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A B S T R A C T

This paper proposes an observer-based 𝐻∞ fault-tolerant controller for a class of stochastic parabolic systems
(SPSs) subject to actuator failures. An augmented SPS that includes both the state vector and the error vector
is given. The coupling difficulty between faults and system states is solved by using matrix decompositions and
inequality techniques. The designed observer-based controller ensures that the SPSs achieve the mean square
finite horizon 𝐻∞ performance. Finally, a simulation of CPU chip thermal fault is provided to illustrate the
effectiveness of the proposed scheme.
1. Introduction

Due to aging, oxidation, and other factors, failures or imperfect
behaviors of the actuator or system components are inevitable. To
address this issue, different researchers have investigated fault-tolerant
control (FTC), which can maintain the overall performance of sys-
tems even when the system components fail. Over the past decade,
FTC has become one of the key control objectives reliability control
design. The study of FTC has made significant contributions to non-
linear systems [1], multi-agent systems [2], cooperative heterogeneous
systems [3], stochastic ordinary differential systems [4,5], etc. To men-
tion a few examples, in [4], a novel sliding mode observer approach
was proposed to address the problem of FTC for stochastic Marko-
vian systems with sensor and actuator faults, as well as disturbances.
In [5], an FTC design was developed using a reduced-order dynamic
estimator for quantum systems with faults. Another research frontier,
the fault-tolerant boundary control of deterministic flexible manipula-
tor systems [6] has also made significant progress. However, due to
inevitable random interference, many manufacturing processes with
thermal failures are modeled by stochastic partial differential equations
(SPDEs), and the related research has become an interesting topic.
Significant achievements have been made in sampled-data control [7],
intermittent control [8], boundary control [9], robust control [10],
𝐻∞ control [11], sliding mode control [12], non-fragile control [13]. 
These results have greatly enriched the control theory of SPDEs. For
example, [13] considered the robust non-fragile boundary control with
gain variation for SPDEs with input quantization. Earlier, [14] consid-
ered an adaptive boundary control for a class of stochastic parabolic
systems. By the stochastic approximation technique and the regular-
ization method, the unknown coefficient was estimated. Furthermore,
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few articles have addressed the FTC for SPDEs. Stochastic parabolic
system (SPS), as a classical model in SPDEs, has been limited research,
although it has been applied in many fields, such as magnetohydrody-
namic (MHD) [15], water pollution [16], heat conduction [17] and so
on. Therefore, it is worthwhile to establish a realistic FTC strategy for
SPS with the desired robustness performance.

Motivated by the above reasons, this paper derives an FTC scheme
for SPSs, which serves as a starting point for FTC of SPDEs. The adap-
tive FTC, which has been developed for deterministic systems and few
stochastic nonlinear systems, will also be progressively considered. The
coupling of spatial diffusion, the stochastic term and actuator faults in
SPSs presents significant challenges to performance analysis. With these
difficulties and the unmeasurable system states, we propose a feasible
scheme for SPSs to mitigate the effects of faults and disturbances and
ensuring that the controlled system achieves mean square finite-horizon
𝐻∞ performance. Furthermore, explicit expressions are provided for 
the controller and observer gain matrices. The main contribution of
this paper is twofold. First, inspired by [18], this study extends the
FTC scheme to the stochastic partial differential systems (i.e., SPSs). An
observer-based 𝐻∞ FTC is designed to compensate for the combined 
effects of actuator faults and external disturbances. Second, without
simplifying or transforming the dynamics of the infinite-dimensional
system, an LMI scheme is proposed that computes both the control gain
and observation gain.

Throughout this paper, (𝛺,𝑡,P) denotes a complete probability 
space adapted to the filtration {𝑡}𝑡≥0. L2(R𝑛) is the set of square-
integrable function spaces. 1(𝑎, 𝑏) denotes the Sobolev space defined 
on (𝑎, 𝑏) consisting of absolutely continuous functions whose derivatives 

E-mail addresses: wangyunzhu@hzcu.edu.cn (Y. Wang), wkn@hit.edu.cn (K.-N. Wu), yongxin.wu@femto-st.fr (Y. Wu).
. 

https://orcid.org/0000-0003-4122-9832
mailto:wangyunzhu@hzcu.edu.cn
mailto:wkn@hit.edu.cn
mailto:yongxin.wu@femto-st.fr


Y. Wang et al.

 

s

𝐹

𝐷

w

𝑓

 

 
a

 

are square-integrable. 𝐵 ≻ 0 (𝐵 ⪰ 0) indicates 𝐵 is a positive definite 
(semi-definite) matrix. ‖𝑦(𝑥, 𝑡)‖2 = ∫ 1

0 𝑦T𝑦d𝑥. The symbol ∗ denotes the 
symmetric element of the symmetric matrix. He(𝐴) represents 𝐴T +
𝐴. col{𝑎1, 𝑎2,… , 𝑎𝑛} is an 𝑛-dimensional column vector with elements 
𝑎1, 𝑎2,… , 𝑎𝑛. diag{𝑏1, 𝑏2,… , 𝑏𝑛} is the 𝑛 dimensional diagonal matrix
with elements 𝑏1, 𝑏2,… , 𝑏𝑛. ‖𝑍(𝑥, 𝑡)‖2 denotes ∫ 1

0 𝑍T𝑃𝑍d𝑥, where 𝑃 =
diag{𝑃 , 𝑃 } and 𝑃  is a positive definite matrix.

2. Problem statements and preliminaries

Consider the following disturbed stochastic parabolic system (SPS)
with actuator faults and disturbances
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d𝑦(𝑥, 𝑡) =
[

𝐴𝑦(𝑥, 𝑡) + 𝐵
𝜕2𝑦(𝑥, 𝑡)
𝜕𝑥2

+ 𝑢𝐹 (𝑥, 𝑡)

+ 𝑣(𝑥, 𝑡)
]

d𝑡 + 𝐶𝑦(𝑥, 𝑡)d𝑊 (𝑡),

𝑥 ∈ (0, 1), 𝑡 ∈ [0,∞),

𝑦(𝑥, 0) = 𝜙(𝑥),

𝑦𝑥(0, 𝑡) = 𝟎, 𝑦𝑥(1, 𝑡) = 𝟎,

(1)

where 𝑦(𝑥, 𝑡) ∈ L2(R𝑛) is the system state. 𝑥 and 𝑡 are the spatial 
and time variables, respectively. Matrices 𝐴,𝐵, 𝐶 ∈ R𝑛×𝑛 and 𝐵 ≻
0. 𝑢𝐹 (𝑥, 𝑡) ∈ R𝑛 is the actuator with an unknown fault. 𝑣(𝑥, 𝑡) is
the unknown external disturbance. 𝑊 (𝑡) is defined on (𝛺,𝑡,P), a
one-dimensional standard Brownian motion. E(⋅) is the mathematical
expectation associated with P. 𝜙(𝑥) ∈ R𝑛 is an initial continuous 
function.

The actuator with a fault is given as follows
𝑢𝐹 (𝑥, 𝑡) = 𝐹𝑎𝑢(𝑥, 𝑡), (2)

where 𝐹𝑎 ∈ R𝑛×𝑛 is the unknown effectiveness factor, 𝑢(𝑥, 𝑡) is the 
control input.

Remark 1.  In light of [19], the fault 𝐹𝑎 can be detected and isolated 
using a fault diagnosis scheme. Therefore, we do not consider the
fault diagnosis scheme and directly assume that the fault 𝐹𝑎 has been 
diagnosed in advance.

Based on [20], assume that the actuator effectiveness factor 𝐹𝑎 can 
be written in the following form

𝐹𝑎 = diag{𝑓1, 𝑓2,… , 𝑓𝑛},

where 0 ≤ 𝑓𝑖 ≤ 1 is the 𝑖th unknown constant for 𝑖 = 1, 2,… , 𝑛. Then 
there are three types for 𝑓𝑖, 𝑖 = 1, 2,… , 𝑛.

⎧

⎪

⎨

⎪

⎩

𝑓𝑖 = 0, Actuator is completely ineffective;
𝑓𝑖 = 1, No fault happens;
𝑂𝑡ℎ𝑒𝑟𝑠, Actuator is partially effective.

In this paper, we focus on the last case.
We make the following assumption, so that the known fault in-

formation can be effectively used, which will also help us obtain less
conservative results.

Assumption 2.  Assume that there exist known constants 𝑓
𝑖
 and 𝑓 𝑖, 

uch that 0 < 𝑓
𝑖
≤ 𝑓𝑖 ≤ 𝑓 𝑖 < 1 for 𝑖 = 1, 2,… , 𝑛. If we define matrices

̂𝑎 = diag{𝑓1, 𝑓2,… , 𝑓𝑛}, 𝐹𝑎 = diag{𝑓1, 𝑓2,… , 𝑓𝑛},

= diag{𝑑1, 𝑑2,… , 𝑑𝑛}, |𝐷| = diag{|𝑑1|, |𝑑2|,… , |𝑑𝑛|},
here

𝑖̂ =
𝑓 𝑖 + 𝑓

𝑖
2

, 𝑓𝑖 =
𝑓 𝑖 − 𝑓

𝑖

𝑓
𝑖
+ 𝑓 𝑖

, 𝑑𝑖 =
𝑓𝑖 − 𝑓𝑖
𝑓𝑖

,

for 𝑖 = 1, 2,… , 𝑛. Then |𝐷| ⪯ 𝐹𝑎 ⪯ 𝐼𝑛 by element and 𝐹𝑎 can be rewritten 
as

𝐹𝑎 = 𝐹𝑎(𝐼𝑛 +𝐷).
2 
Hence, the actuator with fault (2) can be integrated into the follow-
ing form

𝑢𝐹 (𝑥, 𝑡) = 𝐹𝑎(𝐼𝑛 +𝐷)𝑢(𝑥, 𝑡). (3)

Hereafter, we omit (𝑥, 𝑡) and denote 𝜕𝑦(𝑥,𝑡)𝜕𝑡  as 𝑦𝑡 and 𝜕
2𝑦(𝑥,𝑡)
𝜕𝑥2

 as 𝑦𝑥𝑥.
Note that the control input 𝑢 always depends on the full-domain 

states of system (1). However, system states in the domain cannot be
completely acquired in most of engineering applications and under this
condition, control input 𝑢 becomes invalid. Therefore, we construct an
observer as follows to estimate system states
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝑦̂ =
(

𝐴𝑦̂ + 𝐵𝑦̂𝑥𝑥 + 
(

𝑦̂(1, 𝑡) − 𝑦(1, 𝑡)
)

+ 𝑢
)

d𝑡,

𝑦̂(𝑥, 0) = 𝜙̂(𝑥),

𝑦̂𝑥(0, 𝑡) = 𝟎, 𝑦̂𝑥(1, 𝑡) = 𝟎,

(4)

where 𝑦̂ ∈ R𝑛 is the estimation of 𝑦 and the state at boundary 𝑥 = 1
is measurable.  ∈ R𝑛×𝑛 is the observer gain. 𝜙̂(𝑥) is the estimation of 
𝜙(𝑥).

The observer-based controller is designed as follows

𝑢 = −𝐾𝑦̂, (5)

where matrix 𝐾 ∈ R𝑛×𝑛 is the control gain, which needs to be deter-
mined.

Set 𝑒 = 𝑦− 𝑦̂ as the error. Let 𝜙̃(𝑥) = 𝜙(𝑥)−𝜙̂(𝑥), 𝑍 = col{𝑦, 𝑒}, 𝛹 (𝑥) =
col{𝜙(𝑥), 𝜙̃(𝑥)}. Then the following augmented closed-loop system can 
be established
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d𝑍 =
[

𝐴̃𝑍 + 𝐵̃𝑍𝑥𝑥 + ̄̄T𝑍(1, 𝑡) + 𝑢̃𝐹 + ̃𝑣
]

d𝑡

+ 𝐶̃𝑍d𝑊 (𝑡),

𝑍(𝑥, 0) = 𝛹 (𝑥),

𝑍𝑥(0, 𝑡) = 𝟎, 𝑍𝑥(1, 𝑡) = 𝟎,

(6)

where 𝐴̃ = diag{𝐴,𝐴}, 𝐵̃ = diag{𝐵,𝐵}, ̄ = col{0𝑛, 𝐼𝑛}, 𝐶̃ =
(

𝐶 0𝑛
𝐶 0𝑛

)

, 𝑢̃𝐹 =
(

−𝐹𝑎(𝐼𝑛 +𝐷)
𝐼𝑛 − 𝐹𝑎(𝐼𝑛 +𝐷)

)

𝐾𝑦̂, ̃ = col{𝐼𝑛, 𝐼𝑛}.

According the results in [21], Example 3.4, the well-posedness can
be guaranteed under the designed FTC (5) for linear system (6).

The following lemmas will be instrumental in the subsequent anal-
ysis.

Lemma 3 ([22]). If there exists vector 𝑧 ∈ 1(𝑎, 𝑏) with 𝑧(𝑎) = 0 or 
𝑧(𝑏) = 0. Then for matrix  ≻ 0, the following inequality holds

∫

𝑏

𝑎
𝑧T(𝑠)𝑧(𝑠)d𝑠 ≤ 4(𝑏 − 𝑎)2

𝜋2 ∫

𝑏

𝑎
( d𝑧
d𝑠

)T( d𝑧
d𝑠

)d𝑠.

Lemma 4 ([23]). Given matrices  , , 𝛬 ∈ R𝑛×𝑛. If 𝛬T𝛬 ⪯ 𝐼𝑛, then for
ny constant 𝜍 > 0 and vectors 𝜂, 𝜁 ∈ R𝑛, the following inequality holds

𝜂T𝛬𝜁 + 𝜁TT𝛬TT𝜂 ≤ 𝜍𝜂TT𝜂 + 1
𝜍
𝜁TT𝜁.

Our objective is to achieve the mean square finite horizon 𝐻∞
performance for the augmented system (6) by solving for the control
gain 𝐾 and observer gain . In the subsequent section, based on
inequality techniques and stochastic analysis theory, sufficient condi-
tions in terms of LMIs are provided for system (6) to achieve 𝐻∞
fault-tolerant performance.

3. Main results

Firstly, an augmented 𝐻∞ performance definition is provided as 
follows.
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Definition 5.  If for given constants 0 < 𝑇𝑓 < ∞, 𝛾 > 0, the following 
inequality holds

∫

𝑇𝑓

0 ∫

1

0
E(𝑍T𝑍)d𝑥d𝑡

≤ 𝛾2 ∫

𝑇𝑓

0 ∫

1

0
E(𝑣T𝑣)d𝑥d𝑡 + E‖𝑍(𝑥, 0)‖2,

(7)

hen system (6) achieves mean square finite-horizon 𝐻∞ performance.

Remark 6.  The initial value 𝑍(𝑥, 0) can be regarded as a disturbance. 
Hence, we can also provide an alternative definition as follows

∫

𝑇𝑓

0 ∫

1

0
E(𝑍T𝑍)d𝑥d𝑡

≤ 𝛾2
(

∫

𝑇𝑓

0 ∫

1

0
E(𝑣T𝑣)d𝑥d𝑡 + E‖𝑍(𝑥, 0)‖2

)

.
(8)

he given 𝐻∞ performance definition includes the case of initial value
𝑍(𝑥, 0) = 0, which has been studied in [24].

The following theorem provides a sufficient condition under which
the system (6) with controller (5) achieves the 𝐻∞ fault-tolerant per-
formance.

Theorem 7.  If there exist positive definite matrix 𝑃  and positive constants
𝑇𝑓 , 𝛾, 𝜖, such that for given matrices 𝐾,, the following inequality holds 

 =
[

𝛺11 𝛺12
∗ 𝛺22

]

≺ 0, (9)

here

𝛺11 = He(𝑃 𝐴̃ − 𝜋2

8
𝑃 𝐵̃ + 𝑃𝐺𝐾𝐸𝑛 + 𝑃 ̄̄T)

+ 𝐶̃T𝑃 𝐶̃ + 1
𝜖
𝐸T
𝑛𝐾

T𝐾𝐸𝑛 + 𝜖𝑃 ̃𝐹𝑎𝐹𝑎̃T𝑃

+ 𝛾−2𝑃 ̃̃T𝑃 + 𝐼2𝑛,

𝛺12 = −𝑃 ̄̄T, 𝛺22 = −𝜋2

8
He(𝑃 𝐵̃), 𝑃 = diag{𝑃 , 𝑃 },

𝐸𝑛 =
(

𝐼𝑛 −𝐼𝑛
)

, 𝐺 =
(

−𝐹𝑎
𝐼𝑛 − 𝐹𝑎

)

, then system (6) with observer-
based fault-tolerant controller (5) achieves mean square finite-horizon 𝐻∞

performance.

Proof.  Choose the Lyapunov functional 𝑉 (𝑡) = ∫ 1
0 𝑍T𝑃𝑍d𝑥, then the 

corresponding infinitesimal generator L𝑉 (𝑡) is given by

L𝑉 (𝑡) =∫

1

0
𝑍T

(

He(𝑃 𝐴̃) + 𝐶̃T𝑃 𝐶̃
)

𝑍 + He
(

𝑍T𝑃 𝐵̃𝑍𝑥𝑥

+ 𝑍T𝑃 ̄̄T𝑍(1, 𝑡) +𝑍T𝑃 𝑢̃𝐹 +𝑍T𝑃 ̃𝑣
)

d𝑥.

Let 𝐸𝑛 =
(

𝐼𝑛 −𝐼𝑛
)

. From 𝑢̃𝐹 =
(

−𝐹𝑎(𝐼𝑛 +𝐷)
𝐼𝑛 − 𝐹𝑎(𝐼𝑛 +𝐷)

)

𝐾𝑦̂, we 
have

∫

1

0
𝑍T𝑃 𝑢̃𝐹 d𝑥

= ∫

1

0
𝑍T𝑃

(

−𝐹𝑎(𝐼𝑛 +𝐷)
𝐼𝑛 − 𝐹𝑎(𝐼𝑛 +𝐷)

)

𝐾𝑦̂d𝑥

= ∫

1
𝑍T𝑃

(

−𝐹𝑎(𝐼𝑛 +𝐷)
𝐼 − 𝐹 (𝐼 +𝐷)

)

𝐾𝐸𝑛𝑍d𝑥.

(10)
0 𝑛 𝑎 𝑛

3 
Set matrices 𝐺 =
(

−𝐹𝑎
𝐼𝑛 − 𝐹𝑎

)

, we can derive that

∫

1

0
𝑍T𝑃

(

−𝐹𝑎(𝐼𝑛 +𝐷)
𝐼𝑛 − 𝐹𝑎(𝐼𝑛 +𝐷)

)

𝐾𝐸𝑛𝑍d𝑥

= ∫

1

0
(𝑦T𝑃 , 𝑒T𝑃 )

(

−𝐹𝑎(𝐼𝑛 +𝐷)
𝐼𝑛 − 𝐹𝑎(𝐼𝑛 +𝐷)

)

𝐾𝐸𝑛𝑍d𝑥

= ∫

1

0

(

(𝑦T, 𝑒T)
(

𝑃 0
0 𝑃

)(

−𝐹𝑎
𝐼𝑛 − 𝐹𝑎

)

𝐾𝐸𝑛𝑍

− (𝑦T, 𝑒T)
(

𝑃 0
0 𝑃

)(

𝐼𝑛
𝐼𝑛

)

𝐹𝑎𝐷𝐾𝐸𝑛𝑍
)

d𝑥

= ∫

1

0
𝑍T𝑃𝐺𝐾𝐸𝑛𝑍 −𝑍T𝑃 ̃𝐹𝑎𝐷𝐾𝐸𝑛𝑍d𝑥.

(11)

For any positive scalar 𝜖, Lemma  4 leads to 

− ∫

1

0
𝑍THe(𝑃 ̃𝐹𝑎𝐷𝐾𝐸𝑛)𝑍d𝑥

≤ ∫

1

0
𝑍T( 1

𝜖
𝐸T
𝑛𝐾

T𝐾𝐸𝑛 + 𝜖𝑃 ̃𝐹𝑎𝐹𝑎̃T𝑃 )𝑍d𝑥.
(12)

Set 𝑍̄ = 𝑍 −𝑍(1, 𝑡), integration by parts and Lemma  3 yield

∫

1

0
𝑍T𝑃 𝐵̃𝑍𝑥𝑥d𝑥 = −∫

1

0
𝑍T

𝑥𝑃 𝐵̃𝑍𝑥d𝑥

≤ ∫

1

0
−𝜋2

8
𝑍̄T𝑃 𝐵̃𝑍̄ − 𝜋2

8
𝑍T𝑃 𝐵̃𝑍d𝑥.

Above analyses follow that
L𝑉 (𝑡)

≤ ∫

1

0
𝑍T

(

He(𝑃 𝐴̃ − 𝜋2

8
𝑃 𝐵̃ + 𝑃𝐺𝐾𝐸𝑛 + 𝑃 ̄̄T)

+ 𝐶̃T𝑃 𝐶̃ + 1
𝜖
𝐸T
𝑛𝐾

T𝐾𝐸𝑛 + 𝜖𝑃 ̃𝐹𝑎𝐹𝑎̃T𝑃
)

𝑍

+ He
(

𝑍T𝑃 ̃𝑣 −𝑍T𝑃 ̄̄T𝑍̄ − 𝜋2

8
𝑍̄T𝑃 𝐵̃𝑍̄

)

d𝑥.

Note that 𝑉 (0) = ‖𝑍(𝑥, 0)‖2 and 𝑉 (𝑇𝑓 ) > 0, then the following 
nequality holds

0 = E∫

𝑇𝑓

0
L𝑉 (𝑡)d𝑡 + E𝑉 (0) − E𝑉 (𝑇𝑓 )

≤ E∫

𝑇𝑓

0
L𝑉 (𝑡)d𝑡 + E𝑉 (0).

Keeping condition (9) in mind, we can directly obtain the following
inequality

E∫

𝑇𝑓

0 ∫

1

0
(𝑍T𝑍 − 𝛾2𝑣T𝑣)d𝑥d𝑡 − ∫

1

0
E𝑉 (0)d𝑥

≤ E∫

𝑇𝑓

0 ∫

1

0
−𝛾2(𝑣 − 𝛾−2̃T𝑃𝑍)T(𝑣 − 𝛾−2̃T𝑃𝑍)

+𝑍T[𝐼2𝑛 + 𝛾−2𝑃 ̃̃T𝑃 + He(𝑃 𝐴̃ − 𝜋2

8
𝑃 𝐵̃

+ 𝑃𝐺𝐾𝐸𝑛 + 𝑃 ̄̄T) + 𝐶̃T𝑃 𝐶̃ + 1
𝜖
𝐸T
𝑛𝐾

T𝐾𝐸𝑛

+ 𝜖𝑃 ̃𝐹𝑎𝐹𝑎̃T𝑃 ]𝑍 − He
(

𝑍T𝑃 ̄̄T𝑍̄

+ 𝜋2

8
𝑍̄T𝑃 𝐵̃𝑍̄

)

d𝑥d𝑡

≤ E∫

𝑇𝑓

0 ∫

1

0
𝛷T𝛷d𝑥d𝑡 < 0,

here 𝛷 = col{𝑍, 𝑍̄},  is defined as (9), which concludes the 
proof. □

Remark 8.  The matrix decompositions and inequality techniques are
novelly introduced in equality (11) to address the difficulty of coupling
arising from unknown faults and system states.
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Theorem  7 gives the sufficient condition such that the observer-
based controller can stabilize the system in the 𝐻∞ sense. However, the 
computation of the gain matrices 𝐾 and  remains challenging. Hence, 
we introduce the following result which gives us an efficient way to
compute the two gains via an LMI approach.

Theorem 9.  Given positive constants 𝑇𝑓 , 𝛾, 𝜖, fault matrices 𝐹𝑎, if there
exist invertible positive definite matrix 𝑀 ∈ R𝑛×𝑛 and matrix 𝑁,𝑅 ∈ R𝑛×𝑛,
such that the following LMI holds
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛺̃11 𝛺̃12 0𝑛 0𝑛 𝛺̃15 𝛺̃16 𝛺̃17 0𝑛
∗ 𝛺̃22 0𝑛 𝛺̃24 𝛺̃25 0𝑛 0𝑛 𝛺̃28
∗ ∗ 𝛺̃33 0𝑛 0𝑛 0𝑛 0𝑛 0𝑛
∗ ∗ ∗ 𝛺̃44 0𝑛 0𝑛 0𝑛 0𝑛
∗ ∗ ∗ ∗ 𝛺̃55 0𝑛 0𝑛 0𝑛
∗ ∗ ∗ ∗ ∗ 𝛺̃66 0𝑛 0𝑛
∗ ∗ ∗ ∗ ∗ ∗ 𝛺̃77 0𝑛
∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝛺̃88

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≺ 0, (13)

where

𝛺̃11 =He(𝐴𝑀 − 𝜋2

8
𝐵𝑀 − 𝐹𝑎𝑁) + 𝛾−2𝐼𝑛

+ 𝜖𝐹𝑎𝐹𝑎,

𝛺̃22 =He(𝐴𝑀 − 𝜋2

8
𝐵𝑀 − (𝐼𝑛 − 𝐹𝑎)𝑁 + 𝑅) + 𝛾−2𝐼𝑛

+ 𝜖𝐹𝑎𝐹𝑎,

𝛺̃12 = 𝛾−2𝐼𝑛 + 𝜖𝐹𝑎𝐹𝑎 + 𝐹𝑎𝑁 +𝑁T(𝐼𝑛 − 𝐹𝑎), 𝛺̃15 = 𝑁T,

̃16 = 𝑀𝐶T, 𝛺̃17 = 𝛺̃28 = 𝑀, 𝛺̃24 = −𝑅,

𝛺̃25 = −𝑁T, 𝛺̃33 = 𝛺̃44 = −𝜋2

8
He(𝐵𝑀), 𝛺̃55 = −𝜖𝐼𝑛,

𝛺̃66 = −𝑀
2
, 𝛺̃77 = 𝛺̃88 = −𝐼𝑛,

then system (6) with (5) achieves mean square finite-horizon 𝐻∞ perfor-
mance. Furthermore, the controller gain and observer gain are designed as
𝐾 = 𝑁𝑀−1 and  = 𝑅𝑀−1.

Proof.  Take 𝑀 = 𝑃−1. By Pre-and post-multiplying (9) by diag{𝑀,𝑀,
𝑀,𝑀} and its transpose, we obtain 

̄ =

⎡

⎢

⎢

⎢

⎢

⎣

𝛺̄11 𝛺̄12 0𝑛 0𝑛
∗ 𝛺̄22 0𝑛 𝛺̃24
∗ ∗ 𝛺̃33 0𝑛
∗ ∗ ∗ 𝛺̃44

⎤

⎥

⎥

⎥

⎥

⎦

≺ 0, (14)

where

𝛺̄11 =He(𝐴𝑀 − 𝜋2

8
𝐵𝑀 − 𝐹𝑎𝑁) + 𝛾−2𝐼𝑛 +𝑀𝑀

+ 2𝑀𝐶T𝑀−1𝐶𝑀 + 1
𝜖
𝑁T𝑁 + 𝜖𝐹𝑎𝐹𝑎,

𝛺̄12 = 𝛾−2𝐼𝑛 −
1
𝜖
𝑁T𝑁 + 𝜖𝐹𝑎𝐹𝑎 + 𝐹𝑎𝑁 +𝑁T(𝐼𝑛 − 𝐹𝑎),

𝛺̄22 =He(𝐴𝑀 − 𝜋2

8
𝐵𝑀 + 𝑅 − (𝐼𝑛 − 𝐹𝑎)𝑁) + 𝛾−2𝐼𝑛

+ 𝑀𝑀 + 1
𝜖
𝑁T𝑁 + 𝜖𝐹𝑎𝐹𝑎,

and the other parameters are defined as (13).
By virtue of Schur complement lemma [23], inequality (14) can be

rewritten as condition (13). We complete the proof. □

Remark 10.  Under the designed controller (5), compared to di-
rectly using the unknown effectiveness factor 𝐹𝑎, the application of 
Assumption 2 yields less conservative results and captures richer fault
information. Specifically, inequalities (10)–(12) derived without re-
lying on Assumption  2 demonstrate that ∫ 1

0 He(𝑍T𝑃 𝑢̃𝐹 )d𝑥 ≤ ∫ 1
0 𝑍T

(He(𝑃
(

0𝑛
)

𝐾𝐸𝑛)+
1𝐸T

𝑛𝐾
T𝐾𝐸𝑛+𝜖𝑃 ̃̃T𝑃 )𝑍d𝑥. Since 

(

−𝐹𝑎
)

≤

𝐼𝑛 𝜖 𝐼𝑛 − 𝐹𝑎

4 
Fig. 1. CPU thermal model with surface package.

(

0𝑛
𝐼𝑛

)

 and 𝐹𝑎𝐹𝑎 ≤ 𝐼𝑛, it means that He(𝑃𝐺𝐾𝐸𝑛) + 𝜖𝑃 ̃𝐹𝑎𝐹𝑎̃T𝑃 ≤

He(𝑃
(

0𝑛
𝐼𝑛

)

𝐾𝐸𝑛) +𝜖𝑃 ̃̃T𝑃  holds. Hence, the obtained result in the 
paper is less conservative.

4. A simulation of thermal fault-tolerant performance for a CPU
chip

In this section, we illustrate the effectiveness of the proposed meth-
ods by studying the thermal fault-tolerance performance of a CPU
chip.

When a CPU chip is operating, heat can be dissipated through the
heat sink in the package seal, see Fig.  1 and [25,26] for more details.
We assume that the package seal is insulated. Then, we focus on the
following one-dimensional heat conduction model
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌𝑐𝑝d𝑇 =
[

𝑘𝑠𝑇𝑥𝑥 + 𝑎𝑇 + 𝑢𝐹𝑇 + 𝑣𝑇

]

d𝑡 + 𝑐𝑇 d𝑊 (𝑡),

𝑥 ∈ (0, 1), 𝑡 ∈ [0,∞),

− 𝑘𝑠𝑇𝑥(0, 𝑡) = 0, −𝑘𝑠𝑇𝑥(1, 𝑡) = 0,

𝑇 (𝑥, 0) = 𝑇0,

(15)

where 𝑇 (𝑥, 𝑡) is the temperature field distribution on the CPU chip. 𝑘𝑠
denotes the thermal conductivity coefficient. 𝜌𝑐𝑝 represents the volu-
metric heat capacity coefficient. 𝑎 is the internal temperature effect. 𝑐 is 
the coefficient. 𝑇0 is the initial temperature of the electronic component 
at 𝑡 = 0. 𝑢𝐹𝑇 (𝑡) is the heat sink with unknown fault.

The disturbance 𝑣𝑇  and stochastic factor 𝑊 (𝑡) in the chip thermal 
model may result from heat loss between the packaging seal and
the external environment temperature, or from other unmodeled heat
generation.

Remark 11.  Potential causes of heat sink failure include:
• Internal short circuits caused by poor heat sink design or manu-
facturing.

• Local device thermal damage caused by operational overload.
• External physical damage, such as device aging.
Set initial temperature 𝑇0 = col{0.5 cos(2𝜋𝑥), 0.01 cos(2𝜋𝑥)} and

stochastic disturbance temperature 𝑣𝑇 = sin(2𝑥) cos(𝜋𝑡). Choose system 
parameters as 𝜌𝑐𝑝 = 1, 𝑘𝑠 = 2, 𝑎 = 0.1, 𝑐 = 0.1, 𝜖 = 1, 𝛾 = 1. 
Assume that failure factor 𝐹 is given as 0.4, 0.7, 0.9, respectively. Then 
there exist upper and lower bounds of the fault 𝐹  and 𝐹 , such that 
the corresponding fault information 𝐹 , 𝐹  and 𝐷 can be derived. By
solving LMI (13) in Theorem  9, control gains 𝐾, observer gains  and
the calculated performance indexes 𝛾∗ are obtained and are shown as 
Table  1.

In order to demonstrate the effectiveness of the designed controller,
we set 𝑢(𝑥, 𝑡) = 0 and further derive the performance index 𝛾†, which is 
greater than 𝛾 = 1. It shows that the proposed controller significantly 
improves the robustness of the closed-loop system.

Fig.  2 shows that the system state without the controller is not mean
square stable while the controlled system with various failure factors
is mean square stable. This more clearly illustrates the effectiveness of
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Table 1
Performance indexes with and without FTC.
𝐹 𝐹 𝐹 𝐹 𝐹 𝐷 𝐾  𝑃 𝛾∗ 𝛾†

0.4 0.41 0.37 0.39 0.05 0.03 0.48 −2.22 1.12 0.72 1.7
0.7 0.72 0.68 0.7 0.03 0 0.93 −2.36 0.95 0.5 1.65
0.9 0.93 0.85 0.89 0.04 0.01 1.2 −2.4 0.82 0.47 1.72
Fig. 2. The norms of system states with and without FTC.

the fault-tolerant controller. But it is worth noting that there are still
few methods to deal with multiplicative failure of the actuator. The
designed controller is still sensitive to faults, so the robustness results
we obtained could be further optimized in the future.

5. Conclusion

This paper studies the observer-based 𝐻∞ fault-tolerant control with
actuator faults for a type of stochastic parabolic system. The proposed
scheme compensates for the effects of the system under partial actuator
failures and external disturbances. The obtained sufficient conditions
can be expressed as a set of solutions to LMI. Finally, the control scheme
is applied to verify the thermal fault robustness of a CPU chip.
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