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Abstract

We introduce and describe a new heuristic method for finding an upper bound on
the degree of contextuality and the corresponding unsatisfied (i. e., non-reproducible
by any NCHV model) part of a quantum contextual configuration with three-element
contexts (i. e., lines) located in a multi-qubit symplectic polar space of order two.
While the previously used method based on a SAT solver was limited to three qubits,
this new method is much faster and more versatile, enabling us to also handle four-
to six-qubit cases. The method is illustrated by the structure of unsatisfied parts of
the associated contextual configurations represented by quadrics and full spaces; these
entail well-known finite geometries like the split Cayley hexagon of order two, the dual
polar space of rank three and order two as well as certain incidence graphs of binary
projective spaces of small dimensions.

∗Author version of [29], with a minor correction on Page 9, signaled in a footnote in red.
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1 Introduction

A couple of years ago, de Boutray, Masson and three of the authors [5] introduced the
notion of the degree of contextuality of a quantum configuration regarded as a particu-
lar sub-geometry of a multi-qubit symplectic polar space of order two and were already
able to compute this degree for quadrics of the three-qubit space. In a later work [30],
a more efficient SAT-based algorithm was proposed, together with an implementation
in C language also able to partially handle the four-qubit case. Moreover, in selected
three-qubit configurations, this new algorithm even allowed us to see explicit point-line
geometries formed by the smallest number of unsatisfied contexts, these being – up to
isomorphism – equal to (i) a set of nine mutually disjoint lines for an elliptic quadric,
(ii) a set of 21 lines that can be identified with the edges of the Heawood graph for a
hyperbolic quadric and, last but not least, (iii) a “classical” copy of the split Cayley
hexagon of order two for the configuration comprising all the 315 contexts of the space.

In order to address in a similar vein quantum configurations with more than three
qubits, we propose here a new heuristic approach. The approach is much faster and
more versatile than the previous one, furnishing either new or considerably improved
upper bounds on the degree of contextuality of configurations living in four- to seven-
qubit spaces. In addition, in the four- to six-qubit spaces, it also provides a sufficiently
detailed geometric understanding of the corresponding unsatisfied parts of contextual
configurations under study.

The paper is organized as follows. We start with a brief inventory of the basic con-
cepts and notations in Section 2, to be followed, in Section 3, by a detailed description
of the new method and a brief tabular listing of the new results. Section 4 offers a chain
of combinatorial geometric arguments to ascertain the lower bounds on the degree of
contextuality for some specific generic cases. Section 5 deals with the geometrically-
slanted description of the most important new results achieved and provides a fairy
detailed illustration of those pertaining to the four-, five- and six- qubit spaces. Finally,
in Section 6 one recollects the main achievements and outlines possible direction(s) of
the future work, and in Section 7 we briefly address the significance of studying general
N -qubit proofs of quantum contextuality and highlight other prospective applications
of our heuristic method.

This heuristic method is implemented in the Qontextium software publicly available
in a GitHub repository [27].

2 Background concepts and notations

This section revisits the connection between sets of mutually commuting N -qubit Pauli
operators (N being a positive integer) and the totally isotropic subspaces in the sym-
plectic polar space of rank N and order 2, W(2N − 1, 2), as referenced in [12, 43, 47].
The N -qubit Pauli group, PN , is the subset of GL2N (C) composed of the elements O
defined by

O = sA1 ⊗A2 · · · ⊗AN , with s ∈ {±1,±i} and Ak ∈ {I,X, Y, Z}, (1)

where X,Y, Z are the standard Pauli matrices and I is the corresponding identity
matrix. In the sequel, these elements will be shorthanded as O = sA1A2 · · ·AN .
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Given the fact that the Pauli matrices {I,X, Y, Z} are expressible through matrix
multiplication of Z and X as

I = Z0.X0 ↔ (0, 0), X = Z0.X1 ↔ (0, 1),
Y = iZ1.X1 ↔ (1, 1), Z = Z1.X0 ↔ (1, 0),

(2)

where the dot ‘.’ stands for the ordinary matrix product, eq. (1) can be cast into the
following form

O = s(Zµ1 .Xν1)(Zµ2 .Xν2) · · · (ZµN .XνN ) (3)

with s ∈ {±1,±i} and µi, νj ∈ {0, 1}. The last expression leads to a surjective map
between PN and F2N

2 (F2 being the smallest Galois field):

π :


PN → F2N

2

O = s(Zµ1 .Xν1)(Zµ2 .Xν2) · · · (ZµN .XνN )
7→ (µ1, µ2, . . . , µN , ν1, ν2, . . . , νN ).

(4)

The center of PN is C(PN ) = {±IN ,±iIN}, where IN is that particular element
defined by eq. (1) for which A1 = A2 = · · · = AN = I and s = +1. Therefore,
PN/C(PN ) is isomorphic to the additive group F2N

2 . Disregarding the neutral element,
we then obtain a correspondence between equivalence classes of PN/C(PN ) and points
of PG(2N−1, 2), the (2N−1)-dimensional projective space over the two-elements field

π :


PN/C(PN )\C(PN )→ PG(2N − 1, 2)

O = {s(Zµ1 .Xν1)(Zµ2 .Xν2) · · · (ZµN .XνN )}
7→ [µ1 : µ2 : · · · : µN : ν1 : ν2 : · · · : νN ].

(5)

Here, the projective space PG(2N − 1, 2) is the geometry whose points can be rep-
resented by (2N)-tuples of the form (x1, x2, x3, . . . , x2N ) where xi ∈ F2, disregarding
the trivial (0, 0, 0, . . . , 0)-tuple, and whose subspaces (i. e., lines, planes, etc.) represent
sets of points whose coordinates xi’s meet specific linear constraints. In PN/C(PN )
two classes O and O′ commute if and only if

∑N
i=1 µiν

′
i + µ′

iνi = 0, with O =
s(Zµ1 .Xν1)(Zµ2 .Xν2) . . . (ZµN .XνN ) andO′ = s′(Zµ′

1 .Xν′1)(Zµ′
2 .Xν′2) . . . (Zµ′

N .Xν′N ) be-
ing representatives of either class. To account for these commutation relations, we
introduce on PG(2N − 1, 2) a non-degenerate symplectic form:

⟨p, q⟩ =
N∑
i=1

piqN+i + pN+iqi, (6)

with p = [p1 : p2 : · · · : p2N ] and q = [q1 : q2 : · · · : q2N ]. The consequence is that two
(classes of pairwise) commuting observables in PN/C(PN ) define a totally isotropic
line in PG(2N − 1, 2) with respect to this symplectic form or, in other words, the
commutation relations are now encoded into specific collinearity relations on such a
PG(2N − 1, 2), which also has the proper name:

Definition 1. The space of totally isotropic subspaces1 of PG(2N −1, 2) equipped with
a non-degenerate symplectic form ⟨, ⟩ is called the symplectic polar space of rank N
and order two, usually denoted as W(2N − 1, 2).

1A totally isotropic subspace of PG(2N−1, 2) equipped with a non-degenerate symplectic form is any sub-
space on which the symplectic form vanishes identically; a totally isotropic subspace of maximal (projective)
dimension N − 1 is called a generator of W(2N − 1, 2).
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The smallest non-trivial space, N = 2, often called the doily, is notable in the sense
that it is also the smallest thick generalized quadrangle [31] and the sole out of 245 342
153-configurations that is triangle-free [38].

Viewed as a point-line incidence structure, W(2N − 1, 2) contains

|W|p = 4N − 1 (7)

points and
|W|l = (4N − 1)(4N−1 − 1)/3 (8)

lines, with three points per line and 4N−1 − 1 lines through a point. Given a point of
W(2N − 1, 2), then the lines, planes, . . . , and generators passing through this point
form a geometry isomorphic to W(2N − 3, 2). Moreover, W(2N − 1, 2) contains two
specific types of subgeometries, hyperbolic and elliptic quadrics, that are of particular
importance regarding the study of contextual configurations [5]:

1. Hyperbolic Quadric Q+(2N − 1, 2): For N ≥ 1, it is defined by the standard
canonical equation:

x1xN+1 + x2xN+2 + · · ·+ xNx2N = 0.

Each Q+(2N − 1, 2) is endowed with (2N−1 + 1)(2N − 1) points and there are
(2N−1 + 1)(2N − 1) + 1 copies of them in W(2N − 1, 2).

2. Elliptic Quadric Q−(2N − 1, 2): For N ≥ 2, it consists of all points and sub-
spaces in W(2N − 1, 2) that satisfy the standard equation:

f(x1, xN+1) + x2xN+2 + · · ·+ xNx2N = 0,

where f is an irreducible polynomial over F2. Each Q−(2N − 1, 2) contains
(2N−1 − 1)(2N + 1) points and in W(2N − 1, 2) there are (2N−1 − 1)(2N + 1) + 1
copies of these configurations.

In what follows, we will select from each equivalence class of PN/C(PN ) a single repre-
sentative, namely the canonical one (s = 1), to label a particular point ofW(2N−1, 2).
A canonical observable O is either symmetric (OT = O), or skew-symmetric (OT =
−O); an observable is symmetric if the corresponding tensor product (see eq. (1)) fea-
tures an even (including zero) number of Y ’s; otherwise it is skew-symmetric. Also, in
order to check whether two different N -qubit observables commute it is not necessary
to check the (two-way) product of the corresponding 2N × 2N matrices. It suffices to
simply count the number of places in which they feature different Pauli matrices; if
this number is even the observables commute, if it is odd they do not. It then can be
shown that given a canonical observable O, the set of symmetric canonical observables
commuting with O together with the set of skew-symmetric observables not commuting
with O lie on a quadric ofW(2N−1, 2), this quadric being hyperbolic (resp. elliptic) if
O is symmetric (resp. skew-symmetric). We call this associated observable the index of
a quadric and can express it, if appropriate, in a subscript, Q±

O(2N − 1, 2), noting that
there exists a particular hyperbolic quadric associated with IN , Q+

IN
(2N − 1, 2). It is

worth stressing here that this property enables us to find all the observables belonging
to a particular quadric without even making use of its abstract algebraic equation and
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projective coordinates. Thus, for example, a four-qubit hyperbolic quadricQ+(7, 2) (re-
spectively a four-qubit elliptic quadric Q−(7, 2)) comprises 135 (respectively 119) four-
qubit observables subject to the above-introduced commutation relations with a given
symmetric (respectively skew-symmetric) four-qubit observable; moreover, through any
observable of Q+(7, 2) (resp. Q−(7, 2)) there pass 35 (resp. 27) lines lying fully on
the quadric and touching a certain Q+(5, 2) (resp. Q−(5, 2)) belonging to the quadric.
Also, when referring in the sequel to W(2N − 1, 2) we will always have in mind the
W(2N − 1, 2) with its points being labelled by canonical N -qubit observables as dic-
tated by eqs. (4) and (5). Moreover, a line (or any other linear subspace) of such a
multi-qubitW(2N−1, 2) will be called positive or negative according as the (ordinary)
product of the observables located in it is +IN or −IN , respectively. In order to quickly
find the sign of a context one simply takes the bit-wise products of the corresponding
Pauli matrices and the identity matrix and then multiplies the phases obtained; for
example, the three-qubit line consisting of the observables XY Z, ZIX and Y Y Y is
positive as XY Z.ZIX.Y Y Y = (X.Z.Y )(Y.I.Y )(Z.X.Y )=(−iI)(+I)(+iI)=+I⊗3.

Next, given an even-dimensional projective space over F2, PG(2N, 2), N > 1, a
parabolic quadric in this space, Q(2N, 2), is defined by the following canonical equation

x1xN+1 + x2xN+2 + · · ·+ xNx2N + x22N+1 = 0.

Any such quadric has a notable property that all its tangent hyperplanes pass through
the same point (see, e. g., [7, 16,20]), which is usually referred to as the nucleus of the
quadric. Another well-known fact is (see, e. g., [15, 16]) that

W(2N − 1, 2) ∼= Q(2N, 2).

In order to distinguish between these two cases, we shall call – following the notation
of [41] – theW(2N−1, 2) embedded into PG(2N−1, 2) a linearW(2N−1, 2), whereas
the space represented by Q(2N, 2) in PG(2N, 2) will be referred to as a quadratic
W(2N − 1, 2). It is worth mentioning that the intersection of a Q+(2N − 1, 2) and a
Q−(2N − 1, 2) is isomorphic to a quadratic W(2N − 3, 2) (see, e. g., [50]). By way of
example, there are 120 (resp. 136) quadratic W(5, 2)’s located in any Q+(7, 2) (resp.
Q−(7, 2)) of W(7, 2), these being in a bijection with the set of off-quadric observables;
in particular, given an off-quadric observable, there exists a uniqueW(5, 2) in Q+(7, 2)
(resp. Q−(7, 2)) such that each of its 63 observables commutes with this particular
off-quadric observable, which is, in fact, nothing but the nucleus of this W(5, 2).

We shall also employ the notion of a finite point-line incidence structure C =
(P,L,∈), where P and L are, respectively, finite sets of points and lines and where ∈ is
a binary relation between P and L, indicating which point-line pairs are incident; the
number of lines of C incident with a point of C will be called the degree of the point.
Any distinguished subset of P such that a line of L is either fully contained in it or
shares with it just a single point is called a geometric hyperplane of C [39].

Given W(5, 2), its dual space, DW(5, 2), as a point-line incidence structure, has
for its points the 135 planes of W(5, 2) and for its lines the 315 lines of W(5, 2), the
incidence being containment (see, e. g., [37]). As a plane of W(5, 2) has seven lines,
there are seven lines passing through a point of DW(5, 2); and as there are three planes
sharing a line inW(5, 2), each line of DW(5, 2) features three points. Hence, DW(5, 2)
is a specific (1357, 3153)-configuration. We also mention that DW(5, 2) contains 63
W(3, 2)’s, three sharing a line and seven through a point; each such doily is, as a
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point-line incidence structure, represented by 15 planes and 15 lines passing via the
same point of W(5, 2), the incidence being containment.

Another relevant geometry associated with W(5, 2) is the split Cayley hexagon of
order two, H, which is a (633)-configuration whose smallest polygons are hexagons
(see, e. g., [36]). It is embeddable into W(5, 2) in two different ways, called classical
and skew [3]. A classically-embedded hexagon, HC , possesses inW(5, 2) a much greater
symmetry than its skew-embedded cousin, HS . To see this, let us call a point of H
embedded in W(5, 2) planar if all the three lines passing through it lie in the same
plane of W(5, 2). An HC is characterized by the fact that each of its points is planar.
In an HS , only 15 points have this property; they are situated on three pairs of con-
current lines, the three points of concurrence lying themselves on a line – the latter
called the axis of HS . There are altogether 120 HC ’s and 7 560 HS ’s in a W(5, 2), as
first ascertained by a computer-aided search in [17] and later given a computer-free,
geometric-combinatorial substantiation in [42].

We will also encounter several distinguished graphs. Here we define two (families)
of them, which are both bipartite and closely related to each other. The first is a
point-hyperplane incidence graph of PG(d, 2), d ≥ 1. The vertices of this graph are
both points and hyperplanes (i. e., subspaces of maximal dimension) of PG(d, 2), where
a vertex represented by a point is connected to a vertex represented by a hyperplane iff
the point belongs to the hyperplane. The other is the Haar graph of a positive integer
n, H(n) (see, e. g, [51]), defined as follows. Let us consider a binary representation of
n,

n = bk−12
k−1 + bk−22

k−2 + · · ·+ b12
1 + b0,

where (bk−1, bk−2, . . . , b1, b0), with bk−1 = 1, is the binary vector of n. A graph H(n)
has two disjoint vertex sets ui and vi, i = 0, 1, 2, . . . , k − 1, with ui being adjacent
to vi+j if and only if bj = 1 (mod k). Interestingly, each point-hyperplane incidence
graph of PG(d, 2) is also a Haar graph; for example, the famous Heawood graph, aka
the point-line incidence graph of PG(2, 2), is isomorphic to H(69).

Finally, in the context of this paper, a quantum configuration is a pair (O,C) where
O = {M1, . . . ,Mp} is a set of p = |O| canonical Pauli observables, here identified with
points of a multi-qubit W(2N − 1, 2), and C = {c1, . . . , cl} is a set of l = |C| contexts,
here limited to lines of W(2N − 1, 2). Its incidence matrix A ∈ Fl×p

2 is defined by
Ai,j = 1 if the i-th context ci contains the j-th observable Mj . Otherwise, Ai,j = 0.
Its valuation vector E ∈ Fl

2 is defined by Ei = 0 if the line ci is positive and Ei = 1 if
it is negative. Then the degree of contextuality of (O,C) is d defined [5] by

d = dH(E, Im(A)), (9)

where dH is the Hamming distance on the vector space Fl
2.

Given a quantum configuration K = (O,C), one can associate with it a configura-
tion K̃ that is geometrically identical with K, but has its observables replaced by +1’s
and −1’s by an assignment function a : O → {−1,+1} and the sign of each context
c ∈ C replaced by the product ΠM∈c a(M) of these +1’s and −1 over its members.
Given the K and a K̃, the configuration with the same points/observables and con-
sisting of those contexts of K that have different signs than the corresponding lines in
K̃ is called an unsatisfied configuration of K and is denoted as K̃uns; in other words,
K̃uns is that part of K that cannot be reproduced by non-contextual hidden-variable
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(NCHV) theories (i. e., those theories in which the values of the physical observables
are the same irrespectively of the experimental context which they belong to).

In what follows, we will use special symbols Euns
N , Huns

N and F uns
N , with N > 1, for

an unsatisfied configuration of Q−(2N − 1, 2), Q+(2N − 1, 2) and of the configuration
consisting of all lines of W(2N − 1, 2), respectively. For a given K there are, of course,
a (large) number of K̃’s differing from each other in the distribution of +1’s and −1’s
across their points and so, in general, several associated (mutually non-isomorphic)
K̃uns’s.

From Formula (9) it follows that the degree of contextuality dK of the quantum
configuration K is also the minimal number of unsatisfiable contexts in it, in other
words the number of contexts in any unsatisfied configuration K̃uns of K of minimal
size. So, to determine the contextuality degree dK of K, it is sufficient to find out such
an unsatisfied configuration K̃uns that has the smallest possible number of contexts,
with dK then being this number of contexts. Obviously, the particular K̃ all of whose
points are labelled by +1’s gives K̃uns whose contexts correspond solely to the negative
contexts of K, thus providing the number of negative contexts of K as a natural
upper bound for dK . Hence, our primary, and almost exclusively computer-aided,
effort will be focused on discerning those K̃uns’s that have a (possibly much) smaller
number of contexts than the number of negative contexts in K and which thus furnish
(considerably) reduced upper bounds on the value of dK .

3 Novel computer-aided heuristics for ascertain-

ing an upper bound on the contextuality degree

3.1 Contextuality of quantum configurations

A quantum configuration K is contextual if its degree of contextuality d, as defined by
formula (9), is different from zero. The problem of finding d can be formulated as an
optimization problem, namely the maximization of satisfied contexts in K. As already
described in Section 2, it can be addressed by looking for an associated unsatisfied
configuration K̃uns that has the maximal possible number of contexts with the same
sign as in K. The conjunction of these sign constraints can be expressed as a system
of linear equations over F2 [30]. The problem of maximizing the number of valid
equations of this kind is known as Max-E3-Lin-2 [19], when each equation contains
exactly three variables. When the sign constraints are encoded as XOR clauses, the
optimization problem is the MAX-XOR-SAT problem [25]. Either way, in the general
case, solving these problems is known to be in the class APX of problems for which
there is a polynomial-time algorithm able to find an approximation of the solution
(within a given performance ratio) [25].

A first method by Trandafir et. al. [48], which approached this problem in a linear
code perspective, managed to compute this bound for quantum configurations up to
three qubits. In this approach a function of the language Magma is used, that computes
a weight distribution of a linear code, and which has an exponential complexity in
the dimension of the row space of the incidence matrix of the configuration. However,
thanks to the MacWilliams identity, this complexity becomes the lowest value c between
the dimensions and codimensions of that row space. As expected, we can see in Figure 2
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that incrementing c doubles the computing time, making the computation for matrices
whose minimum is 42 or higher longer than one hour.

To move further, we, therefore, give up accuracy and experiment with approxi-
mation methods. Our first approximate method is the already-mentioned SAT-based
approach interrupted before checking minimality, hereafter denoted as SAT(a). Then
we consider a large collection of off-the-shelf heuristic-based methods implemented in
the Google OR-Tools [32]. These tools find optimal solutions for up to three qubits,
by using local and core-based (which focus on solving a critical subset of the problem
to enhance computational efficiency) approaches, and provide some better bounds for
four qubits than a SAT solver alone within a reasonable time frame. However, they
fail to provide any useful results for five qubits and more. Therefore, we have designed
and implemented a new approximation algorithm presented and evaluated in the rest
of this section.

3.2 Optimization algorithm

For geometries with more qubits, we suspected that specific heuristics based on some
particular properties of the geometry could yield improved bounds. Since these ge-
ometries often exhibit symmetries, we designed and present in this section a heuristic
grouping variables by the number of unsatisfied constraints they are part of.

Given a quantum configuration K = (O,C) and its valuation vector E, Algorithm 1

Algorithm 1 Optimize Hamming Distance

1: function optimize hamming distance(O,C,E)
2: for o ∈ O do
3: a[o]← 1
4: uns[o]← number of contexts containing o unsatisfied by a
5: end for
6: min a← a
7: for i← 1 to MAX ITERATIONS do
8: for o ∈ O do
9: if uns[o] ≥ θ ×max(uns) and random() < γ then
10: a[o]← −a[o]
11: for each context c such that o ∈ c do
12: sign← Πm∈c a[m]
13: for each m ∈ c do
14: uns[m]← uns[m]− Ec × sign
15: end for
16: end for
17: end if
18: end for
19: if dH(a,E) < dH(min a, E) then min a← a
20: end for
21: return min a
22: end function
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performs a stochastic local search for its optimum Hamming distance, as expressed by
Formula (9). Its local variables a and min a of type O → {−1,+1} are two assignment
functions. The second array min a stores the best assignment currently found by the
algorithm. The first array a stores a candidate for a better solution. It is initialized to
1 for each o ∈ O, on Line 3. For each o ∈ O the local variable uns : O → N stores the
number uns[o] of contexts containing o that are left unsatisfied by a. Therefore, it is
initialized by the number of negative contexts through o, on Line 4.

To illustrate the algorithm in a graphical way, let us consider – as a particularly apt
example – a two-spread of a quadratic four-qubit doily, as depicted in Figure 1. Let us
recall (see, for example, [35]) that a two-spread of a doily is a (152, 103)-configuration
that we get if we remove from the doily any set of five pairwise disjoint lines. It was
already proved [30] that a multi-qubit two-spread is a contextual quantum configuration
whose degree of contextuality is one. Our selected four-qubit two-spread features five
negative lines, namely those highlighted by double red lines. The three two-spread
assignments (a), (b) and (c) and the corresponding rows in the table incorporated in
Figure 1 show the three steps of an execution of the algorithm.

The algorithm is parameterized by the threshold θ on the number of unsatisfied
contexts an observable is in for it to have its value possibly changed, relatively to
the maximal number max(uns) of unsatisfied contexts in the current assignment. By
swapping the sign (Line 10) of most of the observables which satisfy this criterion
(Line 9), the algorithm can significantly reduce the Hamming distance of the whole
configuration. For instance, in the example of execution depicted in Figure 1, the
value 0.8 has been chosen for θ. In the initial state (a), it is visible in the first row of
the table and in the first subfigure that the maximal number of unsatisfied contexts
per observable is two, which means that only observables pertaining to two unsatisfied
contexts will be considered since 2 ≥ 0.8× 2, but 1 < 0.8× 2 and 0 < 0.8× 2.

The second parameter of the algorithm is a sign flip probability γ for selected
observables to have their signs flipped. On Line 9 this value is compared2 to the result
of the random() function that uniformly returns a random real number between 0 and
1. This addition of randomness significantly reduces the observed issue of cycling over
a too small subset of visited assignments. In the example in Figure 1 the chosen value
for γ is 0.7.

Every time the sign a[o] of an observable o is flipped (Line 10), the number uns[m]
of unsatisfied contexts of each observable m sharing a context c with o is updated
(Lines 11-16). First, the new sign of the context c is computed on Line 12. Then, the
number of unsatisfied contexts uns[m] is decremented if this sign is the expected one
Ec, meaning that the context is now satisfied, and incremented otherwise (Line 14).

Once the whole assignment has been changed, the Hamming distance between it
and the valuation vector is computed. If this distance is the smallest found thus far,
the assignment is stored. This process continues until the number of iterations exceeds
MAX ITERATIONS. The purpose of this limit is to prevent an infinite loop. Finally,
this algorithm returns the best assignment min a that was found, from which the cor-
responding unsatisfied configuration K̃uns can easily be computed. In the example in
Figure 1, since the algorithm starts by assigning to each observable the value +1, the
only initially unsatisfied contexts are the five negative lines (dashed in Figure 1(a)).
There are four observables featuring two, i. e., the maximal number of unsatisfied con-

2The right comparison random() < γ here fixes the wrong one (random() > γ) published in [29].

9



YXYI
+1

XZYY
+1

ZYIY
+1

ZXZY
+1

IXXZ
+1

ZIYX
+1

ZIYZ
+1

IZZY
+1
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+1

YZIX
+1

XIXY
+1

ZZXZ
+1

YYXY
+1

IXXX
+1

YZIZ
+1

ZIYX
+1○

XIXY
+1○

YZIZ
+1○

(a)

YXYI
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+1
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+1
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+1
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+1
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(a) 1 1 1 1 0 2○ 0 1 1 0 2○ 2 0 1 2○ 5
(b) 0 1 1 0 0 1 0 0 1 0 1 1 0 1 2○ 3
(c) 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1

Figure 1: Graphical illustration of the successive steps of the algorithm on a two-spread,
showing the sign assigned to each observable and in the associated table the number of
unsatisfied contexts (dashed lines) containing it. The negative contexts are represented by
the double lines colored in red. The value +1 is first assigned to all 15 observables (a). The
last step (c) reaches the minimal possible distance for this geometry. In this example, the
threshold θ is 0.8 and the sign flip probability γ is 0.7.

texts passing through each of them, as also listed for the reader’s convenience in the
table at the bottom of the figure. In the next step, we flip the value from +1 to −1 at
three of them, as indicated by circles in Figure 1(a) and the associated table as well.
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With this changed labeling we find that at this step only three contexts are unsatis-
fied, as shown in Figure 1(b). As now there is only one observable, namely Y ZIZ,
that is on two unsatisfied contexts, we just need one more step to get the final result,
Figure 1(c), where only one context remains unsatisfied. It is worth noting that while
every assignment given of a given loop iteration in this example has a lower Hamming
distance than the preceding one, this is not always the case generally.

3.3 Parameter optimization

Benchmarks were conducted on a variety of configurations in order to determine the
most appropriate ways to adjust the values of the two parameters of Algorithm 1,
namely the threshold θ and the sign flip probability γ. This experimental study and
its conclusions are summarized in B. Based on these conclusions, we chose to fix the
value of γ at 0.97 and to adjust dynamically the value of θ as detailed in the next
paragraph.

The experimental study suggests that the best values of θ lie in a subinterval of
[0 . . . 1] whose boundaries differ significantly according to the input configuration. This
led us to develop the following principles for the dynamic adjustment of this parameter
θ. Algorithm 1 is executed in parallel on several threads, with different values of θ
uniformly distributed between 0 and 1. At the end of each of its iterations, each
thread displays the best Hamming distance value it found in a shared variable, if this
value improves the best global value already found and stored in this variable. Every
five iterations, a dedicated thread revises the interval of values for θ as follows: its
center becomes the value of θ which has given the best distance until then and its
width becomes half of that of the preceding interval. When the width of this interval
reduces to 0.01 or less, i. e., after 8 × 5 = 40 iterations, this interval is restored to
[0 . . . 1], this is done in case the algorithm gets stuck with a sub-optimal value of θ.

3.4 New results

Our algorithm was run on the set of all lines of W(2N − 1, 2), 3 ≤ N ≤ 7, on
a number of specific subsets of lines of W(5, 2) as well as on one of its elliptic and
hyperbolic quadrics, since all the other ones have the same degree of contextuality. It
has indeed recently been shown [26, 48] that given an abstract configuration endowed
with specific observables and contexts (for example, the doily endowed with two-qubit
observables), any other admissible quantum assignment of this configuration (e. g.,
any doily located in the multi-qubit W(2N − 1, 2), for any N > 2) will yield the
same degree of contextuality. Hence, when checking for contextuality of a particular
geometry it suffices to consider its simplest (i.e., with lowest number of qubits) quantum
assignment.

The main new results are collected in Table 1 for configurations comprising all the
lines of the corresponding space and in Table 2 for quadrics; in these tables, p is
the number of observables, l is the total number of contexts and l− is the number of
negative contexts in a given configuration. For each quantum configuration, the same
algorithm was run on 200 threads, from which the best assignment was then selected.
The parameters θ and γ were adjusted as described in Section 3.3. The duration is the
time taken by the algorithm to find the displayed value or bound for the contextuality
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degree of d, after running the algorithm for ten minutes up to six qubits, and for two
hours for seven qubits. The improved upper bounds are highlighted in bold font.

N p l l− d Duration

2 15 15 3 3 0.01 s
3 63 315 90 63 0.1 s
4 255 5 355 1 908 ≤ 1575 0.1 s
5 1 023 86 955 35 400 ≤ 31479 1 s
6 4 095 1 396 395 615 888 ≤ 553140 2 mn
7 16 383 22 362 795 10 352 160 ≤ 9405663 1 h 34 mn

Table 1: Exact values or specific upper bounds for the contextuality degree d of quantum
configurations isomorphic to the configuration whose contexts are all the lines of W(2N −
1, 2), for 3 ≤ N ≤ 7.

Quadric N p l l− |K−| d Duration

Hyperbolic 2 9 6 1 or 3 9 or 1 1 0
Hyperbolic 3 35 105 27 or 39 27 or 9 21 0
Hyperbolic 4 135 1 575 532 or 604 or 612 81 or 54 or 1 ≤ 315 0.01 s
Hyperbolic 5 527 23 715 9 420 or 9 852 or 9 900 243 or 270 or 15 ≤ 6975 0.2 s
Hyperbolic 6 2 079 365 211 159 376 or 161 968 or 162 256 or 162 288 729 or 1 215 or 135 or 1 ≤ 132391 2 s
Hyperbolic 7 8 255 5 720 715 2 636 592 or 2 652 144 or 2 653 872 or 2 654 064 2 187 or 5 103 or 945 or 21 ≤ 2331191 3 mn 20 s
Elliptic 2 5 0 0 6 N/A 0
Elliptic 3 27 45 9 or 13 1 or 27 9 0
Elliptic 4 119 1 071 360 or 384 12 or 108 ≤ 315 0.01 s
Elliptic 5 495 19 635 7 860 or 7 876 or 8 020 1 or 90 or 405 ≤ 7087 0.2 s
Elliptic 6 2 015 332 475 145 920 or 146 016 or 146 880 18 or 540 or 1 458 ≤ 131700 20 s
Elliptic 7 8 127 5 458 635 2 523 024 or 2 523 088 or 2 523 664 or 2 528 848 1 or 189 or 2 835 or 5 103 ≤ 2294580 16 mn

Table 2: Known results for the exact values and new results for upper bounds of the con-
textuality degree d of quadrics. The notations are the same as in Table 1 apart from the
new symbol |K−| that stands for the number of quadrics having, respectively, a particular
number of negative contexts listed in column l−.

Other new values for the contextuality degree can be found in Table 4 in C, for the
other subsets of three-qubit lines considered in the following performance study.

3.5 Performance analysis

This section presents a comparison of the computation time of our algorithm with
the other approaches presented in Section 3.1 to approximate or exactly compute the
contextuality degree of various quantum configurations. It is based on the experimental
data presented in C.

Figure 2 shows a graph of the computation time of the exact methods for config-
urations of three-qubit lines given in the first and third blocks of Table 4. The x-axis
represents the number of contexts/lines of the configuration and the y-axis displays the
computation time in seconds on an exponential scale. This graph allows us to see the
performance limit of each approach, clearly implying the necessity of using heuristics
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for larger configurations. The Magma approach hits its limit first, followed by the
SAT-based approach and then by the OR-Tools-based approach.
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Figure 2: Computation time of different exact methods as a function of the number l of first
lines of W(5, 2) in lexicographic order.

The Magma approach computes a weight distribution, which has an exponential
complexity in the dimension of the incidence matrix of the configuration. Thanks
to the MacWilliams identity, this complexity becomes 2min(dim,codim), related to the
lowest value min(dim, codim) between the dimension and the codimension of this ma-
trix [49]. As expected, we can see in the seventh column of Table 4 that incrementing
min(dim, codim) doubles the computation time. The computation with matrices whose
minimum is 42 or higher is longer than one hour.

SAT solving is theoretically NP-complete and can have exponential execution time
in the worst case. However, implementing heuristics, conflict-driven clause learning
and pruning techniques into modern SAT solvers often enable them to find solutions
quickly for large, real-world problems. As shown in the columns Magma and SAT(x)
for the first block of rows in Table 4 in C, the SAT-based approach is capable of
solving the contextuality degree problem even for larger quantum configurations where
the Magma-based approach already fails. The exponential complexity of the Magma-
and SAT-based approaches is clearly discernible from Figure 2.

The column OR-Tools(x) of Table 4 shows that the OR-Tools find the minimal
Hamming distances for all the considered three-qubit configurations, but not for the
full set of lines, and find them faster than the SAT-based approach for three qubits,
as shown more clearly in Figure 2. The OR-Tools approach indeed combines multiple
algorithms to solve combinatorial optimization problems, including SAT solvers, mak-
ing its performance comparable to that of the SAT-based approach, and sometimes
significantly better. One notable exception is the whole set of three-qubit lines where
the SAT-based approach takes, quite surprisingly, a very short time to compute the
contextuality degree, in particular shorter than with the OR-Tools. We suspect that
this has something to do with some extra symmetries characterizing this space. W(5, 2)
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Figure 3: Minimal computed Hamming distance per context as a function of the computation
time in seconds (shown in an exponential scale), for the full set of lines of W(7, 2) (blue)
and W(9, 2) (red), using the heuristic (solid) and the OR-Tools (dashed) solver.

is, for example, the only space where the maximum number of mutually commuting
observables (forming a Fano plane) is the same as that of pairwise anti-commuting
ones (forming a Conwell heptad).

However, the SAT- and OR-Tools-based approaches fail to provide any exact result
for four qubits and more (see the last six rows of Table 4 in C). As shown in the
last two blocks of rows, for larger configurations, typically those with more than three
qubits, the heuristic approach can provide a solution in a reasonable time, and although
the OR-Tools(a) approach can also provide a solution, it is much slower and becomes
unable to provide better results than the heuristic approach for five qubits and more.
Figure 3 illustrates the supremacy of this algorithm over the OR-Tools approach.

By a worst-case scenario analysis, it is seen that the time complexity of the algo-
rithm is

O(MAX ITERATIONS× p× dmax × csize), (10)

where p is the number of observables, dmax is the highest degree of an observable
(number of contexts the observable belongs to) and csize is the highest context size
(number of observables in the context, typically three for lines in symplectic spaces).
This means that the algorithm has a polynomial complexity, offering a more efficient
alternative to the exact methods presented in Section 3.1, which have exponential
complexity, for approximating the contextuality degree of quantum configurations.

The convergence speed of our algorithm is depicted in Figure 4, where only the as-
signment min a having the lowest Hamming distance found at each iteration is plotted,
hence the decreasing curves.
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Figure 4: Minimal Hamming distances (the y-axis) per total number of contexts, over the
number of iterations (the x-axis), computed by the heuristic method running simultaneously
on 200 threads shared between 20 cores of an Intel(R) Core(TM) i7-12700H processor, for
the quantum configurations composed of all the lines of the three- to seven-qubit symplectic
polar spaces.

3.6 Properties of the algorithm as a Markov chain

The algorithm can be formalized as a Markov chain whose transition from the assign-
ment (state) a to the assignment (state) a′ obeys the following rule: For any observable
o, a′[o] = −a[o] with probability γ if uns(a, o) ≥ θ×maxo∈O(uns(a, o)) and a[o] other-
wise, where uns(a, o) is the number of contexts containing o which are not satisfied by
the assignment a and maxo∈O(uns(a, o)) is the maximum of these numbers of unsatis-
fied contexts among all the observables.

When θ = 0, the probability of transition between a and a′ is

γ|a
′[o]=−a[o]| × (1− γ)|a

′[o]=a[o]|, (11)

where |a′[o] = ±a[o]| denotes the number of observables o satisfying the constraint
a′[o] = ±a[o]. Provided that γ ̸= 0, 1, this probability is strictly positive, meaning that
the Markov chain is ergodic; in other words, any arbitrary assignment can be reached
after sufficiently many iterations.

However, for θ > 0, local minima can trap the algorithm. We demonstrate this
with the quantum configuration (O,C) where O = {Y IY , XIZ, ZIX, IIY , Y II,
XXX, ZXZ, ZZZ, XZX} and C = {c1, . . . , c4} with c1 = {Y IY,XIZ,ZIX},
c2 = {Y IY, IIY, Y II}, c3 = {Y IY,XXX,ZXZ} and c4 = {Y IY, ZZZ,XZX}. The
contexts c1 and c2 are positive, whereas c3 and c4 are negative. When θ > 0.5 the
algorithm starting from the trivial assignment (a[o] = 1 for all observables o) only
flips one value, namely a[Y IY ] (with probability γ), as this observable entails the
maximal number of unsatisfied contexts (two, compared to zero or one for the other
observables). Then the algorithm either remains in this second state (with probability
(1 − γ)), or returns to the initial trivial assignment. In this orbit of two states the
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number of unsatisfied configurations is two, whereas there are assignments satisfying
all the context signs, for instance a defined by a[IIY ] = a[ZZZ] = −1 and a[o] = 1 for
the other observables o. This limitation can be generalized to any θ > 0 by adding 1/θ
contexts to a counterexample similar to the present one. A variant of the algorithm
based on the proportion of unsatisfied contexts among the contexts of each observable
also admits similar counterexamples, adding 1/θ positive contexts to the observables
contained only in one context in the counterexample given above.

To sum up, we have shown that the algorithm does not satisfy theoretical properties
such as ergodicity (as a Markov chain) and accuracy (the minimum is not always
reachable). It indeed belongs to the family of incomplete heuristics. However, these
theoretical shortcomings are substantially mitigated by very satisfactory experimental
results presented in Sections 3.4 and 3.5, and recast in a geometric language in Section 5.

4 Combinatorial geometric estimates of some

specific lower bounds

Let dfullN be the degree of contextuality for the configuration comprising all the lines/con-
texts in W(2N − 1, 2). Generalizing to an arbitrary N ≥ 3 the chain of group-
geometrical arguments we and Henri de Boutray employed in a previous work [42,
Sec. 4.1], we have the following recurrent formula for these degrees

dfullN ≥ # of quadratic W(2N − 3, 2)′s in W(2N − 1, 2)

# of quadratic W(2N − 3, 2)′s on a line in W(2N − 1, 2)
dfullN−1,

which, using the combinatorial properties of symplectic polar spaces, can be cast into
a simpler form,

dfullN ≥ # of points in W(2N − 1, 2)

# of points in W(2N − 5, 2)
dfullN−1,

which explicitly reads (see eq. (7))

dfullN ≥ 4N − 1

4N−2 − 1
dfullN−1. (12)

Employing the well-established fact that dfull2 = 3, we get

dfullN ≥
(
4N − 1

) (
4N−1 − 1

)
15

. (13)

The values of this lower bound up to nine qubits are as listed in Table 3.
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N dfullN ≥
2 3
3 63
4 1 071
5 17 391
6 279 279
7 4 472 559
8 71 577 327
9 1 145 302 767

Table 3: Lower bound for the degree of contextuality of contextual configurations comprising
all the lines of W(2N − 1, 2) of small rank.

Another set of sufficient (but not necessary) criteria for ascertaining the former
lower bound on the contextuality degree of the whole W(2N − 1, 2), with N > 2, is as
follows:

F uns
N ∩W(2N − 3, 2) ∼= F uns

N−1 for any W(2N − 3, 2) ∈ W(2N − 1, 2), (14)

F uns
N ∩Q−(2N − 1, 2) ∼= Euns

N for any Q−(2N − 1, 2) ∈ W(2N − 1, 2) (15)

and

F uns
N ∩Q+(2N − 1, 2) ∼= Huns

N for any Q+(2N − 1, 2) ∈ W(2N − 1, 2). (16)

In the case of N = 3, with the minimal unsatisfied configuration F uns
N
∼= HC and so

with dfull3 reaching its lower bound 63, from the analysis carried out in [42] it follows
that all the three criteria are here indeed satisfied. In the next section we will see that
this is not the case for N = 4.

5 Geometries and graphs underpinning the most

illustrative four- to six-qubit examples

As it has already been stressed, with the code based on a SAT solver we were unable to
properly address contextuality issues for symplectic polar spaces of rank greater than
three. To illustrate the power of our new approach, we will discuss in detail the first
open case in the hierarchy, N = 4, and then briefly address also the N = 5 and N = 6
cases.

5.1 Contextuality in the four-qubit space

5.1.1 Contextuality of elliptic quadrics

A four-qubit elliptic quadric, Q−(7, 2), when viewed as a point-line incidence structure,
features 119 points and 1 071 lines, with 27 lines on a point and three points on a line.
The smallest number of negative lines a Q−(7, 2) can have is 360, which is thus a first
upper bound on its contextuality degree dell4 , i. e., dell4 ≤ 360. Using our new approach,

17



we were able to push this value much lower, namely to dell4 ≤ 315 (see Table 2). The
found configuration of 315 unsatisfied contexts, Euns

4 , encompassing all the points of the
quadric, features 14 points of degree three (let us call them solids), 21 points of degree
seven (dots) and 84 points of degree nine (dashes), as also illustrated in a graphical
form in Figure 5, top layer. Out of its 315 lines, there are 21 of type solid-solid-dot,
126 of type dash-dash-dot and, finally, 168 of type dash-dash-dash, as illustrated in
Figure 5, bottom layer.
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3 3
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Figure 5: Properties of the point-line geometry comprising 315 unsatisfied constraints of a
particular elliptic quadric whose index is IIIY . For a point on a line, the number inside
the circle corresponds to its restricted degree in the configuration consisting solely of lines
of this particular type.

In each line of the first type, the restricted degree of a solid point is three and
that of a dotted one is of one. Moreover, the 21 lines of this form can uniquely be
associated with the edges of the well-known Heawood graph [13] – see Figure 6, left
– in such a way that the 14 solid points will be its vertices and the 21 dotted points
will be the third points on its edges so that these edges become lines ofW(7, 2); hence,
this 21-line configuration is isomorphic to nothing but the configuration representing
21 unsatisfied contexts of a three-qubit hyperbolic quadric [30].

Next, let us consider the second configuration of lines. In each of these 126 lines,
the restricted degree of a dashed point is three whilst that of a dotted one is six. These
126 lines split into three disjoint, equally-sized sets that are isomorphic to each other.
Given such a set, if one considers its 28 dashed points as vertices and the corresponding
42 lines as edges, one obtain a graph that, remarkably, is isomorphic to the famous
Coxeter graph [4] – depicted in Figure 6, right. Moreover, joining such a set of 42
‘Coxeter’ lines3 with the 21 ‘Heawood’ lines of the first type we get nothing but a copy
of the split Cayley hexagon of order two, as schematically depicted in Figure 7 (this
being a simplified reproduction of part of Figure 7 of [36]; see also [34,44]). Each of the
three split Cayley hexagons is classically embedded into a parabolic quadric Q(6, 2)
in which our elliptic quadric cuts a certain PG(6, 2) of the ambient space PG(7, 2);

3It is worth mentioning here that the subgeometry of the split Cayley hexagon of order two related
to (or underpinned by) its Coxeter graphs was some 15 years ago found to be intricately related to the
E7-symmetric black-hole entropy formula in string theory [22].
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Figure 6: An illustration of the Heawood graph (left) and the Coxeter one (right), both
drawn with seven-fold rotational symmetry.

the three corresponding PG(6, 2)s have a PG(5, 2) in common, the latter cutting our
Q−(7, 2) in a hyperbolic quadric, Q+(5, 2) – the one accommodating the 14 points of
degree three and the 21 points of degree seven. It is worth mentioning here that the 21
points of degree seven form in each hexagon a geometric hyperplane; this smallest-size
hyperplane is called a distance-2 ovoid and is of type V2 in the notation of Frohardt
and Johnson [10].

Finally, each of the 168 lines of the last type is such that it shares a single point
with each of the three hexagons. Hence, the 12 points located on six lines passing via
a dashed point split into two sextuples, either sextuple being located in a hexagon. In
addition, each sextuple further splits into a pair of tricentric triads that define a unique
quadratic doily.

5.1.2 Contextuality of hyperbolic quadrics

A four-qubit hyperbolic quadric, Q+(7, 2), when viewed as a point-line incidence struc-
ture, features 135 points and 1 575 lines, with 35 lines on a point and three points on
a line. The smallest number of negative lines a Q+(7, 2) can have is 532, hence its

degree of contextuality dhyp4 satisfies dhyp4 ≤ 532. As in the preceding case, we can

do much better with our new approach, namely dhyp4 ≤ 315 (see Table 2). Here, the
pattern of 315 unsatisfied contexts we have discovered, Huns

4 , that again covers all the
points of the quadric, is much more symmetric than that characterizing an elliptic
quadric, since through each point here pass the same number of lines, namely seven.
Using the Lagrangian Grassmannian mapping of the type LGr(3, 6) (see, e. g., [18,21])
that sends planes of W(5, 2) into points of a certain Q+(7, 2) and lines of W(5, 2) into
lines of the same quadric (and whose explicit form we made use of is given in A),
this (1357, 3153)-configuration is found to be, in fact, isomorphic to DW(5, 2). This
is a very important fact in the following sense. We know that each Q+(7, 2) contains
120 quadratic W(5, 2)s. On the other hand, DW(5, 2) contains the same number of
copies of the split Cayley hexagon of order two (these being, in fact, its geometric
hyperplanes, see, e. g., [6]). Hence, when a DW(5, 2) is embedded into a Q+(7, 2),
each hexagon must be hosted by a unique W(5, 2). In other words, our unsatisfied
configuration Huns

4 picks up from (or shares with) eachW(5, 2) of the Q+(7, 2) a single
copy of the split Cayley hexagon of order two; moreover, we have verified that it is
always a copy that is classically-embedded into the corresponding W(5, 2). Given the
fact that any unsatisfied configuration of the full three-qubit W(5, 2) is isomorphic
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Figure 7: A generic layering of each of the three split Cayley hexagons of order two encap-
sulating the core of Euns

4 . The 14 solid points are colored blue, the 21 dotted points are
gray and 28 out of 84 dashed points are represented by red color. The 21 blue lines are the
Heawood lines, those colored red are the Coxeter ones. Removing from the hexagon the 21
gray points we indeed get a disjoint union of the Heawood graph and the Coxeter graph.

to a copy of the smallest split Cayley hexagon embedded classically into the space,
F uns
3
∼= HC [30, 42], and a very recent proof [26] that this isomorphism must hold for

anyW(5, 2) located in any higher-rank space, our unsatisfiedHuns
4
∼= DW(5, 2) behaves

exactly as one would expect for a configuration that also gives the lower bound for the
contextuality degree of the four-qubit Q+(7, 2). Moreover, we have also verified that
both DW(5, 2) and its complement on the Q+(7, 2) are, like an HC and its complement
in W(5, 2), not contextual. There is also a neat combinatorial argument speaking in
favor of our conjecture. There are altogether 136 Q+(7, 2)’s in W(7, 2), each of them
has 1 575 lines and as there are 5 355 lines in W(7, 2), each line of this space is shared
by 136× 1575/5355 = 40 Q+(7, 2)’s. And, remarkably, 136× 315/40 = 1 071, which is
indeed equal to the lower bound ascertained in Section 4 (see Table 3) for the degree
of contextuality of the configuration comprising all the lines of W(7, 2). So, we do

believe that dhyp4 = 315, with the understanding that the corresponding unsatisfied
configurations are (always) isomorphic to DW(5, 2).

5.1.3 Contextuality of the full four-qubit space

The full four-qubit space, W(7, 2), features 255 points and 5 355 lines, with 63 lines
through a point and three points on a line. As 1 908 out of its 5 355 contexts are
negative, dfull4 ≤ 1908. Also this bound has been considerably reduced, down to 1 575
(see Table 1). This bound is also the number of lines on a Q+(7, 2) – an intrigu-
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ing coincidence. The corresponding configuration of 1 575 unsatisfied contexts, F uns
4 ,

encompassing all the 255 points of the space, features 30 points of degree seven (to
be referred to as solids), 105 points of degree 19 (dots) and 120 points of degree 21
(dashes), as also illustrated in a graphical form in Figure 8, top layer. Out of its 1 575
lines, there are 105 of type solid-solid-dot, 210 of type dot-dot-dot and, finally, 1 260
of type dash-dash-dot, as illustrated in Figure 8, bottom layer.
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Figure 8: Properties of the point-line geometry comprising 1 575 unsatisfied constraints for
the contextual geometry whose contexts are all the lines of the space W(7, 2).

In each line of the first type, the restricted degree of a solid point is seven and that
of a dotted one is of one. The 105 lines of this form can uniquely be associated with
the edges of the point-plane incidence graph of PG(3, 2) in such a way that the 30
solid points will be its vertices and the 105 dotted points will be the third points on
its edges so that these edges become lines of W(7, 2) – as also illustrated in Figure 9.
Moreover, these lines together with the 210 lines of the second type form a geometry
isomorphic to DW(5, 2), which is fully located on a particular hyperbolic quadric that
consists of the 30 points of degree seven and the 105 points of order 19 (and whose
index, as readily discernible from Figure 9, is XY Y Z). Interestingly, the 105 points of
order 19 form in the DW(5, 2) a geometric hyperplane, namely the one belonging to
class 3 in the classification of Pralle [37].

Using our Haar-graph-based geometry of Figure 9, the 210 lines of the second
type are found to form 13 orbits of size 15 and three orbits of size five with respect
to the action of the automorphism of order 15 of the figure. A representative line
for each of these orbits is portrayed in Figure 10. In particular, we have for the
encircled-filled part the lines Y Y XI−Y XY I− IZZI (blue), XZZI− IZZY −XIIY
(green), Y ZY I−IZY Y −Y IIY (red), XXXZ−XXXI−IIIZ (yellow) and Y ZZY −
ZXII −XY ZY (violet); for the plain-filled family the lines IY ZZ − IXY Z − IZXI
(blue), XZXY − ZXYX − Y Y ZZ (red), Y Y XY − ZIIX − XYXZ (yellow) and
ZIY I − Y ZXZ − XZZZ (violet); and for the circled color set the lines Y IXX −
Y Y Y Z − IY ZY (blue), IXY Y − IXZZ − IIXX (green), Y ZIX − Y XY Y − IY Y Z
(yellow) and IY Y I − IIIY − IY Y Y (violet). The three representatives of size-five
orbits are: IY ZI − Y III − Y Y ZI (squares), Y XZZ −XYXY − ZZY X (diamonds)
and IZXZ − Y IIZ − Y ZXI (triangles).
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Figure 9: A graphical representation of the subgeometry formed by the 105 lines of the
first type. The underlying point-plane incidence graph of PG(3, 2) – whose vertices are
represented by 15 big white circles as well as 15 big black circles (bullets) – is rendered in
the rotationally symmetric form isomorphic to the Haar graph H(17051).

Let us, finally, focus on the dash-type points and the lines of the last, i.e. dash-
dash-dot type. The 120 dash-type points are exactly those points that lie out off
the hyperbolic quadric Q+

XY Y Z(7, 2) that hosts our unsatisfied DW(5, 2). Through
each of these points there pass 21 lines of the above-mentioned type that cut the
Q+

XY Y Z(7, 2) in the 21 points of the dot-type. By a way of example, the 21 lines
through the (off-quadric) point IIY I cut the Q+

XY Y Z(7, 2) in the 21 points shown
in Figure 11 in gray color. Each of these points is incident with a unique line of
the first type (bold gray) whose other two points are the vertices of the point-plane
incidence graph of PG(3, 2), illustrated in Figure 11 by big gray circles. There are
14 such vertices that together with 21 distinguished edges form a subgraph of the
point-plane incidence graph of PG(3, 2) that is isomorphic to the Heawood graph. The
35 points of this Heawood-graph-underpinned geometry define a certain Q̃+(5, 2) in
some PG(5, 2) of the ambient PG(7, 2). Our selected point IIY I is also the nucleus

of a unique quadratic W̃(5, 2) ∈ Q+
XY Y Z(7, 2) that contains Q̃+(5, 2); the 28 points of

W̃(5, 2) that lie off Q̃+(5, 2) are show in Figure 11 by yellow color. Next, there exists a

unique elliptic quadric, Q̃−(7, 2) ∈ W(7, 2) that shares with Q+
XY Y Z(7, 2) our W̃(5, 2).
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Figure 10: An illustration of 16 out of the 210 lines of type two. The remaining lines from
each orbit can be obtained by successive rotations of the figure through 360/15 degrees
around its center while keeping the position of each label/observable fixed.

Its remaining (119 − 63 =) 56 points can be found as follows. We consider the (non-
isotropic) line that is polar to the above-defined PG(5, 2) with respect to the symplectic
polarity defining W(7, 2). This line passes, obviously, through the point IIY I and its
remaining two points are found among the vertices of our point-plane incidence graph
of PG(3, 2) – as also illustrated in Figure 11. One of them is XY ZI (green), which is
exactly the vertex connected to those seven vertices of the Heawood (sub-)graph that
are represented by bullets, whereas the other one, XYXI (blue), is that vertex that
is connected to the other set of seven vertices, represented by big circles. As neither
of the two points lies on the Q̃−(7, 2), they are the nuclei of two different quadratic
W(5, 2)′ andW(5, 2)′′ lying on Q̃−(7, 2) and having Q̃+(5, 2) in common; our remaining
56 points of Q̃−(7, 2) are nothing but those 56 points (of dash type) that belong to
the symmetric difference of W(5, 2)′ and W(5, 2)′′. It is a straightforward, though by
hand a bit lengthy, task to verify that F uns

4 shares with both W(5, 2)′ and W(5, 2)′′,

like with W̃(5, 2) itself, a (classically-embedded) copy of the split Cayley hexagon of
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Figure 11: An illustration of main properties of the points and lines of the third type. The
meaning of the colored points and highlighted lines is described in the text.

order two, the three hexagons having the above-described Heawood-graph-underpinned
configuration in common. And this property holds if we take instead IIY I any other
point of the dash type.

Obviously, reversing the above-given chain of reasoning helps us find all 1 260 lines
of the third type solely from the configuration formed by the 105 type-one lines, once
the latter are represented as portrayed in Figure 9. A specific case of this reversed
procedure is portrayed in Figure 12. Let us start with Figure 9. In its underlying
point-plane incidence graph of PG(3, 2), let us pick up an arbitrary black vertex, Of ,
and an arbitrary white vertex not adjacent to it, Oe; the third point on the line defined
by the two vertices, Of .Oe, lies clearly off the quadric Q+

XY Y Z(7, 2) because the two
corresponding observables anti-commute (and so the line does not belong to W(7, 2)
and, hence, to Q+

XY Y Z(7, 2)). Next, take all the seven white vertices adjacent to Of

as well as all the seven black ones adjacent to Oe; these 14 vertices together with
the corresponding 21 edges inherited from the point-plane incidence graph of PG(3, 2)
form a graph that is isomorphic to the Heawood graph. Connecting the point Of .Oe

with each of the 21 mid-points situated on the edges of this Heawood graph one gets
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Figure 12: An illustration of the reversed procedure. Here, Of = IZY Z, Oe = ZZIY and
Of .Oe = ZIY X. The seven neighbors of Of are pointed out by blue edges, those of Oe by
green ones and the associated Heawood graph is highlighted in yellow color. (Interestingly,
the complement of the Heawood graph, that is the quartic bipartite graph on 14 vertices and
28 edges highlighted in red color, is nothing but the Levi graph of the biplane of order two.)

all the 21 lines of type three passing via this particular off-quadric point. Now, since
there are 15 × (15 − 7) = 120 black-white vertex pairs of the above-defined type and
no two such pairs define the same off-quadric point (otherwise the corresponding four
vertices would be coplanar, which is impossible), this construction yields indeed all
120× 21/2 = 1260 lines of the dash-dash-dot type.

At this point, it is particularly instructive to make a slight digression from the main
course of the paper and show that the just-outlined reversed procedure yields in the
three-qubit case a copy of the split Cayley hexagon of order two, i. e., F uns

3 , and in the
two-qubit doily just three pairwise disjoint lines, i. e., F uns

2 . The three-qubit analogue
of DW(5, 2) is a Heawood-graph-underpinned configuration [30,42] featuring 35 points
and 21 lines, which can be taken – without any substantial loss of generality – to be
located on the symmetric hyperbolic quadric, Q+

III(5, 2), as portrayed in Figure 13.
From the underlying Heawood graph we pick up an arbitrary white vertex, say XXI
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Figure 13: An illustration showing how, starting with the Heawood-graph-underpinned con-
figuration in the three-qubit polar space, W(5, 2), we can get the remaining 28 points and
42 lines of a classically-embedded copy of the split Cayley hexagon of order two. The role
of color-highlighted elements is explained in the main text.

(blue), and any black one that is not adjacent to it, say IZZ (green). The two vertices
define a non-isotropic line of the ambient PG(5, 2) (dashed blue-green) whose third
point, XY Z (red), is skew-symmetric and thus lies off the quadric. Let us consider, in
analogy with the four-qubit case, the graph consisting of the three black vertices that
are adjacent to XXI (encircled gray), the three white vertices adjacent to IZZ (also
encircled gray) and the corresponding three inherited edges (gray parallel segments) –
which is the graph isomorphic to the Haar graph H(4) (or, equivalently, to the point-
point incidence graph of PG(1, 2)). Joining the ‘red’ point XY Z with each of the
three mid-points lying on the edges of the H(4) we get three out of 42 off-quadric
lines of the hexagon (illustrated without third points by red segments). As there are
7×(7−3) = 28 black-white vertex pairs of the above-defined type and no two such pairs
define the same off-quadric point, repeating this procedure we get all 28 off-quadric
points of the hexagon and 28 × 3/2 = 42 remaining lines of the hexagon. It is also
obvious that three lines issued from each ‘red’ point lie in the same plane of W(5, 2),
which means (see, e. g., [42]) that a copy of the split Cayley hexagon we get by this
construction is indeed classically embedded into W(5, 2).

In the two-qubit case, our starting point is a configuration isomorphic to the above-
introduced H(4)-graph-underpinned configuration. This configuration comprises three
pairwise disjoint lines of the doily and lies on one of its hyperbolic quadrics, which is
again taken to be the symmetric one, Q+

II(3, 2) – as sketched in Figure 14. As before,
let us consider two non-adjacent vertices of the underlying H(4) graph, one white (e. g.
IX (green)) and one black (e. g. IZ (blue)). They define an off-doily line (double
dashed) whose third point (IY (red)) lies off the quadric. It is obvious that here we
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Figure 14: An illustration demonstrating that given a point-hyperplane incidence graph of
PG(1, 2) embedded into the two-qubit symplectic polar space, our procedure does not result
in any other ‘red’ line of the space. (Compare with Figure 13.)

have only two different points that are adjacent to our selected points; namely, XI
(neighbor to IX) and ZI (adjacent to IZ). Since these two vertices are not adjacent
our procedure, in contrast with the above discussed two cases, ends here, thus not
yielding any further line of the doily passing through the ‘red’ point IY ! And since the
absence of ‘red’ lines characterizes any off-quadric point in the doily, this finding can
be rephrased by saying that a set of three lines of the doily associated with the three
edges of an H(4) graph will always be the only unsatisfied contexts for the contextual
configuration comprising all the 15 contexts of the two-qubit doily. This also provides
a sort of explanation for the fact that F uns

2 does not cover all the points of the doily.
To conclude this subsection we return back to the central theme by stressing the

following striking observation: whereas F uns
4 ∩ Q−(7, 2) ∼= Euns

4 for any Q−(7, 2) ∈
W(7, 2) (that is to say, criterion (15) is satisfied), F uns

4 ∩ Q+(7, 2) ∼= Huns
4 holds just

for a single Q+(7, 2) ∈ W(7, 2) (and so criterion (16) does not hold)!

5.2 Contextuality in the five-qubit space

The complexity of unsatisfied configurations we found here is much greater than in the
previous case and so we will only describe their basic features.

We will start with hyperbolic quadrics. Such a quadric, Q+(9, 2), features 527
points and 23 715 lines of which no less than 9 420 can be negative. A related unsatisfied
configuration we found contains only 6 975 lines, so dhyp5 ≤ 6 975 (see Table 2). This
configuration exhibits a very high degree of symmetry as it has only two kinds of points
and, similarly, two types of lines. Out of the 527 points, 62 are of degree 15 (solids)
and 465 of degree 43 (dashes). Out of the 6 975 lines, there are 465 of type solid-
solid-dash and the remaining 6 510 ones are of type dash-dash-dash. Remarkably, one
can associate the 62 solid points with the 62 vertices of the point-hyperplane incidence
graph of PG(4, 2) in such a way that the 465 lines of the former type will be represented
by the edges of this graph – as illustrated in Figure 15. If we compare this result with
what we found for the four-qubit hyperbolic quadrics (see Figure 9) and for three-
qubit ones (see Figure 2 in [30]), we arrive at the following natural conjecture: the
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Figure 15: A graphical representation of the subgeometry formed by the 465 lines of the
first type; in order not to make the figure to look much too crowded, the 465 points of
the dash type are not shown. The underlying point-hyperplane incidence graph of PG(4, 2)
is rendered in the form isomorphic to the Haar graph H(1103671145) whose number was
computed for us by Dr. Eric W. Weisstein (Wolfram Research).
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core geometry of an unsatisfied configuration of a hyperbolic quadric Q+(2N − 1, 2),
N ≥ 3, is underlined by the point-hyperplane incidence graph of the projective space
PG(N − 1, 2).

An elliptic quadric, Q−(9, 2), is endowed with 495 points and 19 635 lines, of which
no less than 7 860 can be negative. An upper bound we found in this case, for dell5 ,
amounts to 7 087 (see Table 2). The corresponding configuration is already too complex
to be described in sufficient detail. We only mention that its points are of as many as
11 different degrees, all odd, the smallest being seven and the largest 51, with only two
points being of the smallest degree.

In the case of the contextual configuration comprising all 86 955 lines of the five-
qubit space W(9, 2), we found an unsatisfied configuration having 31 479 lines (dfull5 ≤
31479, see Table 1), which is less than 35 400, the number of negative lines in this
space. Among its points, we find again 11 distinct degrees, the smallest being 15 and
the largest one amounting to 105. Strikingly, among cardinalities of different degrees
we spot some distinguished numbers that occur in the three-qubit space. In particular,
there are two sets of points of different degree having 288 elements either, which could
be related to 288 Conwell heptads of W(5, 2) [41]. Further, there are 105 points of
degree 99, this pointing out to the 105 lines located on a Q+(5, 2). These and several
other intriguing observations will be treated in a separate paper.

5.3 Contextuality in the six-qubit space

To round off our exposition of illustrative examples, we will also briefly address the
six-qubit space.

Here, our unsatisfied geometry associated with the contextual configuration com-
prising all 1 396 395 lines ofW(11, 2) exhibits a great degree of combinatorial simplicity
as it has only two different types of points and three distinct types of lines. In par-
ticular, out of the 4 095 points of W(11, 2), there are 126 of degree 192 (solids) and
3 969 of degree 412 (dots), as portrayed in Figure 16, top layer. The totality of 553 140
(dfull6 ≤ 553 140, much smaller than 615 888, the total number of negative contexts)
unsatisfied lines features 126 lines of type solid-solid-solid, 23 814 lines of type solid-
dot-dot and the remaining 529 200 ones consisting solely of dots – see Figure 16, bottom
layer. The 126 lines of the first type are quite interesting as they split into two equally-
sized disjoint sets, either of the two sets being isomorphic to nothing but a copy of the
split Cayley hexagon of order two classically embedded into the subspace W(5, 2) it
spans, i. e., to an F uns

3 .
In the unsatisfied configuration associated with a hyperbolic quadric of the space

we find as many as five different types of points and eight types of lines. Among its
2 079 points, there are 14 of the smallest degree (31) and 49 of the largest one (211);
moreover, the number of points having one specific degree (155) is equal to the number

of linear doilies in W(5, 2) – 336 [41]. Among its 132 391 lines (dhyp6 ≤ 132 391, see
Table 2), there is a particular type of size 49 whose elements can be associated with
the edges of the complete bipartite graph K7,7 (aka the adjacency graph of the Fano
plane)4; each such line consists of two points of the smallest degree and one point of
the largest one.

4We note in passing that the Heawood graph is a subgraph of the K7,7-graph.
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Figure 16: Properties of the point-line geometry comprising 553 140 unsatisfied constraints
for the contextual geometry whose contexts are all the lines of the space W(11, 2), following
the notation set up in Figure 5.

Finally, the unsatisfied configuration we found for an elliptic quadric, comprising
131 700 lines (dell6 ≤ 131 700, see Table 2), is the most complex of the three. The 2 015
points of the quadric split into six different types and it is instructive to list them
explicitly: 14 points of degree 84, 27 points of degree 92, 21 points of degree 100, 378
points of degree 196, 1 008 points of degree 198 and 567 points of degree 204. The
27 points of degree 92 are found to be located on nine pairwise disjoint lines and so
form a configuration isomorphic to Euns

3 . Moreover, the 14 points of degree 84 together
with 21 points of degree 100 are situated on 21 lines that can be associated with the
edges of the Heawood graph and so they form the configuration isomorphic to Huns

3 .
Finally, it is worth noticing that the number of points of degree 198 is the same as
that of quadratic doilies living in W(5, 2) [41], or as the number of ordinary hexagons
contained in the split Cayley hexagon of order two.

6 Discussion

Making use of a new heuristic method in combination with symmetries exhibited by
(specific subgeometries of) the multi-qubit symplectic polar space of order twoW(2N−
1, 2), we were able, for 4 ≤ N ≤ 7 qubits, to push the upper bounds on the degree of
contextuality of contextual configurations living inW(2N−1, 2) much lower than those
found with the previous method based on a SAT solver, and than the smallest number
of negative lines a configuration of a given type can be endowed with. The power of
this method is best illustrated with the four-qubit case, where we also achieved a deep,
and fairly detailed, insight into the nature of those parts of contextual configurations
that are irreproducible by any NCHV model. The corresponding unsatisfied part of
an elliptic quadric has in its core three copies of the split Cayley hexagon of order
two sharing the Heawood graph and covering all the points of the quadric; this is
quite an important finding in light of the fact that the split Cayley hexagon of order
two is the geometry that rules contextuality in the three-qubit W(5, 2) [42]. The
unsatisfied contexts of a hyperbolic quadric are arranged into a structure isomorphic

30



to DW(5, 2), the space that is dual to W(5, 2); here, we surmise to have reached also
the lower bound. Interestingly, an unsatisfied copy of DW(5, 2) also occurs in the case
when all the lines of W(7, 2) are considered as a contextual configuration, this time
centered on a distinguished point-plane incidence graph of PG(3, 2) and surrounded
by additional 1 260 unsatisfied contexts. Hence, in all the three cases we see a clear
connection with the three-qubit symplectic polar space W(5, 2). Another intriguing
fact in the four-qubit space is that two identical upper bounds (315) correspond to
contextual configurations that are geometrically very different. Moreover, the upper
bound we found for the contextuality degree of the whole space (1 575) coincides with
the number of lines on a hyperbolic quadric. Also, in the case of hyperbolic quadrics of
three-, four- and five-qubit spaces we see an intriguing pattern where the core parts of
the corresponding unsatisfied configurations are underpinned by the point-hyperplane
incidence graphs of PG(d, 2), with d = 2, 3 and 4, respectively.

Apart from dissecting in a similar fashion some higher-rank cases, we also plan to
employ our new method to deal with contextual configurations whose contexts have
more than three observables. For example, a natural context with four elements is
isomorphic to an affine plane of order two, AG(2, 2). In W(5, 2), there are already
as many as 945 of them and it would be desirable to see what kind of contextual
configurations they form, what the corresponding unsatisfied parts of them look like
and how these are related to three-element-context configurations in this space. A
well-known example of such a configuration is the so-called Mermin pentagram [24].
There are 12 096 distinct pentagrams inW(5, 2) and their properties have already been
thoroughly analyzed [23, 33, 40]. We would like to perform a similar study for other
AG(2, 2)-based classes of contextual configurations living in W(5, 2). The largest of
them is the (6360, 9454)-configuration that consists of all 945 AG(2, 2)’s and its degree
of contextuality should be equal to 189. We can arrive at this number in two different
ways. One of them employs properties of the above-mentioned Mermin pentagrams.
Thus, as each AG(2, 2) is contained in 12 096 × 5/945 = 64 such pentagrams and the
degree of contextuality of each pentagram is equal to one, we indeed get 12 096×1/64 =
189. The other one makes use of the configuration comprising all 315 lines of W(5, 2),
whose degree of contextuality amounts to 63 [30]. Now, there are three planes through a
line inW(5, 2) and, so, there are three distinguished AG(2, 2)s that we get by removing
this common line from each of the three planes. Hence, it is natural to assume that
to each of the 63 unsatisfied line contexts there will be three unsatisfied affine ones,
which again yields 63× 3 = 189.

Another interesting task would be to explore those contextual configurations that
are common to two (or more) differentW(2N−1, 2)’s living in the same ambient space
PG(2N − 1, 2). The total number of (non-degenerate) symplectic polarities of rank N
in PG(2N − 1, 2), SN , is given by the following formula (see, e. g., [8], page 46)

SN = 2((2N−1)2−1)/4
N−1∏
i=1

(22i+1 − 1).

Thus, we find that there are S2 = 22(23 − 1) = 28 distinct doilies in PG(3, 2). The
set of lines shared by two different doilies is usually referred to as a linear congruence.
Such a congruence is rather simple, comprising either a set of five pairwise disjoint lines
forming a spread of PG(3, 2) (called an elliptic congruence), or a set of six lines lying
in pairs in three planes meeting a distinguished line, the latter inclusive (a parabolic
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congruence;5 see, e. g., [14, Section 15.2] or [9, §§ 8–17]. However, in PG(5, 2) we
already find as many as S3 = 26(23 − 1)(25 − 1) = 64 × 7 × 31 = 13 888 distinct
W(5, 2)’s and so we expect a greater variety and complexity of intersection patterns,
which can still be tractable by our new method. On the other hand, we can – for
some small values of N > 2 – consider all elliptic and hyperbolic quadrics contained in
PG(2N − 1, 2) and check quantum contextuality of their individual intersections with
some selected W(2N − 1, 2) of the space.

Finally, there is, as aptly pointed out by one of the reviewers, one more important
aspect of our approach to be addressed, namely the fact how the geometric combina-
torial properties of sub-geometries of W(2N − 1, 2) so to say “affect” the contextuality
results and their accuracy. As already stressed throughout the text, finding the degree
of contextuality of a particular (sub-)geometry amounts to finding the associated un-
satisfied configuration of the smallest size. In the two- and three-qubit spaces these
smallest-size unsatisfied configurations were found for all relevant sub-geometries. The
first open case is – as already pointed out in Section 5.1 – the four-qubit one, in partic-
ular its elliptic quadrics. Here, the smallest-size unsatisfied configuration of a Q−(7, 2)
should share with each of its 136 quadraticW(5, 2)’s a copy of the split Cayley hexagon
of order two (which is the smallest-size unsatisfied configuration of the whole W(5, 2),
see [30,42]); this is, however, not the case for the configuration we found. Similarly, the
1575-line unsatisfied configuration found for the whole space does not meet the require-
ment that it shares a copy of DW(5, 2) with each of its 136 Q+(7, 2)’s (see the end of
Section 5.1). Moreover, the sub-geometries we have so far dealt with are rather simple
in the sense that their degree of contextuality is the same irrespectively of the rank of
multi-qubit W(2N − 1, 2) they are located in; therefore, in this case it is sufficient to
analyse just their smallest rank representatives. However, there exists a large class of
configurations that do not behave this way. In the three-qubit space, an example of
such a geometry is the two-spread – a point-line incidence structure we get from the
doily after removing one of its spreads of lines [35]; here, there exist copies that are
contextual [30], but also others that are not [26]! A prominent representative in the
four-qubit space is the dual of the split Cayley hexagon of order two; here, we found
several contextual copies differing in both the size and structure of the corresponding
unsatisfied configurations. Obviously, geometries of this class, which are basically not
defined by algebraic equations, will be more difficult to handle as per their contextu-
ality properties and we will have to employ some new guiding principles to facilitate
our computer-aided search and make it also more effective. For example, we can take
a quantum contextual configuration whose degree of contextuality is known, remove
from it certain sets of observables and associated contexts and check contextual proper-
ties of this reduced configuration. Similarly, we can add to a given configuration some
new observables and contexts and compare contextuality properties of this extended
configuration with those of the parent one. Another task worth a closer look would be
to take several contextual configurations in the same polar space, remove their com-
mon part and check the resulting configuration; if the latter is contextual, compare its
unsatisfied part with each of the original configurations.

5For the sake of completeness, it is worth mentioning that in PG(3, q), q > 2, there also exists a hyperbolic
congruence, i. e., the congruence consisting of (q + 1)2 lines incident to two skew lines, which is shared by
q − 1 different polarities.
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7 Conclusion

To conclude this work, it is also desirable to say a few words about the significance of
studying general N -qubit proofs of quantum contextuality. Apart from its key role in
the foundational issues of quantum mechanics, contextuality has also been recognized
as a necessary resource for quantum computing, as in models based on magic state
distillation, measurement-based quantum computation or in computational models of
qubits [1]. Recently [11], it was further shown that for any quantum state and observ-
ables of sufficiently small dimensions producing contextuality, there exists a communi-
cation task with quantum advantage and that given any set of observables allowing for
quantum state-independent contextuality, there exists a class of communication tasks
wherein the difference between classical and quantum communication complexities in-
creases as the number of inputs grows. As our approach quantifies observable-based
proofs of contextuality, an interesting task would be to ascertain the perspective if
this difference could eventually be expressed in terms of (or at least loosely linked to
the notion of) the degree of contextuality. That this may be a viable task seems to
be backed by [2], where contextuality of magic states was established as a necessary
resource for a large class of quantum computation schemes based on qubits. Moreover,
being already able to handle contextuality in symplectic spaces of several different
ranks (and so the corresponding Hilbert spaces of different dimensions), we can also
spot some dimension-sensitive features of contextual behavior – this also being in line
with some seemingly unrelated recent research, like [52].

Beyond the application to quantum contextuality presented in this paper, our
heuristic could also be competitive against other methods in other applications formal-
izable with XOR clauses, such as algebraic cryptanalysis [46] or discrete integration,
which is a fundamental problem in numerous areas of artificial intelligence, including
probabilistic reasoning, machine learning and planning [45]. This requires a deeper
study of its own beyond the scope of this paper, being thus left as an interesting
perspective.
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A A particular bijection between three-qubit

Fano planes and four-qubit observables

An explicit form of the bijection between 135 planes (each listed as a set of points/obser-
vables) of the three-qubit W(5, 2) and 135 points/observables of the four-qubit hyper-
bolic quadric Q+

IIII(7, 2) furnished by the LGr(3, 6), which was employed in Section 5
to figure out basic properties of unsatisfied configurations of both a hyperbolic quadric
and the whole four-qubit symplectic polar spaceW(7, 2). For the reader’s convenience,
planes 1 to 105 are consecutively arranged into seven sets of 15 elements each, the
planes in each such set passing through the same point/observable (listed first and
separated by a semicolon from the rest); the corresponding seven ‘first’ observables
pairwise anticommute and represent a particular Conwell heptad of Q+

III(5, 2) (for the
definition of a Conwell heptad in the three-qubit setting, see, e. g., [41]).

No. Fano plane in W(5, 2) Point on Q+(7, 2)

1 {IIY ;XY I, ZXY,XY Y,ZXI, Y ZY, Y ZI} Y ZXY
2 {IIY ;XY I, Y XI,XY Y, Y XY,ZZI, ZZY } ZY Y X
3 {IIY ;XY I, IY I,XY Y, IY Y,XII,XIY } XXZZ
4 {IIY ;XXY,ZY I,XXI, ZY Y, Y ZY, Y ZI} XY Y Z
5 {IIY ;XXY, Y Y Y,XXI, Y Y I, ZZI, ZZY } IY Y I
6 {IIY ;XXY, IXY,XXI, IXI,XII,XIY } XIIZ
7 {IIY ;Y II, IZY, Y IY, IZI, Y ZY, Y ZI} ZXZX
8 {IIY ;Y II, Y Y Y, Y IY, Y Y I, IY Y, IY I} Y Y Y Y
9 {IIY ;Y II, IXY, Y IY, IXI, Y XY, Y XI} XZXZ

10 {IIY ;ZIY, IZY, ZII, IZI, ZZI, ZZY } ZIIX
11 {IIY ;ZIY, ZY I, ZII, ZY Y, IY Y, IY I} ZZXX
12 {IIY ;ZIY, IXY,ZII, IXI, ZXI, ZXY } IZXI
13 {IIY ;XZY, IZY,XZI, IZI,XII,XIY } IXZI
14 {IIY ;XZY,ZY I,XZI, ZY Y, Y XY, Y XI} Y XZY
15 {IIY ;XZY, Y Y Y,XZI, Y Y I, ZXI, ZXY } Y IIY

16 {ZY X;Y IZ,ZXY,XY Y, IZZ,XXX,Y ZI} IXY Y
17 {ZY X;Y IZ, Y XI,XY Y,XZX, IXZ,ZZY } Y Y IZ
18 {ZY X;Y IZ, IY I,XY Y,ZIX, Y Y Z,XIY } Y ZY X
19 {ZY X;Y ZX,ZY I,XXI, IIX,XXX, Y ZI} XZZI
20 {ZY X;Y ZX, Y Y Y,XXI,XIZ, IXZ,ZZY } XXXZ
21 {ZY X;Y ZX, IXY,XXI,ZZZ, Y Y Z,XIY } IY Y Z
22 {ZY X;XY Z, IZY, Y IY, ZXZ,XXX,Y ZI} XYXY
23 {ZY X;XY Z, Y Y Y, Y IY,XIZ,ZIX, IY I} Y IY I
24 {ZY X;XY Z, IXY, Y IY, ZZZ,XZX, Y XI} ZY ZY
25 {ZY X; IY X, IZY,ZII, ZXZ, IXZ,ZZY } ZZXI
26 {ZY X; IY X,ZY I, ZII, IIX,ZIX, IY I} IZIX
27 {ZY X; IY X, IXY,ZII, ZZZ, IZZ,ZXY } ZIXX
28 {ZY X;Y XX, IZY,XZI, ZXZ, Y Y Z,XIY } Y XIY
29 {ZY X;Y XX,ZY I,XZI, IIX,XZX, Y XI} XIZX
30 {ZY X;Y XX, Y Y Y,XZI,XIZ, IZZ,ZXY } ZXZZ
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No. Fano plane in W(5, 2) Point on Q+(7, 2)

31 {Y IX;ZY Z,ZXY,XY Y,XXZ, IZX, Y ZI} Y Y ZI
32 {Y IX;ZY Z, Y XI,XY Y, IXX,XZZ,ZZY } XIY Y
33 {Y IX;ZY Z, IY I,XY Y, Y Y X,ZIZ,XIY } ZY XY
34 {Y IX;Y ZX, Y II, IZI, IIX, IZX, Y ZI} IIZX
35 {Y IX;Y ZX,ZIY, IZI,XIZ,XZZ,ZZY } ZXZI
36 {Y IX;Y ZX,XZY, IZI, ZZZ,ZIZ,XIY } ZXIX
37 {Y IX;XY Z,XXY,ZY Y,ZXZ, IZX, Y ZI} Y Y IX
38 {Y IX;XY Z,ZIY, ZY Y,XIZ, Y Y X, IY I} Y XY Z
39 {Y IX;XY Z,XZY,ZY Y,ZZZ, IXX, Y XI} IZY Y
40 {Y IX; IY X,XXY, Y Y I, ZXZ,XZZ,ZZY } Y XXY
41 {Y IX; IY X, Y II, Y Y I, IIX, Y Y X, IY I} XZZX
42 {Y IX; IY X,XZY, Y Y I, ZZZ,XXZ,ZXY } ZY Y Z
43 {Y IX;Y XX,XXY, IXI, ZXZ,ZIZ,XIY } IZXZ
44 {Y IX;Y XX, Y II, IXI, IIX, IXX, Y XI} XZII
45 {Y IX;Y XX,ZIY, IXI,XIZ,XXZ,ZXY } XIXZ

46 {Y ZZ;ZY Z,ZY I,XXI,XXZ, IIZ, Y ZI} IXXZ
47 {Y ZZ;ZY Z, Y Y Y,XXI, IXX,XIX,ZZY } XZZZ
48 {Y ZZ;ZY Z, IXY,XXI, Y Y X,ZZX,XIY } XY Y I
49 {Y ZZ;Y IZ, Y II, IZI, IZZ, IIZ, Y ZI} ZXII
50 {Y ZZ;Y IZ,ZIY, IZI,XZX,XIX,ZZY } IXZX
51 {Y ZZ;Y IZ,XZY, IZI, ZIX,ZZX,XIY } ZIZX
52 {Y ZZ;XY Z,XY I, ZXI, ZXZ, IIZ, Y ZI} ZIXZ
53 {Y ZZ;XY Z,ZIY, ZXI,XZX, Y Y X, IXY } Y ZIY
54 {Y ZZ;XY Z,XZY,ZXI, ZIX, IXX, Y Y Y } XZXX
55 {Y ZZ; IY X,XY I, Y XY,ZXZ,XIX,ZZY } XY IY
56 {Y ZZ; IY X, Y II, Y XY, IZZ, Y Y X, IXY } ZXY Y
57 {Y ZZ; IY X,XZY, Y XY,ZIX,XXZ,ZY I} Y ZY I
58 {Y ZZ;Y XX,XY I, IY Y, ZXZ,ZZX,XIY } Y Y XX
59 {Y ZZ;Y XX, Y II, IY Y, IZZ, IXX, Y Y Y } IIY Y
60 {Y ZZ;Y XX,ZIY, IY Y,XZX,XXZ,ZY I} Y Y ZZ

61 {XYX;ZY Z, IZY, Y IY,XXZ,ZXX, Y ZI} Y ZY Z
62 {XYX;ZY Z, Y Y Y, Y IY, ZIZ,XIX, IY I} IY IY
63 {XYX;ZY Z, IXY, Y IY,XZZ,ZZX, Y XI} Y XY X
64 {XYX;Y IZ,XXY,ZY Y, IZZ,ZXX, Y ZI} ZIY Y
65 {XYX;Y IZ,ZIY, ZY Y, Y Y Z,XIX, IY I} XY ZY
66 {XYX;Y IZ,XZY,ZY Y, IXZ,ZZX, Y XI} Y Y XI
67 {XYX;Y ZX,XY I, ZXI, IIX,ZXX, Y ZI} XZIX
68 {XYX;Y ZX,ZIY, ZXI, Y Y Z,XZZ, IXY } Y IXY
69 {XYX;Y ZX,XZY,ZXI, IXZ,ZIZ, Y Y Y } ZZXZ
70 {XYX; IY X,XY I,XII, IIX,XIX, IY I} XIZI
71 {XYX; IY X,XXY,XII, IZZ,XZZ, IXY } IXZZ
72 {XYX; IY X,XZY,XII, IXZ,XXZ, IZY } XXIZ
73 {XYX;Y XX,XY I, ZZI, IIX,ZZX, Y XI} IZZX
74 {XYX;Y XX,XXY,ZZI, IZZ,ZIZ, Y Y Y } ZXXX
75 {XYX;Y XX,ZIY, ZZI, Y Y Z,XXZ, IZY } ZY Y I
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No. Fano plane in W(5, 2) Point on Q+(7, 2)

76 {IY Z;ZY Z, IZY, ZII, IXX,ZXX,ZZY } IZXX
77 {IY Z;ZY Z,ZY I, ZII, ZIZ, IIZ, IY I} ZIXI
78 {IY Z;ZY Z, IXY,ZII, IZX,ZZX,ZXY } ZZIX
79 {IY Z;Y IZ,XXY, Y Y I,XZX,ZXX,ZZY } Y ZZY
80 {IY Z;Y IZ, Y II, Y Y I, Y Y Z, IIZ, IY I} ZXXZ
81 {IY Z;Y IZ,XZY, Y Y I,XXX,ZZX,ZXY } XY Y X
82 {IY Z;Y ZX,XY I, Y XY,XIZ,ZXX,ZZY } Y IY Z
83 {IY Z;Y ZX, Y II, Y XY, Y Y Z, IZX, IXY } Y Y ZX
84 {IY Z;Y ZX,XZY, Y XY,XXX,ZIZ,ZY I} IY XY
85 {IY Z;XY Z,XY I,XII,XIZ, IIZ, IY I} IXIZ
86 {IY Z;XY Z,XXY,XII,XZX, IZX, IXY } XXZI
87 {IY Z;XY Z,XZY,XII,XXX, IXX, IZY } XIZZ
88 {IY Z;Y XX,XY I, Y ZY,XIZ,ZZX,ZXY } Y XY I
89 {IY Z;Y XX,XXY, Y ZY,XZX,ZIZ,ZY I} ZY IY
90 {IY Z;Y XX, Y II, Y ZY, Y Y Z, IXX, IZY } XZY Y

91 {Y XZ;ZY Z, IZY,XZI, Y Y X,ZXX,XIY } Y IZY
92 {Y XZ;ZY Z,ZY I,XZI,XZZ, IIZ, Y XI} ZXIZ
93 {Y XZ;ZY Z, Y Y Y,XZI, IZX,XIX,ZXY } XXZX
94 {Y XZ;Y IZ,XXY, IXI, ZIX,ZXX,XIY } XZXI
95 {Y XZ;Y IZ, Y II, IXI, IXZ, IIZ, Y XI} IIXZ
96 {Y XZ;Y IZ,ZIY, IXI,XXX,XIX,ZXY } XZIZ
97 {Y XZ;Y ZX,XY I, IY Y, ZZZ,ZXX,XIY } ZZY Y
98 {Y XZ;Y ZX, Y II, IY Y, IXZ, IZX, Y Y Y } Y Y II
99 {Y XZ;Y ZX,ZIY, IY Y,XXX,XZZ,ZY I} XXY Y
100 {Y XZ;XY Z,XY I, ZZI, ZZZ, IIZ, Y XI} ZXXI
101 {Y XZ;XY Z,XXY,ZZI, ZIX, IZX, Y Y Y } ZZZX
102 {Y XZ;XY Z,ZIY, ZZI,XXX, Y Y X, IZY } IY Y X
103 {Y XZ; IY X,XY I, Y ZY,ZZZ,XIX,ZXY } IY ZY
104 {Y XZ; IY X,XXY, Y ZY,ZIX,XZZ,ZY I} Y IY X
105 {Y XZ; IY X, Y II, Y ZY, IXZ, Y Y X, IZY } Y Y XZ

106 {XXI, IIX, IXX,XXX,XIX, IXI,XII} XIII
107 {ZII, ZZZ, IZI, IZZ,ZZI, ZIZ, IIZ} ZIII
108 {ZXZ, Y IY,XZZ,XXX,Y Y I, ZZX, IY Y } XXXX
109 {XXZ,XIZ, Y XY, IXI, ZIX,ZXX, Y IY } XIXI
110 {ZZX, Y Y X, IXZ,XXI,ZY Y, Y ZY,XIZ} XXXI
111 {ZXX,ZXI, Y Y I, IIX,XZX,XZI, Y Y X} XIIX
112 {Y ZY, Y Y Z,ZIX, IXX,XZZ,XY Y,ZXI} XIXX
113 {XZI, IZX,ZY Y,XIX, Y XY,ZXZ, Y Y Z} XXIX
114 {XY Y,XZX, Y Y X, IXZ,ZIZ,ZXI, Y ZY } ZZIZ
115 {ZXZ,XZZ,ZXI, Y Y I, IIZ, Y Y Z,XZI} ZIIZ
116 {XXZ, Y XY, Y Y Z,ZIX,ZZI, IZX,XY Y } ZZZI
117 {ZZX, IXZ, IZX,ZY Y, ZII, IY Y, ZXZ} ZZII
118 {ZXX,Y Y I, IY Y,XZX,ZZZ, Y IY,XXZ} ZZZZ
119 {Y ZY,ZIX, Y IY,XZZ, IZI,XIZ,ZZX} ZIZI
120 {ZZZ, IZZ, IXX,ZII, ZY Y, IY Y, ZXX} IIXX
121 {IZI, ZIZ,XIX,ZZZ,XZX, Y IY, Y ZY } IXIX
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No. Fano plane in W(5, 2) Point on Q+(7, 2)

122 {IZZ, IIZ,XII, IZI,XZZ,XIZ,XZI} IXII
123 {ZIZ,ZZI,XXX, IZZ, Y XY, Y Y X,XY Y } IXXX
124 {IIZ, ZII, IXI, ZIZ, IXZ,ZXI, ZXZ} IIXI
125 {ZZI, ZZZ,XXI, IIZ, Y Y I, Y Y Z,XXZ} IXXI
126 {IIX,XXI, Y Y X,XXX, Y Y I, ZZX,ZZI} IZZI
127 {IXX, IIX,ZXI, IXI, ZIX,ZXX,ZII} IZII
128 {XIX, IXX, Y Y Z,XXI,ZY Y, Y ZY,ZZZ} IZZZ
129 {XII,XIX, IZX, IIX,XZX,XZI, IZI} IIZI
130 {XXX,XII, IY Y, IXX,XZZ,XY Y, IZZ} IIZZ
131 {IXI,XXX,Y IY,XIX, Y XY,ZXZ,ZIZ} IZIZ
132 {XY Y, IY Y,XZX,XII, IXZ,XXZ, IZX} XXII
133 {XZI,ZY Y,XIZ, Y XY, IZZ, Y Y X,ZXX} ZIZZ
134 {ZII, IZI, IIX,ZZI, ZIX, IZX,ZZX} IIIX
135 {XXI, IXI,XIZ,XII, IXZ,XXZ, IIZ} IIIZ
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B Experiments for parameter optimization

Figures 17, 18 and 19 display, in a form of heatmaps, the best Hamming distances com-
puted by runs of Algorithm 1 with 100 iterations, for various specific values of the flip
probability, γ, and the threshold, θ, and a variety of different input configurations. The
warm-to-cool color scheme (and the associated numbers) of cells shows the variation of
the corresponding Hamming distance, with dark blue indicating its lowest values and
dark red its highest ones. In Figure 17a (respectively 17b and 18), the input configura-
tion is the whole set of lines in the three- (respectively four- and five-)qubit symplectic
polar space. For Figures 19a, 19b and 19c, the input configurations are, respectively,
the subsets of the three-qubit space composed of its 80, 180 and 280 lexicographically
smallest lines, when these lines are totally ordered by the lexicographic order defined
in the subsequent paragraph.

We briefly recall here the definition of the lexicographic order introduced in a for-
mer work [28] to break symmetry in quantum configurations. Let < denote the total
order on the alphabet {I,X, Y, Z} defined by I < X < Z < Y . Let us also denote
by < its lexicographic extension to Pauli observables, considered as words on this al-
phabet. With the same notation <, this order can be further extended to all tuples
(a1, a2, . . . , an) of Pauli observables, by ordering them with < applied to the Pauli
observable a1a2 . . . an. This order can also be defined over finite sets {a1, a2, . . . , an}
of Pauli observables, by canonically associating to each set the tuple (a1, a2, . . . , an) of
its elements written in increasing order (ai < aj when i < j), and so on, at any level
of the hierarchy of objects of the same nature, such as configurations that are sets of
lines and that are themselves sets of Pauli observables.
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Figure 17: Results of Algorithm 1 on the whole set of three- and four-qubit lines, for specific
values of θ and γ.
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Figure 18: Results of Algorithm 1 on the whole set of five-qubit lines, for specific values of
θ and γ.

If γ = 0, the algorithm never flips any value, and the initial assignment is kept.
If γ = 1, the algorithm always flips the value if it is above the threshold θ, making
it deterministic and increasing the probability of cycling through of a (possibly sub-
stantially small) subset of states. The shape of the blue areas in the heatmaps of the
experimental results suggests that any sufficiently high value of γ lets the algorithm
reach small Hamming distances for approximately the same range of heights of values
of θ. Therefore, the algorithm works with a fixed value of γ.

Since the presented experimental results show that the optimal values of θ can vary
significantly depending on the input (see Figure 19), we decided to dynamically adjust
the value of θ during the computational process of the algorithm. Moreover, when γ is
high enough, most of the optimal values of θ are in a single interval, whose bounds are
the high and low horizontal limits of the blue areas in the heatmaps of the experimental
results. This observation suggests that the algorithm should be capable of adjusting
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Figure 19: Benchmark results for specific values of θ and γ on certain subsets of the set of
three-qubit lines.

these bounds during its execution.
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C Tool results and performances

This appendix collects the exact values or upper bounds of contextuality degrees com-
puted by our algorithm as well as by the other approaches presented in Section 3.1,
together with their computation time, for a variety of quantum configurations.

Table 4 summarizes all the experimental data. The input configurations are de-
scribed in the first column and grouped by number of qubits. They include elliptic
(Q−(. . . , 2)) and hyperbolic (Q+(. . . , 2)) quadrics, the full sets of lines of polar spaces
of rank three to five (W(. . . , 2)) and the complement of a skew-embedded three-qubit
split Cayley hexagon of order two, HS . The remaining configurations are subsets of
lines of the three-qubit space W(5, 2), composed of the l smallest lines according to
the lexicographic order introduced in B. Thus, every subset is constructed as a subset
of the next one in order to study the evolution of the computation time when the size
of the input configuration grows. Moreover, these inclusions of subsets entail that the
difficulty in computing the degree of contextuality or its upper bound increases with
increasing numbers of lines – a fact well confirmed by the experimental results.

The next two columns of Table 4 present, respectively, the number of observables p
and the number of contexts/lines l in a given configuration. The fourth column displays
the contextuality degree d found, or its best-known upper bound when preceded by
the symbol ≤. The fifth and sixth columns give, respectively, the dimension (dim) and
codimension (codim) of the incidence matrix of the configuration, the two parameters
that are essential for evaluating the performance of the Magma approach. The columns
Magma, SAT(x) [30] and OR-Tools(x) display the time taken by the corresponding
exact approaches to confirm that a given bound is the lowest (i. e., the contextuality
degree), whereas the columns SAT(a), OR-Tools(a) and heuristic display the time
taken to find the same number without checking its minimality. The times are given in
seconds unless otherwise specified. A prolonged dash (‘—’) represents the time duration
considered too long to be measured, typically more than 24 hours. The calculations
were performed on an Intel(R) Core(TM) i7-12700H processor with 20 cores and 16
Gb of RAM.

In the first block (set of rows) of Table 4 the number of lines l of the subsets of the
three-qubit space ranges from 70 to 87 in order to mainly demonstrate the performance
limits of the Magma approach. Similarly, l varies from 100 to 190 in the third block
of Table 4 in order to illustrate the performance limits for the SAT- and OR-Tools-
based exact approaches SAT(x) and OR-Tools(x). We opted here for a larger gap of
ten contexts between individual sets because here the complexity increases less rapidly
when compared with that characterizing the Magma approach. The penultimate block
of rows shows the limit of the approximate SAT-based approach SAT(a). The last
block shows the limits of all the methods except the heuristic one.
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Configuration p l d dim codim Magma SAT(x) OR-Tools(x) SAT(a) OR-Tools(a) heuristic
3-qubit lines 63 70 0 44 26 0.07 0.1 <0.01 0.03 <0.01 <0.01
3-qubit lines 63 71 0 44 27 0.14 0.1 <0.01 0.02 <0.01 <0.01
3-qubit lines 63 72 0 45 27 0.14 0.1 0.01 0.06 0.01 <0.01
3-qubit lines 63 73 0 45 28 0.26 0.1 0.01 0.09 0.01 <0.01
3-qubit lines 63 74 0 46 28 0.28 0.1 0.01 0.04 0.01 <0.01
3-qubit lines 63 75 0 46 29 0.52 0.1 0.02 0.08 0.02 <0.01
3-qubit lines 63 76 0 46 30 1.04 0.1 0.02 0.10 0.02 <0.01
3-qubit lines 63 77 0 46 31 2.05 0.1 0.02 0.08 0.02 <0.01
3-qubit lines 63 78 0 46 32 4.32 0.1 0.02 0.03 0.02 <0.01
3-qubit lines 63 79 0 46 33 8.55 0.1 0.02 0.02 0.02 <0.01
3-qubit lines 63 80 0 46 34 16.5 0.1 0.02 0.07 0.02 <0.01
3-qubit lines 63 81 0 46 35 32.4 0.1 0.02 0.12 0.02 <0.01
3-qubit lines 63 82 0 46 36 1m6 0.1 0.02 0.10 0.02 <0.01
3-qubit lines 63 83 0 46 37 1m22 0.1 0.03 0.14 0.03 <0.01
3-qubit lines 63 84 0 46 38 4m22 0.1 0.03 0.17 0.03 <0.01
3-qubit lines 63 85 0 46 39 9m01 0.1 0.04 0.12 0.04 <0.01
3-qubit lines 63 86 0 46 40 17m56 0.1 0.04 0.01 0.04 <0.01
3-qubit lines 63 87 0 46 41 34m23 0.1 0.04 0.12 0.04 <0.01
Q−(5, 2) 27 45 9 21 24 0.02 0.3 0.7 0.07 0.5 0.01
Q+(5, 2) 35 105 21 29 76 9 13 11m31 0.5 0.01 0.01

compl. of HS 63 252 24 56 196 — 50 1.5 9.7 0.01 0.01
3-qubit lines 63 100 0 51 49 — 0.1 0.1 0.1 0.01 0.01
3-qubit lines 63 110 3 54 56 — 0.1 0.15 0.1 0.01 0.7
3-qubit lines 63 120 8 55 65 — 0.5 0.02 0.3 0.02 0.02
3-qubit lines 63 130 12 55 75 — 4.4 0.16 2.8 0.07 0.01
3-qubit lines 63 140 15 55 85 — 42.0 0.2 24.6 0.06 0.01
3-qubit lines 63 150 20 55 95 — 5m44 3.2 3m10 0.24 0.04
3-qubit lines 63 160 24 55 105 — 7m49 6.1 1m18 0.16 0.07
3-qubit lines 63 170 27 55 115 — 21m48 53 13m55 0.22 0.01
3-qubit lines 63 180 29 55 125 — 1h20m 1m8 48m12 0.45 0.01
3-qubit lines 63 190 31 56 134 — 1h12m 1h18 13m07 0.51 0.03

W(5, 2) 63 315 63 56 259 — 19h —(>30h) 13m55 0.7 0.01

Q−(7, 2) 119 1071 ≤315 111 960 — — — — 8.3 0.01
Q+(7, 2) 135 1575 ≤315 127 1448 — — — — 8.7 0.01
W(7, 2) 255 5355 ≤1575 246 5109 — — — — 1m40 0.01

Q−(9, 2) 495 19635 ≤7087 485 19150 — — — — — 0.1
Q+(9, 2) 527 23715 ≤6975 517 23198 — — — — — 0.1
W(9, 2) 1023 86955 ≤31479 1012 85943 — — — — — 0.4

Table 4: A comparison of the performance of Magma-, SAT-, OR-Tools- and heuristic-
based minimizers in computing the contextuality degree of distinguished configurations in
symplectic polar spaces of rank three to five as well as of specific sets of lines in the three-
qubit space.
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[23] P. Lévay and Z. Szabó, Mermin pentagrams arising from Veldkamp lines for three qubits,
Journal of Physics A: Mathematical and Theoretical 50 (2017), no. 9, 095201. https:
//doi.org/10.1088/1751-8121/aa56aa.

[24] N. D. Mermin, Hidden variables and the two theorems of John Bell, Reviews of Modern
Physics 65 (1993), 803–815. https://doi.org/10.1103/RevModPhys.65.803.

[25] M. Minichiello, Solving MAX-XOR-SAT problems with stochastic local search,
Master’s Thesis, 2002. Masters in Mathematics 3rd Year Project Re-
port, University of York. https://citeseerx.ist.psu.edu/document?doi=

9225c5c1e3801c94347a696b61345aa39fac546e.

[26] A. Muller and A. Giorgetti, An abstract structure determines the contextuality degree of
observable-based Kochen-Specker proofs, Journal of Mathematical Physics 66 (2025), no. 8,
082203. https://doi.org/10.1063/5.0245341.

[27] , Qontextium, public GitHub repository, last accessed on May 5, 2025. Available
online in the contextualityDegree folder at https://github.com/quantcert/quantcert.
github.io/.

[28] A. Muller, M. Saniga, A. Giorgetti, H. de Boutray, and F. Holweck, Multi-qubit doilies:
Enumeration for all ranks and classification for ranks four and five, Journal of Compu-
tational Science 64 (October 2022), 101853. https://doi.org/10.1016/j.jocs.2022.
101853.

[29] A. Muller, M. Saniga, A. Giorgetti, F. Holweck, and C. Kelleher, A new heuristic approach
for contextuality degree estimates and its four- to six-qubit portrayals, Journal of Physics
A: Mathematical and Theoretical 58 (2025), no. 21, 215302. https://doi.org/10.1088/
1751-8121/add22b.

[30] A. Muller, M. Saniga, A. Giorgetti, H. de Boutray, and F. Holweck, New and im-
proved bounds on the contextuality degree of multi-qubit configurations, Mathematical
Structures in Computer Science 34 (2024), no. 4, 322–343. https://doi.org/10.1017/
S0960129524000057.

[31] S. E. Payne and J. A. Thas, Finite generalized quadrangles, European Mathematical So-
ciety, 2009. https://doi.org/https://doi.org/10.4171/066.

[32] L. Perron and V. Furnon, OR-Tools, Google, last accessed on July 5, 2024. Available online
at https://developers.google.com/optimization.

[33] M. Planat, M. Saniga, and F. Holweck, Distinguished three-qubit ‘magicity’ via automor-
phisms of the split Cayley hexagon, Quantum Information Processing 12 (2013), no. 7,
2535–2549. https://doi.org/10.1007/s11128-013-0547-3.

[34] B. Polster and H. Van Maldeghem, Some constructions of small generalized polygons,
Journal of Combinatorial Theory, Series A 96 (2001), 162–179. https://doi.org/10.
1006/jcta.2001.3174.

45

https://doi.org/10.1145/502090.502098
https://www.routledge.com/Finite-Geometries/Kiss-Szonyi/p/book/9781032475387?srsltid=AfmBOootKiPtuwy8h5MpKATD8PYvDzi5xnWpJRsJgv04aL-ZkfNaqtAy
https://www.routledge.com/Finite-Geometries/Kiss-Szonyi/p/book/9781032475387?srsltid=AfmBOootKiPtuwy8h5MpKATD8PYvDzi5xnWpJRsJgv04aL-ZkfNaqtAy
https://www.routledge.com/Finite-Geometries/Kiss-Szonyi/p/book/9781032475387?srsltid=AfmBOootKiPtuwy8h5MpKATD8PYvDzi5xnWpJRsJgv04aL-ZkfNaqtAy
https://doi.org/10.1007/JHEP09(2013)037
https://doi.org/10.1103/PhysRevD.78.124022
https://doi.org/10.1103/PhysRevD.78.124022
https://doi.org/10.1088/1751-8121/aa56aa
https://doi.org/10.1088/1751-8121/aa56aa
https://doi.org/10.1103/RevModPhys.65.803
https://citeseerx.ist.psu.edu/document?doi=9225c5c1e3801c94347a696b61345aa39fac546e
https://citeseerx.ist.psu.edu/document?doi=9225c5c1e3801c94347a696b61345aa39fac546e
https://doi.org/10.1063/5.0245341
https://github.com/quantcert/quantcert.github.io/
https://github.com/quantcert/quantcert.github.io/
https://doi.org/10.1016/j.jocs.2022.101853
https://doi.org/10.1016/j.jocs.2022.101853
https://doi.org/10.1088/1751-8121/add22b
https://doi.org/10.1088/1751-8121/add22b
https://doi.org/10.1017/S0960129524000057
https://doi.org/10.1017/S0960129524000057
https://doi.org/https://doi.org/10.4171/066
https://developers.google.com/optimization
https://doi.org/10.1007/s11128-013-0547-3
https://doi.org/10.1006/jcta.2001.3174
https://doi.org/10.1006/jcta.2001.3174


[35] B. Polster, Pretty pictures of geometries, Bulletin of the Belgian Mathematical Society -
Simon Stevin 5 (1998), no. 2/3, 417–425. https://doi.org/10.36045/bbms/1103409021.

[36] B. Polster, A. E. Schroth, and H. Van Maldeghem, Generalized flatland, The Mathematical
Intelligencer 23 (2001), 33–47. https://doi.org/10.1007/BF03024601.

[37] H. Pralle, The hyperplanes of DW (5, 2), Experimental Mathematics 14 (2005), 373–384.
https://doi.org/10.1080/10586458.2005.10128922.

[38] H. W. Richmond, The figure formed from six points in space of four dimensions, Mathe-
matische Annalen 53 (1900), 161–176. https://doi.org/10.1007/BF01456032.

[39] M. A. Ronan, Embeddings and hyperplanes of discrete geometries, European Journal of
Combinatorics 8 (1987), 179–185. https://doi.org/10.1016/S0195-6698(87)80009-4.

[40] M. Saniga, F. Holweck, and H. Jaffali, Taxonomy of three-qubit Mermin pentagrams, Sym-
metry 12 (2020), 534. https://doi.org/10.3390/sym12040534.

[41] M. Saniga, H. de Boutray, F. Holweck, and A. Giorgetti, Taxonomy of polar subspaces
of multi-qubit symplectic polar spaces of small rank, Mathematics 9 (2021), no. 18, 2272.
https://doi.org/10.3390/math9182272.

[42] M. Saniga, F. Holweck, C. Kelleher, A. Muller, A. Giorgetti, and H. de Boutray, Hexagons
govern three-qubit contextuality, Quantum 9 (2025), 1601. https://doi.org/10.22331/
q-2025-01-20-1601.

[43] M. Saniga and M. Planat, Multiple qubits as symplectic polar spaces of order two, Ad-
vanced Studies in Theoretical Physics 1 (2007), 1–4. https://www.m-hikari.com/astp/
astp2007/astp1-4-2007/sanigaASTP1-4-2007.pdf.

[44] A. E. Schroth, How to draw a hexagon, Discrete Mathematics 199 (1999), no. 1–3, 161–
171. https://doi.org/10.1016/S0012-365X(98)00294-5.

[45] M. Soos and K. S. Meel, Gaussian elimination meets maximum satisfiability, Proceed-
ings of the 18th International Conference on Principles of Knowledge Representation and
Reasoning, 2021, pp. 581–587. https://doi.org/10.24963/kr.2021/55.

[46] M. Soos, K. Nohl, and C. Castelluccia, Extending SAT solvers to cryptographic problems,
Proceedings of the 12th International Conference on Theory and Applications of Satisfia-
bility Testing, 2009, pp. 244–257. https://doi.org/10.1007/978-3-642-02777-2_24.

[47] K. Thas, The geometry of generalized Pauli operators of N-qudit Hilbert space, and an
application to MUBs, EPL - Europhysics Letters 86 (2009), 60005. https://doi.org/10.
1209/0295-5075/86/60005.
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