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Abstract

This article delves into the concept of quantum contextuality, specifically focusing on proofs
of the Kochen-Specker theorem obtained by assigning Pauli observables to hypergraph vertices
satisfying a given commutation relation. The abstract structure composed of this hypergraph
and the graph of anticommutations is named a hypergram. Its labelings with Pauli observables
generalize the well-known magic sets. A first result is that all these correct quantum labelings
of a given hypergram inherently possess the same degree of contextuality. Then we provide a
necessary and sufficient condition for the existence of such quantum labelings and an efficient
algorithm to find one of them. We finally attach to each assignable hypergram an abstract notion
of contextuality degree. By presenting the study of observable-based Kochen-Specker proofs
from the perspectives of graphs and matrices, this abstraction opens the way to new methods
to search for original contextual configurations.

1 Introduction

In classical physical theories, the measured value of a physical quantity does not depend on that
of other quantities simultaneously measured, called its context. This independence no longer
holds in quantum theory, where Kochen-Specker theorem predicts the existence of experiments
whose measurement outcomes necessarily depend on measurements that are simultaneously
measurable in principle. This phenomenon is called quantum contextuality (see, e. g., [Bud+22] for
a recent comprehensive review of this topic). It is a core aspect of quantum mechanics, especially
for quantum computation.

Several approaches have been proposed to study quantum contextuality, such as binary [CM14]
and linear [CLS17] constraint systems, which are generalizations of the Boolean case [FOC25],
and graph-based [CSW14] and hypergraph-based [Ací+15] approaches, where vertices are events
and edges are mutually exclusive events. Note that those hypergraphs are not the same as the
hypergraphs we introduce in this work, whose vertices represent observables and whose hyper-
edges represent contexts. There is also a homotopical approach [OR20] that describes topological
criteria for the commutation relations of quantum observables, and a study of contextuality in
the framework of Lie algebras [Agu+24].

This work is about (observable-based) contextuality proofs, whose measurements are multi-
qubit Pauli observables. These proofs are state-independent, because their measurements reveal
quantum contextuality when applied to any initial quantum state. When the number of qubits
of the Pauli observables is small enough, they are testable, in the sense that they can be turned
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into experimental tests of contextuality on existing quantum computers (see, e. g., [Kir+09] or
[Hol21]).

Structurally, these contextuality proofs are described by hypergraphs whose vertices are multi-
qubit Pauli observables and whose hyperedges, also called contexts, group together compatible,
that is, commuting observables whose product is either the identity matrix (positive hyperedge or
context) or its opposite (negative hyperedge or context). How much a proof is contextual can be
quantified by an integer called its contextuality degree [de +22], which is the minimal number of
context signs which cannot be satisfied by any assignment of all its observables/vertices by one
of their measurement values (see Section 2.6 for a detailed mathematical definition).

A widely studied subfamily of contextuality proofs is that of contextual configurations [HS17],
aka. magic sets, whose observables belong to an even number of contexts (parity condition), whose
number of negative contexts is odd (oddness condition), and which are incidence geometries,
meaning that two observables share at most one context (incidence condition). The contextuality
of a magic set is an immediate logical consequence of these conditions [HS17]. Typical examples
are the Mermin-Peres squares [Mer93; Per90], composed of nine two-qubit observables and six
contexts of three observables, with one or three negative contexts among them.

Previous works inspired by finite geometry [San+21; Mul+22; Mul+24] exhibit contextuality
proofs which do not satisfy the first two conditions of magic sets. For example, multi-qubit
doilies [Mul+22] comprise three contexts per observable, thus do not satisfy the parity condition.
Moreover, three-qubit doilies with four negative lines do not satisfy the oddness condition, but
also provide contextuality proofs. Actually, whatever their number of qubits and configuration
of negative contexts, all doilies have been proved to be contextual and to admit the same con-
textuality degree, whose value is 3 [Mul+22, Proposition 1]. Independently, the non-contextual
bound of magic sets – linearly related to their contextuality degree, as detailed in Section 2.6 –
has recently been shown not to depend on their number of qubits [TLC22b, Theorem 2].

At first glance, according to its definition, the degree of a contextuality proof depends on the
distribution of positive and negative contexts in it, itself arising from the Pauli observables which
label their vertices. The main objective of this work is to clarify this dependence. We achieve this
by introducing the notion of hypergram (Definition 1), which is an observable-free graph- and
hypergraph-based structure admitting a definition of contextuality degree. It is abstract because
it is defined independently of a number of qubits and more generally without recourse to any
quantum-related concept.

In this paper, we first define hypergrams and related notions (Section 2). Then, we demonstrate
that the contextuality degree of its labelings by Pauli observables (hereafter called “Pauli assign-
ments”) does not depend on their number of qubits (Section 3). Then we derive from [TLC22a]
(which provides supplemental material for [TLC22b]) a necessary and sufficient condition for a
hypergram to admit a Pauli assignment and we propose an efficient algorithm to find such an
assignment when this condition holds (Section 4). An immediate consequence is that only one
adequate labeling of vertices with Pauli observables is sufficient to compute the degree. In Sec-
tion 5 we present several examples of hypergrams, labeled with minimal numbers of qubits and
negative contexts. A comparison with related work is provided in Section 6.

2 Definitions and notations

After Sections 2.1 and 2.2 providing minimal essential background about the Pauli group and its
relation with symplectic polar spaces, Section 2.3 introduces a new abstract structure, composed
of a hypergraph and a graph, which will later be shown to admit a notion of contextuality
degree, inherited from the contextuality degree common to all the labelings of its vertices by
Pauli observables. The remainder of the section brings together definitions from independent
previous work, mainly [TLC22a] and [de +22; Mul+24], and exhibits correspondences between
these definitions, when it is useful, for example between the notions of “Pauli assignment” and
“quantum configuration” in Section 2.4, and between the notions of “contextuality degree” and
“noncontextual bound” in Section 2.6.
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2.1 Multi-qubit Pauli group

Let

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
be the Pauli matrices, I the 2 × 2 identity matrix, ‘⊗’ denote the tensor product of matrices and
I⊗n denote the n-fold tensor I ⊗ I ⊗ . . . ⊗ I of the identity. A local n-qubit (Pauli) observable is a
tensor product G1⊗G2⊗· · ·⊗Gn with Gi ∈ {I,X,Y,Z}, usually denoted G1G2 · · ·Gn, by omitting the
symbol ⊗ for the tensor product. Let ’·’ denote the matrix product and M2 denote M ·M. It is easy
to check that X2 = Y2 = Z2 = I, X ·Y = iZ = −Y ·X, Y ·Z = iX = −Z ·Y, and Z ·X = iY = −X ·Z. The
n-qubit observables with the multiplicative factors ±1 and ±i, called phase, form the (generalized)
(n-qubit) Pauli group P⊗n = ({1,−1, i,−i} × {I,X,Y,Z}⊗n, ·).

2.2 Connection with symplectic polar spaces

Let a and b be two elements of the two-element fieldF2 = {0, 1}. Their sum, denoted a+b, and their
product, denoted ab, respectively correspond to the logical operations of exclusive disjunction
and conjunction, when 0 encodes “false” and 1 encodes “true”.

The 2n-dimensional vector space F2n
2 over F2 has vector subspaces for each dimension 0 ≤

k ≤ 2n. A subspace is totally isotropic if any two vectors x and y in it are mutually orthogonal
(
〈
x | y

〉
= 0), for the symplectic form ⟨. | .⟩ defined by〈

x | y
〉
= x1y2 + x2y1 + x3y4 + x4y3 + · · · + x2n−1y2n + x2ny2n−1. (1)

The totally isotropic subspaces of F2n
2 , without their zero vector, form the symplectic (polar)

spaceW(2n−1, 2) of projective dimension 2n−1. This name, in which 2 is the order of the field F2,
is hereafter shortened as Wn. In other words, a (totally isotropic) subspace of Wn of (projective)
dimension k, with 1 ≤ k ≤ n − 1, is a totally isotropic vector subspace of F2n

2 of dimension k + 1
without its 0.

The 4n
− 1 phase-free n-qubit observables G1 · · ·G j · · ·Gn in P⊗n other than the identity I⊗n are

bijectively identified with the 4n
−1 vectors (x1, x2, . . . , x2 j−1, x2 j, . . . , x2n−1, x2n) which are the points

of Wn, by the extension ψ : {I,X,Y,Z}⊗n
→ F2n

2 of the encoding bijection ψ : {I,X,Y,Z} → F2
2

defined by
ψ(I) = (0, 0), ψ(X) = (0, 1), ψ(Y) = (1, 1) and ψ(Z) = (1, 0). (2)

This extension is defined by ψ(G1 · · ·G j · · ·Gn) = (x1, x2, . . . , x2 j−1, x2 j, . . . , x2n−1, x2n) with ψ(G j) =
(x2 j−1, x2 j) for 1 ≤ j ≤ n.

With the symplectic form defined by (1), two commuting observables are represented by two
orthogonal vectors.

2.3 Abstract structure

A simple graph is an undirected graph without multiple edges and loops, i. e., edges {v, v} for some
vertex v. A hypergraph H = (V,H) is a finite set V of vertices and a (finite) set H of hyperedges,
which are (distinct) subsets of vertices in V. Two vertices are adjacent (in H) if they are in the
same hyperedge of H. The complement graph of the hypergraphH = (V,H) is the (simple) graph
cplt(H) = (V, cplt(H)) with the same vertices as H and whose (undirected and non-loop) edges
are the sets of two distinct non-adjacent vertices inH . Formally, {v, v′} ∈ cplt(H)⇔ v , v′ ∧ ∄ h ∈
H. {v, v′} ⊆ h. Following [GR01], a graph is said to be reduced if it has no isolated vertex and no
pair of vertices with the same neighborhood, which is their set of adjacent vertices.

With these definitions in mind, we can now introduce the hypergram that we propose as the
abstract structure underlying operator-based contextuality proofs and determining their degree
of contextuality.
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Definition 1. A hypergram is a triple (V,H,G) where V is a non-empty finite set of vertices, (V,H)
is a hypergraph (called context hypergraph) without isolated vertices (outside any hyperedge) and
empty hyperedges and (V,G) is a simple reduced graph (called anticommutation graph) such that
G ⊆ cplt(H). We say that two vertices i and j commute if {i, j} < G.

By definition, each vertex commutes with itself. The inclusion G ⊆ cplt(H) means that all pairs
of adjacent vertices in H commute.

The following definition introduces two classical finite point-line geometries which will serve
as examples of hypergrams.

Definition 2. The doily is the triangle-free self-dual finite incidence geometry composed of 15
points and 15 lines, with three points on a line and, dually, three lines through a point. In Figure 1
the doily is represented by all the lines, either dashed or plain. A two-spread is a point-line
geometry obtained from the doily by removing a spread, i. e., a set of hyperedges covering every
vertex exactly once. In Figure 1 the removed spread is represented by the dashed lines, and the
two-spread by the plain lines.

When G = cplt(H), the hypergram (V,H,G) is identified with its hypergraph (V,H), as in Exam-
ple 1. Under the more restrictive conditions of magic sets, these hypergraphs (V,H) are considered
in [TLC22b].

Example 1 (Doily). As a hypergram, the doily is Sd = ({1, . . . , 15},Hd,Gd) = ({1, . . . , 15},Hd) with
Hd = { {1, 2, 3}, {1, 8, 9}, {1, 10, 11}, {2, 4, 6}, {2, 5, 7}, {3, 12, 15}, {3, 13, 14}, {4, 8, 12}, {4, 10, 14}, {5, 8, 13},
{5, 10, 15}, {6, 9, 15}, {6, 11, 13}, {7, 9, 14}, {7, 11, 12} } and Gd = cplt(Hd).

The anticommutation graph G added in our definition extends the framework to a wider range
of cases, when G ⊊ cplt(H), as illustrated by Example 2 and detailed in Section 5.

Example 2 (Running example). As running example, let us consider the hypergram S2s =
(V2s,H2s,G2s), called two-spread hypergram, with the set of 15 vertices V2s = {1, . . . , 15}, the set of
ten hyperedges H2s = { {1, 2, 3}, {1, 10, 11}, {2, 4, 6}, {3, 13, 14}, {4, 8, 12}, {5, 8, 13}, {5, 10, 15}, {6, 9, 15},
{7, 9, 14}, {7, 11, 12} } and the set of anticommutations G2s = { {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 12}, {1, 13},
{1, 14}, {1, 15}, {2, 8}, {2, 9}, {2, 10}, {2, 11}, {2, 12}, {2, 13}, {2, 14}, {2, 15}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8},
{3, 9}, {3, 10}, {3, 11}, {4, 5}, {4, 7}, {4, 9}, {4, 11}, {4, 13}, {4, 15}, {5, 6}, {5, 9}, {5, 11}, {5, 12}, {5, 14}, {6, 7},
{6, 8}, {6, 10}, {6, 12}, {6, 14}, {7, 8}, {7, 10}, {7, 13}, {7, 15}, {8, 10}, {8, 11}, {8, 14}, {8, 15}, {9, 10}, {9, 11},
{9, 12}, {9, 13}, {10, 12}, {10, 13}, {11, 14}, {11, 15}, {12, 13}, {12, 14}, {13, 15}, {14, 15} }. For instance, the
edge {1, 8} is in cplt(H2s) but not in G2s, so G2s ⊊ cplt(H2s) in this case.

2.4 Assignments and quantum configurations

A (n-qubit) Pauli assignment of a hypergram (V,H,G) is an injective functionα from V to {I,X,Y,Z}⊗n
−

{I⊗n
} that assigns a distinct n-qubit Pauli observable (different from identity) to all its vertices,

such that two distinct Pauli observables α(v1) and α(v2) anticommute if and only if {v1, v2} ∈ G
(commutation condition), and the product of all assignments of vertices in any hyperedge h ∈ H is
the identity matrix or its opposite (formally,

∏
v∈h α(v) = ±I⊗n) (product condition).

Example 2 (continued). An example of 2-qubit Pauli assignment of the two-spread hypergram
S2s is the function α2s : V2s → {I,X,Y,Z}⊗2

− {I⊗2
} defined by α2s(1) = IX, α2s(2) = XI, α2s(3) = XX,

α2s(4) = IZ, α2s(5) = IY, α2s(6) = XZ, α2s(7) = XY, α2s(8) = ZI, α2s(9) = ZX, α2s(10) = YI,
α2s(11) = YX, α2s(12) = ZZ, α2s(13) = ZY, α2s(14) = YZ, and α2s(15) = YY. This assignment is
illustrated by a labeling in Figure 1.

A Pauli assignment corresponds to a “quantum satisfying assignment” of a binary constraint
system [CM14] and to a “finite dimensional operator solution” to a binary linear system [CLS17],
whose matrix is the incidence matrix of the hypergraph H. It also corresponds to a generalization
of a “quantum realization of a signed arrangement” [Ark12], without the condition that each
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13; ZY

3; XX

14; YZ

12; ZZ

1; IX

15; YY

2; XI

11; YX

6; XZ

8; ZI

5; IY

7; XY

10; YI

4; IZ

9; ZX

Figure 1: Illustration of the two-spread hypergram S2s defined in Example 2. Each circled node
is labeled by a vertex i in V2s, a semi-colon, and the Pauli observable α2s(i) assigned to the vertex
i by the 2-qubit Pauli assignment α2s presented in Section 2.4. Each hyperedge is represented by
a single or double continuous line, either straight or curved. It is composed of three vertices.
The negative context is represented by a double line. The set G2s of anticommutation edges is
composed of all pairs of vertices not belonging to a common continuous or dashed line, either
simple or double.

vertex is included in exactly two hyperedges of the hypergraph that depicts the contexts. Other
works [CSW14; Ací+15] consider graphs and hypergraphs whose vertices represent measurement
outcomes, while we consider hypergraphs whose vertices are labeled by Pauli observables. A
correspondence between these approaches can be found in [Ací+15, Appendix D]. This notion
is also close to that of a Pauli-based assignment [TLC22a] (see Section 6 for details) and to the
following one, coming from our previous work.

A quantum configuration [Mul+24] (called quantum geometry in [de+22]) is a pair (O,C) where O
is a non-empty finite set of observables (2n-dimensional Hermitian operators) and C is a finite set
of non-empty subsets of O, called contexts, such that (i) each observable a ∈ O satisfies a2 = I⊗n (so,
its eigenvalues are in {−1, 1}); (ii) any two observables a and b in the same context commute, i. e.,
a · b = b · a; (iii) the product of all observables in each context is either I⊗n (positive context) or −I⊗n

(negative context). In all that follows, these observables are always phase-free Pauli observables.

Example 2 (continued). Figure 1 also shows a two-spread as a quantum configuration, with only
one negative context, represented by a double line. The product of the 3 observables in this line
is equal to −II, as opposed to +II for all the other lines.

A pair composed of a hypergram (V,H,G) and an n-qubit Pauli assignment α of it can be
associated to any quantum configuration (O,C) with |O| n-qubit phase-free Pauli observables, as
follows. Let V = {1, 2, . . . , |O|}. Let α be a bijection from V to O. With a small abuse of notation,
let us also denote by α the extension of α to subsets of V, and the extension of the latter to subsets
of subsets of V. Let H be the inverse image of C by this last extension α. In other words, H is
the set of subsets h of V such that v and v′ are in h if and only if α(v) and α(v′) are in the same
context in C. Let G be defined by {v, v′} ∈ G if and only if α(v) and α(v′) anticommute. Then
(V,H,G) is a hypergram and α is an n-qubit Pauli assignment on it. An important part of the
article establishes conditions under which the quantum notion of degree of contextuality, initially
defined on a quantum configuration (as detailed in Section 2.6) becomes an abstract notion on the
corresponding hypergram, as summarized in Section 4.4.

Conversely, the quantum configuration associated to a Pauli assignmentα of a hypergram (V,H,G)
is the pair (O,C) such that O = α(V) and C = α(H). In all that follows, most of the notions associated
with a hypergram have their counterpart for the corresponding quantum configuration through
this correspondence.
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Note that a consequence of the commutation condition and the inclusion condition G ⊆ cplt(H)
for any hypergram (V,H,G) is that all elements of a context (image of a hyperedge by a Pauli
assignment α) mutually commute. This is why this condition is not in our definition of a Pauli
assignment.

2.5 Sign functions

For any subset S of the Pauli group whose elements mutually commute, commutativity enables
us to define ΠS as the generalized product Πs∈S s of all the elements of S.

Let α be an n-qubit Pauli assignment of a hypergram (V,H,G), and h a hyperedge in H. Since
all elements in any context α(h) mutually commute, the product Πα(h) is well-defined. The sign
(or valuation) (function) of α is the function sgnα : H → {−1, 1} such that Πα(h) = sgnα(h) I⊗n for
all hyperedges h in H. Similarly, the sign function for a quantum configuration (O,C) of n-qubit
observables is the function s : C→ {−1, 1} defined by Πc = s(c) I⊗n for each context c ∈ C.

A classical assignment a : V → {−1,+1} assigns a value ±1 to each vertex of a hypergram
(V,H,G). The sign (function) of the classical assignment a is the function sgna : H→ {−1, 1} defined
by sgna(h) = Πa(h) = Πv∈h a(v) for all hyperedges h in H.

The hyperedge h in H is said to be satisfied (resp., unsatisfied) when the signs sgnα(h) and sgna(h)
of its Pauli and classical assignments are the same (resp., differ, and thus are opposite). These
definitions also apply to contexts and lines.

Example 3. In Figures 2a to 2c, the classical assignment is represented by the numbers below the
observables in each node. The dashed lines are the unsatisfied lines on which the signs of the
Pauli and classical assignments differ.

In the above-mentioned approach of constraint/linear systems [CM14; CLS17], the second
member of these systems is composed of the values of a given sign function. Similarly, by
definition, a quantum realization of a signed arrangement [Ark12] should also satisfy a given
sign function. A significant difference in [TLC22b] and in the present work is that we address
a potentially simpler problem, namely finding a Pauli assignment without targeting any given
sign function. We precisely show in Section 3 that satisfying a given sign function is a too strong
constraint for the objective we pursue of finding remarkable state-independent Kochen-Specker
proofs.

2.6 Contextuality degree and noncontextual bound

With the former definitions, the contextuality of a Pauli assignment can be defined and quantified
by a natural number, such as the “degree of contextuality” [Mul+24] or the “noncontextual
bound” [Cab10], with the following definitions and relation between them.

Definition 3. A Pauli assignment α of a hypergram (V,H,G) is contextual if there is no classical
assignment a with the same sign function as α (over H). The contextuality degree [de +22] d of the
Pauli assignment α for the hypergram (V,H,G) is the minimal Hamming distance (i. e., number
of different values) between its sign function sgnα and the sign function sgna of any classical
assignment a : V → {−1,+1}.

In other words, the degree of contextuality is the minimal number of different hyperedge
products between this Pauli assignment and any classical assignment. For instance, we shall see
(Proposition 15) that the contextuality degree of all two-spreads is 1, meaning that at least one
product will always be different between any classical and Pauli assignments of a two-spread.

For any quantum configuration (O,C), let

χ =
∑
c∈C

s(c) ⟨c⟩ (3)
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be the sum of the expectation values ⟨c⟩ of all contexts c, multiplied by their sign. A Non-Contextual
Hidden-Variable theory is a theory in which the values of the physical observables are the same
irrespectively of the experimental context which they belong to (NCHV hypothesis). Without
this NCHV hypothesis, all the sign constraints can be satisfied, with the expectation value +1 for
positive contexts and −1 for negative ones, so the upper bound for χ is the number |C| of contexts
of (O,C). However, under the NCHV hypothesis, at least d sign constraints cannot be satisfied.
The expectation value of each unsatisfied context being the opposite of its sign, the upper bound
of χ under this hypothesis is reduced by 2d. This noncontextual bound [Cab10; TLC22b] b is thus
related to d by

b = |C| − 2d. (4)

A quantum configuration (O,C) can be transformed into an experimental observable-based test
to witness state-independent contextuality (see, e. g., [KH25]). It is successful if the measurement
errors are small enough to measure a value of χ above its upper bound (|C| −2d) under the NCHV
hypothesis. Furthermore, a quantum configuration (O,C) can be turned into a non-local game,
providing a proof of nonlocality of quantum physics, as detailed in [CM14; CLS17], since it can
be associated with a binary constraint system.

3 All Pauli assignments have the same contextuality degree

This section shows how to transfer a classical assignment between two Pauli assignments of
the same hypergram (Lemma 4) and proves that all these Pauli assignments have the same
contextuality degree (Theorem 5), a generalization of [TLC22a, Proposition 14] to all hypergrams.

Let the tensor product of two Pauli assignments α1 and α2 of the same hypergram (V,H,G) be the
Pauli assignment α1⊗2 defined by α1⊗2(v) = α1(v) ⊗ α2(v) for all vertices v in V. Figure 2 presents
an example of tensor product of two Pauli assignments of the doily structure. It will serve to
illustrate the proof arguments for Lemma 4 and Theorem 5.

ZII
1

ZXZ
-1

IXZ
-1

XZI
-1

XYI
1

YYZ
1

YZZ
-1

ZXX
-1

IXX
-1

ZXY
1

IXY
1

YYX
-1

YZX
1

YYY
-1

YZY
-1

(a) 3-qubit doily with a known
classical assignment

XXIX
1*-1=-1

XXXX
-1*1=-1

IIXI
1*1=1

IXZX
-1*1=-1

ZIII
-1*-1=1

ZXZX
1*-1=-1

XYYX
-1*-1=1

YYZX
1*-1=-1

ZIXI
-1*-1=1

IZZI
-1*-1=1

XIZI
-1*1=-1

XZII
1*-1=-1

ZZZI
-1*1=-1

XZXI
1*-1=-1

YIYI
-1*1=-1

(b) 4-qubit doily with a com-
puted classical assignment

XYI XXIX
-1

YZY XXXX
1

ZXY IIXI
1

ZXZ IXZX
1

XZI ZIII
-1

YYZ ZXZX
-1

IXZ XYYX
-1

YZX YYZX
-1

YYY ZIXI
-1

YYX IZZI
-1

YZZ XIZI
1

IXY XZII
-1

ZXX ZZZI
1

ZII XZXI
-1

IXX YIYI
1

(c) tensor product of both
doilies, with a classical assign-
ment satisfying all its contexts

Figure 2: Illustration of the classical assignment transfer process, between two Pauli assignments
of the same structure, here the doily. The dashed lines are the unsatisfied ones.

Lemma 4. Let α1 and α2 be two Pauli assignments of the same hypergram (V,H,G). Let a1 be a classical
assignment of V and S the subset of hyperedges in H satisfied by a1 for α1. Then there exists a classical
assignment a2 whose set of hyperedges satisfied for α2 is also S.

Proof. For any two vertices v1 and v2 in V, either the two pairs (α1(v1), α1(v2)) and (α2(v1), α2(v2))
of their images by α1 and α2 anticommute (if {v1, v2} ∈ G), or they both commute. By elementary
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algebraic computations, with s = ±1,

α1⊗2(v1) · α1⊗2(v2) = (α1(v1) ⊗ α2(v1)) · (α1(v2) ⊗ α2(v2)) = (α1(v1) · α1(v2)) ⊗ (α2(v1) · α2(v2))
= (s α1(v2) · α1(v1)) ⊗ (s α2(v2) · α2(v1))

= s2 (α1(v2) · α1(v1)) ⊗ (α2(v2) · α2(v1))

= (±1)2 (α1(v2) ⊗ α2(v2)) · (α1(v1) ⊗ α2(v1))
= α1⊗2(v2) · α1⊗2(v1).

This means that all observables in the image O ≡ α1⊗2(V) of α1⊗2 pairwise commute.
With C = α1⊗2(H), the quantum configuration (O,C) is therefore commutative. By [Ark12,

Proposition 8], it is non-contextual. Let a1⊗2 be a classical assignment satisfying all sign constraints
of (O,C), and let a2 be the classical assignment of V defined by a2(v) = a1⊗2(v)a1(v).

Then, by the fact that for all hyperedges h ∈ H,
∏

v∈h a2(v) =
∏

v∈h(a1⊗2(v)a1(v)), we obtain that
the classical assignment a2 satisfies for α2 exactly the same hyperedges as a1 for α1. □

Figure 2 illustrates the operational aspect of Lemma 4 and its proof, as a way to transfer
a classical assignment from a given Pauli assignment to another one with the same structure.
Assume we already know a classical assignment a1 reaching the contextuality degree in the 3-
qubit doily in Figure 2a. Figure 2c shows the tensor product of the first two doilies, for which a
non-contextual solution a1⊗2 is easily computed. Finally, the product of the classical assignment a1
of Figure 2a and the solution a1⊗2 of Figure 2c provides an optimal classical assignment a2 for the
4-qubit doily in Figure 2b, with the same subset of satisfied hyperedges, so the same contextuality
degree, as generalized in the following theorem.

Theorem 5. Let (V,H,G) be a hypergram. Then all Pauli assignments of (V,H,G) have the same
contextuality degree and noncontextual bound.

Proof. When (V,H,G) admits no Pauli assignment, the theorem trivially holds. Otherwise, let α1
be any Pauli assignment of (V,H,G), with the contextuality degree d1, and let a1 be a classical
assignment of α1 for this contextuality degree d1, i. e., at the minimal Hamming distance d1 from
α1. Let α2 be another Pauli assignment whose contextuality degree d2 is unknown. By Lemma 4,
we know that there is a classical assignment a2 with the same set of unsatisfied hyperedges
for α2 as a1 for α1, and thus at the same Hamming distance d1 from α2, which means that the
contextuality degree d2 of α2 is at most d1. The same reasoning with α1 and α2 exchanged entails
that d1 is at most d2, so d1 = d2.

The noncontextual bound b being related to d by the linear relation (4), α1 and α2 also have
the same noncontextual bound. □

4 Assignability

By Theorem 5 all Pauli assignments α of a hypergram have the same contextuality degree.
However, a given hypergram (V,H,G) does not necessarily admit a Pauli assignment. If it does, it
is said to be (Pauli-)assignable. After providing a counterexample and introducing some definitions
and notations, we establish in Theorems 8 and 9 a necessary and sufficient condition on H and
G for the assignability of (V,H,G). When this assignability condition is satisfied, the algorithm
presented in Section 4.1 efficiently computes such a Pauli assignment α, used in Section 4.2 to
complete the proof of Theorem 8. The algorithmic complexity of this algorithm is discussed
in Section 4.3. Finally, Section 4.4 proposes a definition of contextuality degree for any assignable
hypergram.

From here, we superimpose to the (hyper)graph point of view of the previous sections the
algebraic point of view promoted by algebraic graph theory [GR01], through the following defi-
nitions and identifications. For this purpose, the hyperedges in the set H of a context hypergraph
(V,H) are assumed to be numbered from 1 to |H| in a arbitrary but fixed order.
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Definition 6. The context matrix C(H) ∈ F|H|×|V|2 of the context hypergraph (V,H) is its incidence
matrix, defined by C(H)k,v = 1 if the vertex v ∈ V = {1, . . . , |V|} is in the k-th hyperedge (1 ≤ k ≤ |H|),
and 0 otherwise. The anticommutation matrix A(G) ∈ F|V|×|V|2 of the anticommutation graph (V,G)
is its adjacency matrix, defined as the symmetric matrix such that A(G)i, j = 1 if {i, j} ∈ G, and 0
otherwise.

Since the anticommutation graph (V,G) is loopless, all the diagonal entries of A(G) are equal
to zero.

To lighten the notations (for instance in Example 4 and Theorem 8) and without risk of
confusion, we adopt the following identification conventions: we also designate by H the context
matrix C(H) and by G the anticommutation matrix A(G), whenever it is clear from the context
whether we are talking about a matrix or a set.

Example 4. Consider the hypergram S = (V,H,G) with V = {v1, v2, v3, v4, v5}, H = {{v1, v2, v3},
{v1, v4, v5}} and G = {{v3, v5}}. Its context matrix is the incidence matrix

H =
(
1 1 1 0 0
1 0 0 1 1

)
and its anticommutation matrix is the adjacency matrix

G =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 .
The two 1s in bold come from the anticommutation between v3 and v5 in the set G.

The following lemma from [TLC22a] is a key argument in the proof of Theorem 8. It is
reproduced here (with a slight adaptation to our notations) in order to make the paper self-
contained. The Gram matrix of the sequence of vectors s1, . . . , sm ∈ F2n

2 with respect to the
symplectic form ⟨. | .⟩ is the m ×m matrix whose (i, j) entry Gi, j is

〈
si | s j

〉
.

Lemma 7 ([TLC22a, Lemma 3]). Let s1, . . . , sm ∈ F2n
2 for some positive integer n, and let G be their

Gram matrix with respect to the symplectic form ⟨. | .⟩, with rows r1, . . . , rm. If a subset {ri1 , . . . , ri j } of the
rows is linearly independent, then the corresponding set of vectors {si1 , . . . , si j } is also linearly independent.

Theorem 8. A hypergram (V,H,G) admits a Pauli assignment if and only if

H · G = 0. (5)

In Equation (5), called the (matricial) assignability condition, the dot is the matrix product and
its right-hand side 0 is the |H| × |V| zero matrix. In other words, the condition is that each column
of the matrix G is in the null space ker(H) of the matrix H.

Example 4 (continued). The fifth column of G in our example is the vector (0 0 1 0 0)T. Since
H · (0 0 1 0 0)T = (1 0)T , (0 0)T, the hypergram S is not assignable.

Proof. First, we show that each Pauli assignment for (V,H,G) satisfies the assignability condi-
tion (5).

Let α be an n-qubit Pauli assignment of (V,H,G), with V assumed to be {1, 2, . . . , |V|} here. The
commutation condition Gi, j =

〈
ψ(α(i)) | ψ(α( j))

〉
for α is equivalent to the fact that G is the Gram

matrix of ψ ◦α, by definition of a Gram matrix. On the other hand, the commutation and product
conditions for α entail that ψ ◦ α : V → F2n

2 and G satisfy the hypotheses of Lemma 7, which
provides the consequence that G is a valid Gram matrix for the hypergraph (V,H), as defined
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in [TLC22a, page 8]. In particular, the following second condition for a valid Gram matrix holds,
for all hyperedges h in H and all vertices 1 ≤ v ≤ |V|:∑

i ∈ h

Gi,v = 0. (6)

In matricial form this system of linear equations is Equation (5).
Conversely, the fact that Equation (5) implies the existence of a Pauli assignment is justified

after presenting the algorithm in Section 4.1, which constructs such a Pauli assignment α of
(V,H,G) from the anticommutation matrix G. □

It is sometimes more convenient and more pictorial to express the assignability condition by
using the language of graphs, as in the following theorem.

Theorem 9. A hypergram (V,H,G) admits a Pauli assignment if and only if, for each vertex v ∈ V, each
hyperedge h ∈ H contains an even number of vertices which are adjacent to v in the graph (V,G).

In other words, this graphical assignability condition requires that each vertex anticommutes with
an even number of vertices of each hyperedge. Since all the vertices in a hyperedge mutually
commute, it is sufficient to consider the vertices not belonging to the hyperedge.

Proof. Equation (5) is an algebraic form of the graphical assignability condition. Indeed, consider
the entry (H · G)h,v at row h and column v in the product of the matrices H and G. Each 1 in this
sum is the product of a 1 entry in the matrix H, meaning that some vertex i is in the hyperedge h,
and a 1 entry in the matrix G, meaning that this vertex i anticommutes with v. The sum of these
1s as natural numbers would be the number of such vertices i in h anticommuting with v. The
sum being computed over F2, it is zero as required in Equation (6) if and only if this number is
even. □

Example 4 (continued). In our example where G = {{v3, v5}} the vertex v5 anticommutes with v3
and commutes with v1 and v2, so it anticommutes only with one vertex in the first hyperedge
{v1, v2, v3}. By Theorem 9, the hypergram S is not assignable.

Corollary 10. For all assignable hypergrams (V,H,G),

|V| ≤ 2rk(ker(H))
− 1. (7)

Proof. Direct consequence of the assignability condition and the fact that (V,G) is a reduced graph:
G has no line of zeros and no duplicated columns. So, each column of G is a distinct vector in the
null space of H. The lhs of the inequality (7) is the number of columns of G. Its rhs is the number
of non-null vectors in the kernel space of H. □

4.1 Pauli-labeling Algorithm

Let (V,H,G) be a hypergram whose set of vertices V = {1, . . . , |V|} is totally ordered by <. From
V and the anticommutation matrix G, Algorithm 1 modifies a copy B of the input matrix G until
reaching the null matrix, as in the algorithm left implicit in the proof of Lemma 8.9.3 in [GR01].
Moreover, Algorithm 1 computes and returns a function α : V → {I,X,Y,Z}⊗n that labels all the
vertices in V with n-qubit observables. It also returns the number n of qubits in these labels.
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Algorithm 1 Pauli Assignment from an Anticommutation Matrix G on the Set of Vertices V

1: function PauliAssignmentFromAnticommutations(V,G)
2: n← 0
3: B← G
4: while i, j← FindOverdiagonalOne(B) do
5: n← n + 1
6: for k ∈ V do
7: α(k)n ← ψ−1

(
Bk,i,Bk, j

)
8: end for
9: B← B + B · ei · (B · e j)T + B · e j · (B · ei)T

10: end while
11: return α,n
12: end function

Calling the function FindOverdiagonalOne on Line 4 either returns vertices i and j such that
i < j and Bi, j = 1, or false when no such pair of vertices exists, which ends the loop. For any
vertex k ∈ V and 1 ≤ s ≤ t ≤ n, let α(k)s denote the s-th qubit of α(k) and α(k)s..t denote its sequence
of qubits from the s-th one to the t-th one included. For n ≥ 1 the assignment on Line 7 computes
at the n-th iteration of Algorithm 1 the n-th Pauli matrix α(k)n of the label α(k) of all vertices k ∈ V,
by using the inverse ψ−1 of the encoding function ψ defined by (2).

For m ∈ V, let em denote the m-th standard basis vector. Then B · em is the m-th column of B
and eT

l · B · em = Bl,m is its entry at row l in this column. On Line 9 the i-th and j-th columns of the
matrix B are used to add zeros in B, as detailed in Section 4.2.1.

4.2 Justification

When Equation (5) holds, the present section shows that the labeling α returned by PauliAs-
signmentFromAnticommutations(V,G) is a Pauli assignment of the hypergram (V,H,G), thus
completing the proof of Theorem 8. More precisely, Section 4.2.1 justifies the commutation con-
dition, Section 4.2.3 justifies that the labels according to α are pairwise distinct and different from
the identity and Section 4.2.4 justifies the product condition under a condition on the rank of G
proved in Section 4.2.2.

In all that follows, when there is no risk of confusion, the function ψ is often omitted, for
instance when writing ⟨α(l) | α(m)⟩ instead of

〈
ψ(α(l)) | ψ(α(m))

〉
in Equation (8).

4.2.1 Commutation condition

The following lemma provides a key argument for the commutation condition. A loop invari-
ant is a property which is true before the loop and is preserved by each iteration of the loop.
Consequently, it also holds after the loop.

Lemma 11. The formula

∀l,m ∈ V. Bl,m = Gl,m + ⟨α(l) | α(m)⟩ (8)

is an invariant for the loop of Algorithm 1.

Proof. For n ≥ 1, let B(n−1) denote the value of the matrix B at the beginning of the n-th iteration
of Algorithm 1, just before Line 5. Consequently, B(n) denotes the value of B at the end of the n-th
iteration, just after Line 9. In particular, B(0) = G.

The notation α(l) in (8) stands for α(l)1..n at Line 9. Its value when n = 0 can be chosen constant,
so that ⟨α(l) | α(m)⟩ = 0 before the loop. Thus (8) is initially true, because B = G before the loop.
It remains to prove that (8) is preserved by the assignment on Line 9, under the assumption

α(k)n = ψ
−1

(
B(n−1)

k,i ,B(n−1)
k, j

)
(9)
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coming from Line 7, equivalent to

ψ(α(k))2n−1 = B(n−1)
k,i and ψ(α(k))2n = B(n−1)

k, j (10)

for all vertices k. This preservation is justified by the following sequence of equalities:

B(n)
l,m = B(n−1)

l,m +
(
B(n−1)

· ei · (B(n−1)
· e j)T + B(n−1)

· e j · (B(n−1)
· ei)T

)
l,m

= B(n−1)
l,m +

(
B(n−1)

· ei · (B(n−1)
· e j)T

)
l,m
+

(
B(n−1)

· e j · (B(n−1)
· ei)T

)
l,m

= B(n−1)
l,m + B(n−1)

l,i B(n−1)
m, j + B(n−1)

l, j B(n−1)
m,i

= B(n−1)
l,m + ψ(α(l))2n−1ψ(α(m))2n + ψ(α(l))2nψ(α(m))2n−1 by (10)

= B(n−1)
l,m +

〈
ψ(α(l)n) | ψ(α(m)n)

〉
by (1)

= B(0)
l,m +

〈
ψ(α(l)1) | ψ(α(m)1)

〉
+ . . . +

〈
ψ(α(l)n) | ψ(α(m)n)

〉
by induction on n

= Gl,m +
〈
ψ(α(l)1..n) | ψ(α(m)1..n)

〉
,

so (8) is an invariant of the loop. □

It is easy to check similarly that the symmetry of B and its diagonal of zeros are two other
loop invariants. All these invariants still hold after the loop, together with the negation of the
loop condition. So, at the end of the algorithm, B is the null matrix and thus Gl,m = ⟨α(l) | α(m)⟩
for all vertices l and m, meaning that the returned labeling α : V → {I,X,Y,Z}⊗n satisfies the
commutation condition.

4.2.2 Rank and number of qubits

The following lemma establishes the relation r = 2n between the rank r of G and the number n
of qubits of the labeling generated by the algorithm. It could be justified in one sentence saying
that it is the first conclusion of Theorem 8.10.1 in [GR01], but, in order to make the paper self-
contained, we prefer to provide a proof of it, with our notations and more details. This proof is
strongly inspired by that of Lemma 8.9.3 in the same reference [GR01].

Lemma 12. The rank of the matrix G is twice the number n of iterations returned by the application
PauliAssignmentFromAnticommutations(V,G) of Algorithm 1 to V and G.

Proof. It is sufficient to show that each execution of Line 9 reduces the rank rk(B) of B by two,
since the rank of the final null matrix B is zero.

Let A be B just before Line 9, y = A · ei and z = A · e j be the i-th and j-th columns of A
and C = y · zT + z · yT be the matrix subtracted to A to update B on Line 9. Since Ai, j = 1 and
Ai,i = A j, j = 0, the i-th column of C is the i-th column of A, the j-th column of C is the j-th column
of A and the other columns of C are linear combinations of these two columns of A.

Since A = B + C after Line 9, the m-th column of A is a linear combination of the m-th column
of B and the i-th and j-th columns y and z of A. So, the column space of A is spanned by the union
of the columns of B with the vectors y and z, so rk(A) ≤ rk(B) + 2.

For any vector x in the null space of A, we have A ·x = 0. So, considering the i-th and j-th rows
of A, we have eT

i ·A ·x = 0 and eT
j ·A ·x = 0. Since A is symmetric (A = AT), we get (A ·ei)T

·x = 0 and
(A ·e j)T

·x = 0, i. e., yT
·x = zT

·x = 0. Consequently, C ·x = (y ·zT+z · yT) ·x = y · (zT
·x)+z · (yT

·x) = 0.
Since B just after Line 9 is A + C, it comes that B · x = 0 and so the null space of A is included in
the null space of B. Moreover, since B = A − C, the i-th and j-th columns B · ei and B · e j of B are
two columns of zeros. Therefore, the two independent basis vectors ei and e j are in the null space
of B. Consequently, rk(B) ≤ rk(A) − 2.

Altogether, rk(B) = rk(A) − 2, which ends the proof. □
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4.2.3 Image conditions

The anticommutation matrix G is the Gram matrix of the function ψ ◦ α. If α is not injective,
then there are two distinct vertices v and v′ such that ψ(α(v)) = ψ(α(v′)) and the corresponding
rows in G are equal. Similarly, if α(v) = I⊗n for some vertex v, then ψ(α(v)) = 0 ∈ F2n

2 and the
corresponding row in G is a row of zeros. Since the anticommutation graph (V,G) is reduced (by
definition of a hypergram), its adjacency matrix G has no duplicated rows and no row of zeros,
so α is injective and its image is included in {I,X,Y,Z}⊗n

− {I⊗n
}.

4.2.4 Product condition

Finally, the product condition is also respected, since α satisfies all the hypotheses of the following
lemma.

Lemma 13. Let (V,H,G) be an assignable hypergram with V = {1, . . . , |V|}. Let r be the rank of G
and n = r/2. Let α : V → {I,X,Y,Z}⊗n be a vertex labeling with n-qubit observables satisfying the
commutation condition

〈
α(i) | α( j)

〉
= Gi, j for all vertices 1 ≤ i, j ≤ |V|. Then α satisfies the product

condition
∏

v∈h α(v) = ±I⊗n for all hyperedges h ∈ H.

Proof. By the correspondence with symplectic polar spaces (Section 2.2) it is equivalent to prove
that

∑
v∈h α(v) = 0 for the null vector 0 in F2n

2 . As already mentioned in the proof of Theorem 8,
the commutation condition for α entails that G is the Gram matrix of α. Let b = (c1, . . . , cr) be
composed of r columns of G and forming a basis of the vector space span(G) spanned by the
columns of G. By Lemma 7 applied to the tuple of vectors (α(v))v∈V, to their Gram matrix G and
to the subset of vectors in b, the corresponding vectors α(v1), . . . , α(vr) are linearly independent
vectors in F2n

2 . By Lemma 12, r = 2n = dim(F2n
2 ), so these vectors form a basis of F2n

2 .
For 1 ≤ j ≤ r, we have on the one hand∑

v∈h

Gv,v j =
∑
v∈h

〈
ψ(α(v)) | ψ(α(v j))

〉
(by the commutation condition)

=

〈∑
v∈h

ψ(α(v)) | ψ(α(v j))
〉

(by linearity of the symplectic product).

On the other hand,
∑

v∈h Gv,v j = 0 by the assignability condition (6). So〈∑
v∈h

α(v) | α(v j)
〉
= 0 (11)

for all the vectors of the basis (α(v j))1≤ j≤r, which is possible only if
∑

v∈h α(v) = 0. □

4.3 Algorithmic complexity

Multiple methods in [TLC22a, Theorem 8] are suggested for generating labelings, including
searching subgraphs of the graph of the whole symplectic space, or using backtracking techniques.
None of them is polynomial. However, a recent work [ZPL24, Theorem 2] describes a polynomial
algorithm for finding such a labeling, but at the cost of not guaranteeing that the resulting labeling
has the smallest possible number of qubits, since it is equal to the number of anticommuting pairs
in an independent set of vectors of the Gram matrix. For example, an independent set of the doily
being a set of five vectors, the algorithm will return a labeling with at least five qubits, while our
algorithm returns a labeling with only two qubits.

The algorithm presented in Section 4.1 is polynomial, with a complexity in O(|V|3), and
provides a labeling with the minimal number of qubits. This is first because the number of
iterations of the loop in Algorithm 1 is at most |V|/2 for a G of full rank. Then, inside this loop,
the assignment of the matrix B on Line 9 is more costly than the inner loop on Line 6, because the
matrix assignment is done in O(|V|2), while the inner loop is done in O(|V|).
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4.4 Contextuality degree of an assignable hypergram

By Theorem 8 all assignable hypergrams admit a Pauli assignment. By Theorem 5 all these
assignments have the same degree of contextuality. Putting everything together we propose the
following notion of degree for any assignable hypergram.

Definition 14 (Contextuality degree of an assignable hypergram). Let (V,H,G) be an assignable
hypergram, n = rk(G)/2 be half the rank of G (known to be even) and α be the vertex labeling
from V to {I,X,Y,Z}⊗n

− {I⊗n
} computed by the algorithm PauliAssignmentFromAnticommu-

tations(V,G). Let sgnα : H → {−1, 1} be its sign function, defined by Πv∈h α(v) = sgnα(h) I⊗n for
all hyperedges h in H. The (contextuality) degree of an assignable hypergram (V,H,G) is the minimal
Hamming distance between the sign function sgnα and the sign function sgna of any classical
assignment a : V → {−1,+1} of its vertices, defined by sgna(h) = Πv∈h a(v) for all hyperedges h in
H.

5 Generalization of former results

When the contextuality degree of some n-qubit Pauli assignment of some hypergram is known,
the contextuality degree of all N-qubit Pauli assignments of the same hypergram is also known for
all the numbers of qubits N ≥ n, because Theorem 5 asserts that all these degrees have the same
value. So, all contextuality degree results established in former work (e.g., [Mul+24; Mul+25])
only for n ≤ N ≤ n′ for some small number of qubits n′, indeed hold by Theorem 5 without
limit for all N ≥ n. Moreover, instead of being obtained as in [Mul+24; Mul+25] after long
computations considering all possible Pauli assignments for all the values of N in this interval
[n,n′], they can now be obtained much more efficiently, by considering only one Pauli assignment
of the hypergram they share in common, with the smallest number of qubits n. This section
revisits with this larger point of view several former results about the contextuality degree of
multi-qubit quantum configurations.

Moreover, as announced in Section 2.3, we illustrate here with examples how the anticom-
mutation relation G added in our framework of hypergrams (V,H,G) to the hypergraph (V,H)
of usual quantum configurations opens the door to a much wider range of cases. To clarify this
widening, we classify the quantum configurations studied in former works [TLC22a; de +22;
Mul+24] into two families. The first family is composed of all the structures whose hypergram
(V,H,G) satisfies G = cplt(H), where cplt(H) is the anticommutation graph of the hypergraph H.
In other words, in this case, two observables are in the same context if and only if they commute.
The second family is composed of all the other structures, where G ⊊ cplt(H). In other words, in
this case, some commuting pairs of observables are absent in all contexts.

Each following subsection is devoted to a particular category of quantum configurations.

5.1 1-spaces

This section is about quantum configurations whose contexts are totally isotropic subspaces with
the projective dimension 1, also called 1-spaces or lines. Their underlying hypergram belongs to
the first family.

For each number of qubits n ≥ 2, let Ln be the quantum configuration whose contexts are all
the lines of Wn. For instance, L2 is the 2-qubit doily. The number of observables in Ln is 22n

− 1.
Its number of contexts is

(4n
− 1)(4n−1

− 1)
3

. (12)

Its number of negative contexts [Cab10] is

1
6

n−2∑
c=0

∑
a,b

32n−a−b−2c
(
n
c

)(
n − c

a

)(
n − c − a

b

)
. (13)
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For n ≤ 7, these numbers are respectively given in this order in the second, third and four column
of Table 1. Its last two columns gathers the results from Tables 1 and 3 in [Mul+25], up to seven
qubits. We present here neither better bounds for the contextuality degree d nor a speedup for the
computation time of its upper bounds (displayed in the last column), obtained by the heuristic
method presented in [Mul+25], run on a machine with a 5.4 GHz P-cores and 4.3 GHz E-cores
Intel Core i9-13900K processor. These computations use less than 1.3 Gb out of 64 Gb of RAM.
What is new here is the interpretation of these data, detailed in the following paragraph.

n # obs. # contexts # neg. contexts Value or bounds for d Duration
2 15 15 3 3 0.01 s
3 63 315 90 63 0.1 s
4 255 5 355 1 908 1 071 ≤ d ≤ 1 575 0.1 s
5 1 023 86 955 35 400 17 391 ≤ d ≤ 31 479 1 s
6 4 095 1 396 395 615 888 279 279 ≤ d ≤ 553 140 2 mn
7 16 383 22 362 795 10 352 160 4 472 559 ≤ d ≤ 9 405 663 1 h 34 mn

Table 1: Dimensions, exact values (for n = 2, 3) or bounds (for n ≥ 4) for the contextuality degree
d of quantum configurations in WN (for all N ≥ n) isomorphic to the quantum configuration Ln
whose contexts are all the lines of Wn.

Each row in Table 1 not only concerns Ln, but also all the quantum configurations isomorphic
to Ln whose contexts are distinct lines of a symplectic space WN for some N ≥ n. Of course, when
N > n, these quantum configurations do not contain all the lines of WN, and their numbers of
negative contexts can differ from that of Ln. However, Theorem 5 guarantees that all of them have
the same contextuality degree, whose value is either exactly given or bounded in the fifth column
of Table 1, for 2 ≤ n ≤ 7.

It was already known that the contextuality degree of all n-qubit doilies is 3, for n ≥ 2. This
was formerly proved by computing this degree for the 12 possible configurations of their negative
lines [Mul+22]. A direct consequence of Theorem 5 is a much simpler proof, which does not rely
on such an enumeration, but justifies only that the contextuality degree of the 2-qubit doily is 3.

In the same way, it is known that the contextuality degree of L3 (all the 3-qubit lines) is 63 and
that there is a minimal subset of unsatisfied hyperedges isomorphic to the split Cayley hexagon
of order two [Mul+24]. By Theorem 5 the contextuality degree of all quantum configurations iso-
morphic to L3 (i. e., having the same underlying hypergram as it) labeled by N-qubit observables
with N ≥ 3 is also 63. Moreover, by Lemma 4, all these configurations share the same subset of
unsatisfied hyperedges. So, we now know that one of the minimal subsets of unsatisfied hyper-
edges in any Pauli assignment of L3 by N-qubit observables with N ≥ 3 is isomorphic to the split
Cayley hexagon of order two.

5.2 Two-spreads

The case of two-spreads is of interest because all the two-spreads considered up to now in relation
with contextuality [Mul+24] are small magic sets whose underlying hypergram S2s belongs to the
second family, as detailed in Example 2.

For n ≥ 2, it is known that all n-qubit two-spreads are contextual, and that their contextuality
degree is 1 [Mul+24, Proposition 7]. The proof of this proposition in [Mul+24] relies on the fact
that two-spreads feature an odd number of negative contexts. The latter fact relies on a careful
inspection of 72 = 6 · 12 possible configurations of their negative lines, obtainable by removing
one of its 6 spreads of lines from one of the 12 possible configurations of negative lines in an
n-qubit doily. Thanks to Theorem 5, we provide here the following much simpler proof of a
similar proposition about two-spreads, more precise by expliciting its underlying hypergram.

Proposition 15. The contextuality degree of all n-qubit labelings of the two-spread hypergram S2s is 1.
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Proof. As a point-line geometry, disregarding line signs, any n-qubit two-spread is isomorphic to
the two-spread of the 2-qubit doily presented in Example 2 and represented in Figure 1. The latter
contains only one negative line, so its contextuality degree d is at most 1. Moreover, it is a magic
set, which implies that it is contextual [HS17], so d ≥ 1. Consequently, d = 1, and by isomorphism
and Theorem 5, the contextuality degree of all n-qubit two-spreads whose underlying hypergram
is S2s is also 1. □

In order to illustrate the impact of the anticommutation graph on contextuality, the following
example presents a non-contextual two-spread embeddable in W3.

Example 5. Let us consider the hypergram S′ = (V2s,H2s,G′), variant of the two-spread hypergram
S2s = (V2s,H2s,G2s), with the same underlying hypergraph (V2s,H2s) but the anticommutation
graph G′ = {{1, 5}, {1, 7}, {1, 8}, {1, 9}, {1, 12}, {1, 15}, {2, 5}, {2, 8}, {2, 10}, {2, 11}, {2, 12}, {3, 7}, {3, 9},
{3, 10}, {3, 11}, {3, 15}, {4, 5}, {4, 7}, {4, 10}, {4, 11}, {4, 13}, {4, 14}, {5, 11}, {5, 12}, {6, 7}, {6, 8}, {6, 12},
{6, 13}, {6, 14}, {7, 8}, {7, 10}, {7, 13}, {7, 15}, {8, 9}, {8, 11}, {9, 11}, {9, 12}, {9, 13}, {10, 12}, {10, 14}, {11, 14},
{11, 15}, {12, 13}, {12, 14}, {14, 15}} different from G2s. Whereas S2s is contextual, with degree 1, this
variant S′ is not contextual. This hypergram S′ and its 3-qubit labeling produced by Algorithm 1
are presented in Figure 3. This two-spread labeling is a genuine three-qubit two-spread, which
lives in W3 but can be found neither in W2 nor in a doily of W3.

13; ZXI

3; IXI

14; ZII

12; YXY

1; IIX

15; YYZ

2; IXX

11; YYX

6; XXI

8; ZXZ

5; IIZ

7; IZZ

10; YYI

4; XIX

9; ZZZ

Figure 3: Illustration of the non-contextual hypergram S′ = (V2s,H2s,G′) sharing the same un-
derlying hypergraph (V2s,H2s) as the two-spread hypergram S2s, but with a different anticom-
mutation graph G′. The vertices are represented by the numbers from 1 to 15. The hyperedges
are represented by the lines. The two negative lines are represented by the double lines. The
anticommutation graph G′ is not shown here to keep the figure readable.

5.3 Other quantum configurations

Other quantum configurations studied in former work include k-spaces for k ≥ 2, Mermin-Peres
squares and quadrics. They all belong to the first family. As for the elliptic and hyperbolic
quadrics, they belong to the first family by definition, because their lines contain all the lines
passing through the corresponding points satisfying their corresponding quadratic form.

Using an optimization algorithm, Saniga, Holweck, Kelleher and we [Mul+25] have found
upper bounds for the degree of contextuality of all hyperbolic and elliptic quadrics of Wn, for
4 ≤ n ≤ 7. For n = 4, this upper bound is 315 and is the same for hyperbolic and elliptic
quadrics. For n = 5, the bounds for elliptic and hyperbolic quadrics respectively are 7 087 and
6 975. For n = 6, they respectively are 131 700 and 132 391. For n = 7, they respectively are
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2 294 580 and 2 331 191. While there are numerous different hyperbolic and elliptic quadrics in
Wn, all hyperbolic (resp. elliptic) quadrics with the same number n of qubits share the same
hypergram. So, by Theorem 5, they all have the same degree, and it is sufficient to estimate it
for one of them. This property has been exploited in our former work [Mul+25] to dramatically
reduce the computation effort.

6 Related work

This section details in what sense our results can be considered as extensions or improvements of
results from [TLC22a], with an emphasis on the algorithmic point of view.

We start by recalling some definitions from [TLC22a]. An Eulerian hypergraph H = (V,H)
is a hypergraph whose vertices are in an even number of distinct hyperedges. A Pauli-based
assignment is defined in [TLC22a] as a magic assignment α : V → P⊗n whose values are in the
n-qubit Pauli group. A magic assignment satifies the condition

∏
v∈h α(v) = −I for an odd number

of hyperedges h ∈ H, hereafter called the oddness condition.
Our Theorem 5 and its proof are similar to Proposition 14 of [TLC22a] and its proof, but it holds

for all Pauli assignments, our more general notion than Pauli-based assignments in [TLC22a],
free of its unnecessary oddness condition (odd number of negative hyperedges). It also holds
under one less assumption on the hypergraph, that we do not assume to be Eulerian, i. e., it
is not necessarily for each vertex to be in an even number of distinct hyperedges. With three
lines incident to each vertex the doily is a significant example without this property. Pauli
assignments admit two restrictions not present in [TLC22a]: they are injective and assign only
Pauli observables with phase 1. However these restrictions can be considered as technical details
that do not significantly weaken the results: duplicating labels would have no interest, there are
already plenty of interesting phase-free assignments to study and all examples in [TLC22a] and
other work only consider vertices labeled by phase-free Pauli observables.

Finally, our claim that the labelingα returned by PauliAssignmentFromAnticommutations(V,G)
is a Pauli assignment and its justification (in Section 4.2) are a generalization of Proposition 5
in [TLC22a] and its proof, because here the hypergraph (V,H) is again not assumed to be Eule-
rian. Moreover, from the algorithmic point of view, our polynomial Algorithm 1 is more efficient
than the two approaches mentioned in [TLC22a], the first one being a search for subgraphs of the
graph of the whole symplectic space, and the second one using backtracking techniques. Both of
them have an exponential complexity: first in the number of vertices because of the nature of the
algorithms used, and second in the number of qubits because of the exponentially growing size
of the symplectic space Wn.

7 Conclusion

The notion of assignable hypergram proposed in this paper can not only be attached an abstract
notion of contextuality degree, as detailed here, but characterizes an exploration space where
original state-independent Kochen-Specker proofs can be looked for. Finding efficient ways to
explore that space is the main perspective. A preliminary perspective is to add criteria to reduce
the size of the space and orient the search.

The proposed framework includes the well-known magic sets, but is much wider. Magic sets
are attractive notably because their contextuality can be proved by a simple human reasoning.
However they have restrictions that we show here to be unnecessary for the existence of Pauli
assignments, such as the oddness condition. When considering more general objects, we accept
to loose the nice property of a simple proof of contextuality and to rely on software to decide
contextuality and to compute bounds for the contextuality degree, as in [Mul+24].
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