t) ≤ Pi(t) ≤ Pmax

i (t), i = 1, ..., N.

(23)

In this framework, the main grid is treated as an agent when
the MG operates in grid-connected mode. In islanded mode,
the power output of the main grid agent is set to zero, ensuring
autonomous operation of the MG. Additionally, when agent i
represents a load (DL/NDL), di(t) > 0; otherwise, di(t) = 0.

To address the inequality constraints in (23) and simultane-
ously ensure that the inequality constraints are strictly satisfied,
we utilize the following barrier function technique[43].

Ji(Pi(t), t) = W̌i(Pi(t), t)− (1/ϱi(t))(log(φi,1 · φi,2)),
(24)

where W̌i(Pi(t), t) = −Wi(Pi(t), t), φi,1 = 1−ϱi(t)(Pi(t)−
Pmax
i (t)) and φi,2 = 1 − ϱi(t)(P

min
i (t) − Pi(t)). ϱ(t) ∈ R

is chosen as a positive, time-varying function to ensure that it
grows unbounded as t → ∞. One possible choice for ϱi(t) is
the exponential function ϱ(t) = ϵ1 exp(ϵ2t), ϵ1, ϵ2 > 0.

Then, the RMP (23) is reformulated as follows:

min J(P (t), t) =

N∑
i=1

Ji(Pi(t), t)

s.t.
N∑
i=1

Pi(t) =

N∑
i=1

di(t).

(25)

Let P̄ ∗(t) denote the optimal solution to the original
problem (23), and P̃ ∗(t) denote the optimal solution to the
barrier-based problem (25). According to Theorem 1 in [43],
if ϱi(t) → ∞ as t → ∞, then the solution to the penalized
problem asymptotically converges to that of the original prob-
lem, i.e.,

lim
t→∞

∥P̄ ∗(t)− P̃ ∗(t)∥ = 0.

This guarantees that solving the barrier-augmented prob-
lem (25) yields an asymptotically optimal solution to the
constrained problem (23). For notational simplicity, the depen-
dence on time t is omitted in the subsequent expressions. In
addition, we adopt a set of widely used assumptions, consistent
with those in the literature (e.g., [43–45]):
Assumption 1 (Slater’s Condition): There exists a feasible
solution {Pi}Ni=1 such that the equality constraint

∑N
i=1 Pi =∑N

i=1 di is satisfied for all t ≥ 0.
Assumption 2 (Network Connectivity): The agent communica-
tion graph G is undirected and connected.
Assumption 3 (Objective Function Regularity): For all t ≥ 0,
each function Ji(Pi, t) is continuously differentiable in both
Pi and t, and uniformly ci-strongly convex in Pi. Moreover,
∂
∂t∇Ji is li-Lipschitz with respect to Pi.

Remark 2. The li-Lipschitz condition of ∂
∂t∇Ji(Pi, t) with re-

spect to Pi ensures that the temporal variation of the gradient
remains smooth and bounded. This condition helps prevent
abrupt changes in the behavior of the objective function
caused by time variation. In practice, this assumption is mild
and holds for quadratic cost functions with bounded third-
order derivatives, as well as other smooth convex functions
(e.g., α(t) log(1+Pi), α(t) log(1+ePi) and α(t)ePi ), provided
that α̇(t) is bounded and Pi lies within a compact set.

B. Distributed Algorithm Design
To solve problem (25), we propose a distributed DET

algorithm with PDT convergence. The algorithm ensures re-
duced communication frequency and independence from initial
conditions. The update rules for agent i are given by:

Ṗi(t) =− T (t, tm)(k1∇PJi(Pi, t) + ∂∇PJi(Pi, t)/∂t

− k1wi(t
i
k)− zi(t

i
k))

ẇi(t) =− T (t, tm)(
∑

j∈Ni
aij(wi(t

i
k)− wj(t

j
k))

+ ξi(t
i
k)− k2di(t) + k2Pi(t

i
k))

ξ̇i(t) =T (t, tm)
∑

j∈Ni
aij(wi(t

i
k)− wj(t

j
k))

żi(t) =T (t, tm)(∂∇PJi(Pi, t)/∂t− zi(t
i
k))

(26)

Here, wi, ξi, and zi are auxiliary variables. Ji(Pi, t) and di(t)
are local variables that can be accessed in real time by agent
i. The parameters are selected such that k1 > (8m + 4l̄)/c
and k2 = k1 − 2m, where m > 0, l̄ = max{li}Ni=1, and
c = min{ci}Ni=1. The initial values satisfy 1⊤

Nξ0 = 0, with
ξ0 = [ξ1(0), . . . , ξN (0)]⊤. The function T (t, tm) is defined
in (2) and ensures PDT convergence via the TBG mechanism.
The event-triggered updates occur at discrete time instances
{tik}∞k=1, where tjk denotes the latest triggering time of agent
j. Between two consecutive triggers, i.e., for t ∈ [tik, t

i
k+1),

each agent evolves according to the above dynamics.

Remark 3. In (26), the term k1∇PJi(Pi, t) +
∂∇PJi(Pi, t)/∂t − k1wi(t

i
k) − zi(t

i
k) compensates for

both spatial and temporal variations in the objective function,
ensuring that the system tracks the TV optimal trajectory.
The auxiliary variable wi estimates the aggregated gradient
flow and assists in enforcing the global equality constraint in
a distributed manner. The term ξi ensures consensus among
agents on marginal cost information. Finally, zi compensates
for the temporal drift induced by the time variation in
∇PJi(Pi, t).

Remark 4. It is worth noting that the initialization condition∑n
i=1 ξi(0) = 0 is required In (26) to ensure the global equal-

ity constraint is satisfied throughout the system’s evolution.
While the initialization condition exhibits a degree of global
dependency, it requires only a one-time coordination at the
start of the system and does not involve any centralized com-
putation or global communication during execution. Therefore,
the algorithm remains fully distributed during operation, with
a coordinated initialization phase.

To simplify the notation, define P̂i(t) = Pi(t
i
k), ŵi(t) =

wi(t
i
k), ẑi(t) = zi(t

i
k), ξ̂i(t) = ξi(t

i
k) and Ji(t) = Ji(Pi, t).
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Let ePi(t) = P̂i(t)− Pi(t), ewi(t) = ŵi(t)− wi(t), ezi(t) =
ẑi(t)− zi(t) and eξi(t) = ξ̂i(t)− ξi(t) as the event-triggered
state errors. And define the total error as ei(t) = e2Pi

+ e2wi
+

e2zi + e2ξi . Following this, the DET condition for agent i is
constructed as:

tik+1 = inf{t : t ≥ tik, γiei(t) ≥ θi(t)}, (27)

where γi > (1−ρi)/τi, and the threshold variable θi(t) evolves
as:

θi(t) = exp

(
−τi

∫ t

0

T (s, tm) ds

)
×
(
αi − ρi

∫ t

0

T (s, tm)ei(s) ds

)
(28)

with αi > 0, τi > 0, and ρi ∈ (0, 1).

Remark 5. The threshold θi(t) consists of two parts: an
exponential decay term and an error-driven integral term. The
exponential factor ensures overall threshold reduction over
time, while the integral term adapts based on accumulated
errors. Large errors accelerate the decay of θi(t), promoting
more frequent updates. Conversely, small errors maintain
a higher threshold, reducing unnecessary communications.
Compared to static or fixed-period triggering, this dynamic
design adaptively balances performance and communication
efficiency by triggering only when needed.

Remark 6. The parameter configuration in Algorithm 1
critically influences convergence performance, communication
efficiency, and stability. The pair (k1, k2) should be chosen to
satisfy k1 > (8m+4l̄)/c and k2 = k1 − 2m to determine the
PDT convergence behavior. The event-triggering parameters
γi, τi, ρi, and αi collectively regulate the update threshold
θi(t), balancing triggering frequency and responsiveness. Ad-
ditionally, tm determines the global settling horizon, and ν
defines the terminal accuracy band. Proper parameter tuning
is essential to ensure stability, Zeno-free behavior, and optimal
performance in dynamic MG environments.

For analytical convenience, the distributed dynamics in (26)
can be compactly written as:

Ṗ = −T (t, tm) (k1∇PJ + ∂∇PJ/∂t− k1ŵ − ẑ) ,

ẇ = −T (t, tm)
(
Lŵ + ξ̂ − k2d+ k2P̂

)
,

ż = T (t, tm) (∂∇PJ/∂t− ẑ) ,

ξ̇ = T (t, tm)Lŵ,

(29)

where P,w, ξ, z, P̂ , ŵ, ξ̂, ẑ,∇PJ, d ∈ RN are vectors whose
ith components correspond to Pi, wi, ξi, zi, P̂i, ŵi, ξ̂i, ẑi,
∇PJi, and di, respectively.

Before the convergence analysis, we first establish several
fundamental properties of the closed-loop system (29): 1)
Optimality of its equilibrium point; 2) Invariance of inequality
constraints under the barrier dynamics; 3) Positivity of the
internal threshold θi(t) in the event-triggered mechanism.
These results form the theoretical basis for the subsequent
stability and optimality analysis.

Algorithm 1 Distributed DET PDT Resource Management
Require: Agent set V , parameters γi, τi, ρi, αi, k1, k2, aij , initial

states P (0), w(0), z(0), ξ0 with 1TNξ0 = 0, TBG function
T (t, tm), horizon Tend, convergence threshold ν.

Ensure: Optimal solution P ∗, triggering instants {tik}.
1: for i ∈ V do
2: Configure RMP: di(t), Pmin

i (t), Pmax
i (t)

3: Initialize ti0 = 0, k = 0, P̂i = Pi(0), ŵi = wi(0), ẑi =
zi(0), ξ̂i = ξi(0)

4: while t ≤ Tend do
5: Update threshold:

θi(t) = exp

(
−τi

∫ t

0

T (s, tm) ds

)
×

(
αi − ρi

∫ t

0

T (s, tm)ei(s) ds

)
6: if γiei(t) ≥ θi(t) then
7: tik+1 ← t, broadcast (P̂i, ŵi, ẑi, ξ̂i)
8: Update stored states: P̂i ← Pi(t), etc.
9: end if

10: Execute control laws:

Ṗi =T (t, tm)(k1∇PJi + ∂∇PJi/∂t− k1ŵi − ẑi)

ẇi =− T (t, tm)(
∑

j∈Ni
aij(ŵi − ŵj) + ξ̂i

− k2di + k2P̂i)

żi =T (t, tm)(∂∇PJi/∂t− ẑi)

ξ̇i =T (t, tm)
∑

j∈Ni
aij(ŵi − ŵj)

11: Ensure tik+1 − tik ≥ ϵ (prevent Zeno)
12: end while
13: Verify practical PDT convergence:

lim
t→t+m

∥P (t)− P ∗∥ ≤ ν, ∥P (t̃)− P ∗∥ ≤ ν, ∀t̃ > tm,

lim
t→∞

∥P (t)− P ∗∥ = 0

14: end for
15: return P ∗ ← P (Tend)

Lemma 4 (Optimality of the Equilibrium Point). Under
Assumptions 1–3, for any initial condition Pi(0) ∈ Di(0),
i = 1, . . . , N , if (P ∗, w∗, ξ∗, z∗) is an equilibrium point of
system (29), then P ∗ is the unique optimal solution of the TV
optimization problem (25).

Proof. Let J∗ := J(P ∗, t). At equilibrium, all time derivatives
vanish, and system (29) reduces to:

0 = −T (t, tm) (k1∇PJ
∗ + ∂∇PJ

∗/∂t− k1w
∗ − z∗) ,

0 = −T (t, tm) (Lw∗ + ξ∗ − k2d+ k2P
∗) ,

0 = T (t, tm) (∂∇PJ
∗/∂t− z∗) ,

0 = T (t, tm)Lw∗.
(30)

From the last two equations in (30), we immediately have

z∗ = ∂∇PJ
∗/∂t, Lw∗ = 0 ⇒ w∗

i = w∗
j , ∀i, j.

Thus, w∗ reaches consensus.
Next, consider the fourth equation of system (29). Multi-

plying both sides by 1⊤
N , we obtain

1⊤
N ξ̇ = 1⊤

NT (t, tm)Lŵ = 0 ⇒ 1⊤
Nξ = const.
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Assuming 1⊤
Nξ(0) = 0, it follows that 1⊤

Nξ∗ = 0.
Now summing the second equation of (30) over all agents

1⊤
N (Lw∗ + ξ∗) = k21

⊤
N (d− P ∗).

Since Lw∗ = 0 and 1⊤
Nξ∗ = 0, this implies:
N∑
i=1

P ∗
i =

N∑
i=1

di(t).

Finally, from the first equilibrium equation and z∗ =
∂
∂t∇PJ

∗, we obtain:

∇PJ
∗ = w∗.

Therefore, P ∗ satisfies the KKT conditions of problem (25).
Under Assumption 3, the problem is strongly convex, hence
P ∗ is the unique optimal solution.

The structure of the barrier function in (24) ensures that
Ji(Pi(t), t) is well-defined only when the inequality con-
straints are strictly satisfied. The following result guarantees
that if the initial state is feasible, it remains strictly feasible
for all time.

Lemma 5 (Invariance of the Feasible Set). Suppose the initial
condition satisfies Pi(0) ∈ Di(0) := {Pi ∈ R | φi,1(0) >
0, φi,2(0) > 0}, where φi,1 and φi,2 are as defined in (24).
Then, under the controller (26), the state Pi(t) remains strictly
within the feasible region for all t ≥ 0, i.e.,

Pmin
i (t) < Pi(t) < Pmax

i (t), ∀t ≥ 0.

Proof. The barrier term

−(1/ϱ(t)) log(φi,1(t) · φi,2(t))

is well-defined only when φi,1, φi,2 > 0, i.e., when Pi(t) ∈
(Pmin

i (t), Pmax
i (t)).

Given Pi(0) ∈ Di(0), we consider the gradient behavior
near the boundary:

lim
Pi(t)→Pmin

i (t)+ or Pmax
i (t)−

∇Pi
Ji(Pi(t), t) = ±∞.

Thus, the control input Ṗi(t) ∝ −∇PiJi(Pi(t), t) grows
unbounded in a direction that pushes the state back into the
interior. Therefore, the boundary is repelling and cannot be
reached in finite time. Hence, the trajectory remains strictly
within the feasible set for all t ≥ 0.

Next, we analyze the evolution of the internal threshold
variable θi(t) in the DET mechanism and show that it remains
strictly positive for all t ≥ 0.

Lemma 6 (Positivity of the Threshold Variable). The dynamic
threshold variable θi(t) defined in (28) remains strictly posi-
tive for all t ≥ 0.

Proof. From the definition of θi(t), we have:

θ̇i(t) = T (t, tm) (−τiθi(t)− ρiei(t)) ,

with initial condition θi(0) = αi > 0.
Under the DET condition (27), during non-triggering inter-

vals we have γiei(t) < θi(t), which implies:

θ̇i(t) > −T (t, tm) (τi + ρi/γi) θi(t).

Since T (t, tm) = d
dtζ(t, τ), integrating both sides yields:

θi(t) > θi(0) · exp
(
−ζ(t, τ)

(
τi +

ρi
γi

))
> 0. (31)

Moreover, according to the triggering rule, ei(t) = 0 at each
triggering instant, whereas θi(t) > 0 holds. Therefore, θi(t)
remains strictly positive for all t ≥ 0.

Theorem 1. Under Assumptions 1–3, the distributed algo-
rithm (26) under the DET condition (27) ensures the following:

1) Practical PDT Convergence: The system states globally
converge to the optimal solution P ∗(t) of the TV RMP
(23) within a PDT tm, i.e.,

lim
t→t+m

∥P (t)− P ∗(t)∥ ≤ ν,

∥P (t)− P ∗(t)∥ ≤ ν, ∀t > tm,

lim
t→∞

∥P (t)− P ∗(t)∥ = 0,

where ν > 0 is a prescribed accuracy parameter.
2) Zeno-Free Behavior: All inter-event intervals are lower

bounded by a strictly positive constant, i.e.,

tik+1 − tik ≥ σ/(1 + σ)
√
B1

i /B
2
i > 0,

where σ, B1
i , and B2

i are positive constants.

Proof. The proof is divided into two Steps.
Step 1: Practical PDT Convergence.
Define P̃ = P − P ∗, w̃ = w − w∗, ξ̃ = ξ − ξ∗ and z̃ =

z − z∗. Combining (29) and (30), the following error system
is obtained

˙̃P = −T (t, tm)
[
k1(g̃ − w̃ − ew) + h̃− z̃ − ez

]
,

˙̃w = −T (t, tm)
[
L(w̃ + ew) + ξ̃ + eξ + k2(P̃ + eP )

]
,

˙̃z = T (t, tm)
[
h̃− z̃ − ez

]
,

˙̃
ξ = T (t, tm)L(w̃ + ew),

(32)

where g̃ = ∇PJ(P, t) − ∇PJ(P
∗, t), and h̃ =

∂∇PJ(P, t)/∂t − ∂∇PJ(P
∗, t)/∂t. The error vectors

eP , ew, ez, eξ ∈ RN are defined as in Section IV.
Consider the composite Lyapunov function:

V = V1 + V2,

where V1 =
(
∥P̃∥2 + ∥w̃∥2 + ∥z̃∥2 + ∥ξ̃∥2Q

)
/2+m∥w̃+ξ̃∥2,

with 0 < m < λ2/24; V2 = l
∑N

i=1 θi(t), ∥ξ̃∥2Q = ξ̃TQξ̃,

and Q = DT H̃D, where D is the orthogonal matrix
in the spectral decomposition L = DTHD, and H̃ =
diag(1, 1/λ2(L), . . . , 1/λN (L)).

The time derivative of V1 along system (32) is:

V̇1 = T (t, tm)
(
− k1P̃

T g̃ + k1P̃
T ew − P̃T h̃+ P̃T z̃

+ P̃T ez − w̃TLw̃ − w̃TLew − w̃T ξ̃ − w̃T eξ

− k2w̃
T eP + z̃T h̃− ∥z̃∥2 − z̃T ez + ξ̃TQLw̃

+ ξ̃TQLew − 2m(w̃T ξ̃ + w̃T eξ + w̃T eP

+ ∥ξ̃∥2 + ξ̃T eξ + ξ̃T P̃ + ξ̃T eP ).
)

(33)
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Using spectral properties of L, we observe that:

−w̃T ξ̃ = −w̃TDTDξ̃, ξ̃TQLw̃ = ξ̃TDTDw̃. (34)

Next, applying Young’s inequality and eigenvalue bounds, the
following estimates hold:

− w̃TLw̃ ≤ −λ2∥w̃∥2,−w̃T eξ ≤ λ2∥w̃∥2/4 + ∥eξ∥2/λ2

− w̃TLew ≤ λ2∥w̃∥2/4 + λ2
max∥ew∥2/λ2

− k2w̃
T eP ≤ λ2∥w̃∥2/4 + k22∥eP ∥2/λ2

− 2mw̃T ξ̃ ≤ 4m∥w̃∥2 +m∥ξ̃∥2/4
− 2mw̃T eξ ≤ m∥w̃∥2 +m∥eξ∥2

− 2mw̃T eP ≤ m∥w̃∥2 +m∥eP ∥2

− z̃T ez ≤ ∥z̃∥2/4 + ∥ez∥2, z̃T h̃ ≤ ∥z̃∥2/4 + l̄∥P̃∥2.
(35)

where l̄ = maxi{li} is the uniform Lipschitz constant for
∂t∇Ji. For all terms containing P̃ , one has

− k1P̃
T g̃ = −k1P̃

T (∇PJ −∇PJ
∗) ≤ −k1c∥P̃∥2

− P̃T h̃ = −P̃T (∂∇PJ/∂t− ∂∇PJ
∗/∂t) ≤ l̄∥P̃∥2

P̃T ez ≤ ∥P̃∥2 + ∥ez∥2/4, P̃T z̃ ≤ ∥z̃∥2/4 + ∥P̃∥2

P̃T ew ≤ k1c∥P̃∥2/2 + k1∥ew∥2/(2c)
− 2mξ̃T P̃ ≤ m∥ξ̃∥2/4 + 4m∥P̃∥2.

(36)

Where c = mini{ci}. For all terms containing z̃, we have

− z̃T ez = ∥z̃∥2/4 + ∥ez∥2, z̃T h̃ ≤ ∥z̃∥2/4 + l̄∥P̃∥2. (37)

For the remaining terms in (33), one can obtain

ξ̃TQLew ≤ m∥ξ̃∥2/4 + λ2
max∥ew∥2/(mλ2

2)

− 2mξ̃T eξ ≤ m2∥ξ̃∥2/2 + 2meξ∥2

− 2mξ̃T eP ≤ m∥ξ̃∥2/4 + 4m∥eP ∥2.
(38)

Substituting (34)– (38) into (33) yields

V̇1 ≤T (t, tm)(−s1∥w̃∥2 − s2∥P̃∥2 − s3∥z̃∥2 − s4∥ξ̃∥2+

+ l

N∑
i=1

(e2Pi + e2wi + e2zi + e2ξi)).

Where s1 = λ2/4−6m, s2 = k1c/2−4m−2l̄, s3 = 3/4, s4 =
m/2, l = max{λ2

max/λ2 + k1/(2c) + λ2
max/(mλ2

2), k
2
2/λ2 +

5m, 5/4, 1/λ2 + 3m}.
Next, taking the derivative of V2 along the trajectory of

system (32), we obtain

V̇2 = l

N∑
i=1

θ̇i = lT (t, tm)

N∑
i=1

(−τiθi − ρiei) . (39)

Combining with the estimate on V̇1 and invoking the DET
triggering condition (27), we have:

V̇ = V̇1 + V̇2

≤ T (t, tm)

(
− s1∥w̃∥2 − s2∥P̃∥2 − s3∥z̃∥2

− s4∥ξ̃∥2 − l

N∑
i=1

τiθi + l

N∑
i=1

(1− ρi)ei

)
.

(40)

Applying the triggering condition γiei(t) < θi(t) during
inter-event intervals yields:

V̇ ≤T (t, tm)

N∑
i=1

(
− s1∥w̃∥2 − s2∥P̃∥2 − s3∥z̃∥2

− s4∥ξ̃∥2 − l (τi − (1− ρi)/γi) θi

)
.

(41)

By virtue of ρi ∈ (0, 1) and γi > (1−ρi)/τi, τi−(1−ρi)/γi >
0 holds. Let m1 = min{γi > (1 − ρi)/τi, ∀i = 1, ..., N , we
further obain

V̇ ≤−m2T (t, tm)(w̃T w̃ + P̃T P̃ + z̃T z̃ + ξ̃T ξ̃ + l

N∑
i=1

θi),

where m2 = min{s1, s2, s3,m1}. According to the expres-
sion of V , one can get that V ≤ m3(w̃

T w̃ + P̃T P̃ + z̃T z̃ +
ξ̃T ξ̃ + l

∑N
i=1 θi), with m3 = max{1, 1/2 + 2m, 1/(2λ2) +

2m}. Therefore, we have

V̇ ≤ −(m2/m3)T (t, tm)V. (42)

According to (2) and (42), the following equation can be
obtained:

∥P − P ∗∥2 = ∥P̃ (t)∥2 ≤ V (t) ≤ V (0)e−(m2/m3)(ζ(t)−ζ(0)),
(43)

which implies that

lim
t→tm+

∥P − P ∗∥ ≤
√

V (0)e−(m2/m3)(ζ(tm+)−ζ(0)). (44)

Next, let ν =
√
V (0)e−(m2/m3)(ζ(tm+)−ζ(0)), it follows that

limt→tm+ ∥P −P ∗∥ ≤ ν, this implies that (1) in Definition 1
satisfies. Together with (43), (44) and the expression of ζ(t),
for any t̃ > tm, one gets

∥P (t̃)− P ∗∥2 ≤ V (0)e−(m2/m3)(ζ(tm+)−ζ(0)) = ν2, (45)

That is ∥P (t̃) − P ∗∥ ≤ ν, ∀t̃ > tm, this indicates that (2) in
Definition 1 holds. Moreover, it is straightforward to derive
that limt→+∞ ∥P − P ∗∥ = 0. This demonstrates that, (3) in
Definition 1 holds.

Step 2: Zeno-Free Behavior.
For any t ∈ [tik, t

i
k+1), the sampled variables

P̂i(t), ŵi(t), ẑi(t), ξ̂i(t) remain constant. Thus, the upper
right Dini derivatives of the corresponding error terms
satisfy: D+ePi = −Ṗi, D+ewi = −ẇi , D+ezi = −żi,
D+eξi = −ξ̇i. Taking into account ePi(t

i
k) = ewi(t

i
k) =

ezi(t
i
k) = eξi(t

i
k) = 0, we have ePi = −

∫ t

tik
Ṗi(t)dt, ewi =

−
∫ t

tik
ẇi(t)dt, ezi = −

∫ t

tik
żi(t)dt, eξi = −

∫ t

tik
ξ̇i(t)dt.

By view of the definition of T (t, tm) in [39], it implies
T (t, tm) ≤ σ/(1 + σ) with small enough positive constant σ,
∀t ∈ [tik, t

i
k+1). Let BPi = maxt{|Pi|}, Bwi = maxt{|wi|},

Bzi = maxt{|zi|}, Bξi = max{|ξi|}, BJi = maxt{|∇PJi|},
and BJti = maxt{|∂∇PJi/∂t|} for all t ∈ [tik, t

i
k+1). Next,

by system (26), the state derivatives are bounded by:

∥Ṗi∥ ≤ (1 + σ)(k1BJi +BJti + k1Bwi +Bzi)/σ

∥ẇi∥ ≤ (1 + σ)(2Bwi lii +Bξi + k2di + k2BPi)/σ

∥żi∥ ≤ (1 + σ)(BJti +Bzi)/σ

∥ξ̇i∥ ≤ (1 + σ)(2Bwi lii)/σ.

(46)
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Combining these bounds, the error ei(t) over t ∈ [tik, t
i
k+1)

satisfies:

ei(t) ≤ ((1 + σ)/σ)2(t− tik)
2Bi

1, (47)

where Bi
1 = (k1BJi + BJti + k1Bwi + Bzi)

2 + (2Bwi lii +
Bξi+k2di+k2BPi)

2+(BJti+Bzi)
2+(2Bwi lii)

2. We further
obtain that

ei(t
i
k+1) ≤ ((1 + σ)/σ)2(tik+1 − tik)

2Bi
1. (48)

At the triggering instant t = tik+1, the condition γiei(t
i
k+1) =

θi(t
i
k+1) holds. In accordance with (31), one has

ei(t
i
k+1) ≥ θi(0) exp(ζ(t

i
k+1, τ)(τi + ρi/γi)). (49)

Combining (48) and (49), yields

tik+1 − tik ≥ (1 + σ)/σ
√
Bi

2/B
i
1.

Where Bi
2 = θi(0) exp(ζ(t

i
k+1, τ)(τi+ρi/γi)). The right-hand

side is strictly positive, ensuring a uniform minimum time
interval between events and excluding Zeno behavior.

Remark 7. Theorem 1 and Lemma 4 jointly establish that
the proposed distributed algorithm (26) guarantees PDT con-
vergence to the optimal solution of the barrier-based prob-
lem (25), while strictly maintaining both equality and in-
equality constraints throughout its execution. Moreover, since
the solution of (25) asymptotically converges to that of the
original constrained problem (23), the algorithm ensures that
a strictly feasible, near-optimal decision is achieved within a
user-defined horizon and refined over time. This dual property
of fast feasibility and long-term optimality makes the method
well-suited for real-time and safety-critical applications.

Remark 8. The proposed DET algorithm can be extended to
discrete-time settings using a forward Euler discretization with
fixed step size κ, leading to the following update scheme:

Pi(k + 1) =Pi(k)− κT (tk, tm)(k1∇PJi(Pi(k))

+ ∂∇PJi(Pi(k))/∂t− k1wi(k)− zi(k))

wi(k + 1) =wi(k)− κT (tk, tm)(
∑
j∈Ni

aij(wi(k)

− wj(k)) + ξi(k)− k2di(k) + k2Pi(k))

zi(k + 1) =zi(k) + κT (tk, tm)(∂/∇PJi(Pi(k))/∂t− zi(k))

ξi(k + 1) =ξi(k) + κT (tk, tm)
∑
j∈Ni

aij(wi(k)− wj(k)).

Under similar conditions to those in Theorem 1, convergence
of the discrete-time scheme can be established. However,
extending PDT guarantees to discrete-time domains poses new
challenges, which will be addressed in future work.

Remark 9. This work considers a standard DET framework
under the assumption of a secure communication environ-
ment. However, in practical cyber-physical systems such as
MGs, event-triggered strategies may become vulnerable to
adversarial attacks, such as data falsification or denial-of-
service, which can manipulate triggering behavior or disrupt
information exchange. Therefore, developing attack-resilient

event-triggered distributed control mechanisms represents an
important and challenging direction for future research.

V. SIMULATION RESULTS

This section evaluates the effectiveness of the proposed
distributed DET-PDT optimization strategy in addressing TV
constraints, reducing communication overhead, and ensuring
scalability in MG operation. A six-agent MG system is
considered, consisting of five representative device units and
a grid interface. The physical and communication topolo-
gies are illustrated in Fig. 2 and Fig. 3, respectively. To
reflect realistic dynamics, each agent’s objective is mod-
eled as a time-varying quadratic function W̌i = δi(t)P

2
i +

ηi(t)Pi + ϑi(t). In addition, the TV critical parameter con-
figurations of the objective functions for each unit are de-
tailed in Table II, where w1 = 0.1π/10, and w2 =
8π/75. The DET parameters are specified as follows: γ =
[3, 5, 1, 2, 5, 1.5], τ = [0.02, 0.01, 0.02, 0.01, 0.02, 0.01],
and α = [20, 15, 10, 10, 8, 8], for agents i = 1 to 6,
respectively. The parameter ρi is uniformly set to 0.1 for
all agents. These parameters are selected to ensure sufficient
triggering sensitivity near the predefined time tm, while main-
taining a reasonable balance between communication load and
convergence precision.

Fig. 2. Schematic of the MG system.

Fig. 3. Communication topology among the six agents.

This setting enables the proposed DET-PDT algorithm to
be evaluated under realistic operational conditions. The results
presented in the subsequent subsections demonstrate not only
the algorithm’s effectiveness in ensuring real-time convergence
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TABLE II
TV SWF PARAMETERS AND INEQUALITY CONSTRAINTS

Unit δi(t) ηi(t) ϑi(t)
CDG 1.3(2 + 0.1sin(w1t+

π
2
)) −1 + 0.5cosw2t 0.5 + 0.02t

REG 3.8(1 + sin(w1t+
π
4
)) 0.8 + 0.4cosw2t 0.4 + 0.01t

ESS 2.4(1.2 + sin(w1t+
π
5
)) −0.5 + 0.3cosw2t 0.6 + 0.03t

Load 1 3.2(1 + sin(w1t+
2π
3
)) −1.8 + 0.6cosw2t 0.3 + 0.02t

Load 2 0.8(1 + sin(w1t+
2π
3
)) −0.6 + 0.45cosw2t 0.7 + 0.01t

GI 2 + 0.1sin(w1t+
π
12
) 0.5 + 0.3cosw2t 0.5 + 0.03t

di(t) Pmin
i Pmax

i

CDG 5 + 1.2sin(w2t+
π
2
) 0 13

REG 4 + 1.5sin(w2t+
π
6
) 0 7

ESS 6 + 2.5sin(w2t+
π
4
) −10 10

Load 1 7 + 3sin(w2t+
π
3
) −1.8 5

Load 2 6 + 2sin(w2t+
π
2
) 5 20

GI 8 + 2sin(w2t+
π
2
) −10 20

and TV constraint satisfaction, but also its ability to signifi-
cantly reduce communication overhead.

Remark 10. It is worth pointing out that the selection of
the DET parameters αi, τi, and the PDT tm are tuned
based on the trade-off between communication frequency and
convergence precision. Specifically, αi sets the initial value
of the triggering threshold, where larger values reduce early
triggering and smaller ones increase sensitivity. The param-
eter τi controls the decay rate of the threshold function. A
larger τi results in faster decay, which enhances triggering
sensitivity as the system approaches tm, helping to improve
convergence accuracy near the predefined deadline. The PDT
tm represents the user-specified convergence horizon and can
be selected based on the system’s desired response time. A
smaller tm leads to faster convergence but may require more
frequent triggering and larger control effort. In practice, these
parameters are jointly tuned to balance convergence speed,
communication load, and control performance.

A. Effectiveness test

This case study demonstrates the PDT convergence behavior
and real-time optimization capability of the proposed DET-
PDT strategy in grid-connected MG operation. The time-based
function T (t, tm) is initialized at t = 0 s with a convergence
deadline tm = 5 s, given by:

T (t, tm) =


1+10( 60

56
t5− 120

55
t4+ 60

54
t3)

1−10( 10
56

t6− 24
55

t5+ 15
54

t4)+10
, 0 ≤ t ≤ tm,

1, t > tm.

Fig. 4(a)–(d) illustrate the system’s critical operational
trajectories under the proposed strategy. Fig. 4(a) demon-
strates that the total power supply tracks the demand closely,
even under significant load fluctuations, confirming the al-
gorithm’s effectiveness in real-time demand-following and
dynamic adaptability. Fig. 4(b) shows the DET instants. it
can be observed that communication is only activated when
the critical state deviation exceeds the preset threshold, which
verifies that the algorithm achieves efficient collaboration by
reducing redundant communication, greatly reducing the com-
munication burden. The marginal utility function trajectories
of all participating units in the MG rapidly achieve consensus

0 5 10 15 20 25 30

Time(s)

10

20

30

40

50

60

T
o
ta

l 
s
u
p
p
ly

 (
k
W

) Total supply

Total demand

(a)

0 5 10 15 20 25 30

Time(s)

1

2

3

4

5

6

E
ve

nt
-t

rig
ge

re
d 

in
st

an
ts

(b)

0 5 10 15 20 25 30

Time(s)

0

10

20

30

40

50

60

 M
a
rg

in
a
l 
u
ti
lit

y
 (

$
/k

W
h
)

w
1

w
2

w
3

w
4

w
5

w
6

(c)

0 5 10 15 20 25 30

Time(s)

0

5

10

15

20

P
i (

k
W

)

P
1

P
2

P
3

P
4

P
5

P
6

(d)

Fig. 4. (a) Real-time demand-supply synchronization; (b) Distributed DET
triggering instants; (c) Marginal utility trajectories (w); (d) Power evolution
of P1–P6.

within the PDT tm = 5s in Fig. 4(c). The consistency of the
derivatives of objective function confirms the strict satisfaction
of Pareto optimality in RMP. Fig. 4(d) displays the optimal
dynamic evolution of the participating units.

To further assess generality, we evaluated the algorithm
under static conditions with time-invariant coefficients, as
detailed in Table III. In this case, the predefined time was set to
tm = 15s. The results in Fig. 5 show that the proposed DET-
PDT strategy remains highly effective. Specifically, it achieves
lower communication overhead, stable supply-demand syn-
chronization, and rapid marginal utility alignment.

These findings confirm that the algorithm not only adapts
to highly dynamic TV environments but also maintains strong
performance in static resource management scenarios, demon-
strating broad applicability and robustness.

TABLE III
STATIC SWF PARAMETERS AND INEQUALITY

CONSTRAINTS

Unit δi ηi ϑi di Pmin
i Pmax

i

CDG 2 1 0 5 0 13
REG 3 1 2 10 0 5
ESS 1 2 -1 4 -5 5

Load 1 3 3 6 2.5 2 10
Load 2 2 1 7 7 5 13

GI 1 1 3 3 0 20

To evaluate the influence of the PDT tm, we compare
the marginal utility convergence under different tm settings.
As illustrated in Fig. 6 and Fig. 5(c), since tm defines the
upper bound of the convergence time, smaller values lead to
faster convergence. However, due to the design of the DET
condition in Eq. (28), a smaller tm also results in a more
sensitive triggering threshold, thereby increasing the triggering
frequency. Specifically, the total number of triggering events
rises from 320 (tm = 15 s) to 407 (tm = 10 s) and 732
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Fig. 5. (a) Demand-supply match; (b) Event-triggered communication; (c)
Marginal utility convergence with tm = 15s; (d) Power trajectories under
static setup.
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Fig. 6. (a) Marginal utility convergence with tm = 5s; (b) Marginal utility
convergence with tm = 10s.

(tm = 5 s). Therefore, the selection of tm requires a careful
balance between convergence speed and triggering cost.

B. Plug-and-play (PnP) Capability Test

To assess the proposed algorithm’s resilience to structural
changes in MG topology, we conduct a PnP test involving the
disconnection and reconnection of agent 6 (the main grid).
During disconnection, the agent’s state variables (Pi, wi, zi
and ξi) are set to zero to remove its effect on system dynamics,
while the communication topology remains unchanged. This
simplified treatment reflects practical scenarios where the main
grid is temporarily unavailable due to faults, islanding pro-
tection, or scheduled maintenance, while the communication
infrastructure remains operational. Specifically, agent 6 is
disconnected at t = 10 s and reconnected at t = 20 s. In
both events, the TBG function T (t, tm) is reset with a new
convergence deadline tm = 2s.

As shown in Fig. 7(a), a marked increase in event-triggering
activity is observed immediately after both disconnection
and reconnection, reflecting the system’s rapid response to
topology variation. Fig. 7(b) illustrates the total supply (blue
curve) dynamically tracks the total demand (red curve) over
time. Although short-term oscillations are observed in the
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Fig. 7. (a) Distributed DET communication sequence under PnP capability
test; (b) Real-time demand-supply synchronization under PnP capability test.

supply curve, particularly during transition phases the overall
trend of supply closely aligns with the demand trajectory.
When agent 6 is disconnected at t = 10 s, the total supply
drops sharply due to the loss of grid support. However, the
remaining units promptly adjust their outputs, enabling the
system to continue tracking the total demand with minimal
delay. Similarly, upon reconnection at t = 20 s, the total
supply surges, and the system swiftly rebalances to maintain
demand-supply alignment. This demonstrates the algorithm’s
strong adaptability and coordination under structural changes.
Although the proposed method is demonstrated on a system
with 6 agents, its performance and computational scalability
for large-scale multi-agent systems require further investiga-
tion.

C. Comparative experiment

To further evaluate communication performance, this sec-
tion conducts a comparative study with existing event-
triggered strategies. Fig. 8 compares the event-triggering be-
haviors of three strategies applied to the same TV RMP: (i)
the DET approach from [46], (ii) the static event-triggered
strategy in [15], and (iii) the proposed DET-PDT method.
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(b) Static event-triggered strategy in [18]
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Fig. 8. Comparison of event-triggered strategies from [46], [15], and this
paper.

As shown, the benchmark methods in [46] and [15] ex-
hibit frequent and clustered triggering, especially during the
initial period, indicating limited ability to suppress redundant
communication. In contrast, the proposed DET-PDT strategy
achieves more uniformly distributed and significantly fewer
triggers across agents and time. This improvement results
from the adaptive threshold mechanism θi(t) (see Remark 4),
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Fig. 9. Trigger counts per agent under different strategies.

which effectively balances responsiveness and communication
efficiency.

Fig. 9 compares the total number of triggering events for
six agents under different strategies: (i) the proposed DET-
PDT for a static RMP, (ii) the proposed DET-PDT applied
to a TV RMP, (iii) the DET method in [46] under the same
TV RMP as in (ii), and (iv) the SET method in [15], also
tested under the same TV RMP as in (ii). For the same time-
varying resource management problem, the proposed DET-
PDT method yields only 422 triggers, reducing communication
by 67.1% compared to the DET strategy in [46] (1283 triggers)
and by 90.3% relative to the static method in [15] (4348
triggers). Moreover, when applied to a static scenario, the
number of triggers further drops to 320, highlighting the
method’s adaptability and communication efficiency in both
dynamic and static settings.

VI. CONCLUSION

In this paper, the TV RMP with TV demand constraints
in MG has been studied by using an MAS framework. To
address this challenge, a novel distributed DET algorithm has
been developed based on a TBG function, which features
PDT convergence, initialization-free operation, and a reduced
communication burden. Furthermore, the DET mechanism has
been specially designed to further reduce the communication
overhead in the TV RMP. Finally, the proposed approach
has been rigorously validated through simulations, including
effectiveness testing, PnP capability evaluation and the com-
parative experiment. In the future, the integration of adaptive
event-triggered strategies, attack detection mechanisms, and
scalability to large-scale systems will be further explored.
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