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Abstract The boundary stabilization of a class of reaction-

diffusion systems perturbed by second-order processes

is investigated in this work. It extends the results from

random ordinary differential equations to random reaction-

diffusion systems (RRDSs). First, the stability analysis

of RRDSs with boundary input is presented. Using the

Lyapunov method and stochastic process estimation,

two criteria of asymptotic stability are established in 2-

nd moment and in probability, by applying Wirtinger’s

inequality and the weak law of large numbers. Sec-

ond, based on the obtained stability criteria, a class

of boundary control problems is solved by constructing

a Lyapunov functional and designing integral bound-

ary controllers. Additionally, the influence of nonlinear

terms and the diffusion coefficient on stability is ana-

lyzed. Finally, numerical simulations demonstrate the
effectiveness of the boundary controller.
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1 Introduction

In many branches of engineering and science, systems

are often disturbed by stochastic noise from the ex-

ternal environment. Such systems are typically repre-

sented by the stochastic differential equations (SDEs)

dx = f(x, t)dt + g(x, t)dB(t) driven by Brownian mo-

tion (BM). The statistical characteristics of BM are ex-

tensively employed in mathematical analysis. Based on

the well known Itô formula, the fundamental theory

of various types of stochastic systems has been intro-
duced in [1,17,16]. SDEs have seen significant devel-

opment, with numerous theoretical results have been

reported in [28,27,9,32]. However, it is worth noting

that BM is not differential. In addition, the variance

of BM is unbounded since its mean power is infinite.

This leads SDEs seem not to be the most applicable

model. In other words, not all environmental distur-

bances can be well modelled by white noise, deduced

from the BM [12]. The disadvantage of SDEs has driven

the work of [21] and [2] on random differential equa-

tions. In contrast to the stochastic system, the second-

order processes ξ(t) is introduced in the random differ-

ential system ẋ = f(x, t) + g(x, t)ξ(t). Modelling with

random systems in practical applications is more rea-

sonable from the energy perspective than SDEs due to

the finite mean power of ξ(t). Recently, the research on

random systems has attracted much attention [10,8,

22,11]. The existence-and-uniqueness of solutions have

been investigated for non-linear random systems by Wu

et al. in [29], and the fundamental theoretical results
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for the analysis of the system have been established.

Based on this work, Zhang et al. extended the results

to switching systems in [8] and applied the results to

analyze the stationary process of a spring pendulum

suspended from a randomly vibrating ceiling. All the

aftermentioned works have been established for systems

described by ordinary differential equations (ODEs).

Diffusion is an important phenomenon to present

many applications in the real world, and the reaction-

diffusion systems (RDSs), as a class of partial differen-

tial equations (PDEs), are suitable to describe the dif-

fusion effect. RDSs have a widely application in practi-

cal engineering, such as the internal temperature of the

lithium battery is modelled by RDSs [31]; RDSs are

also used to describe the heat dissipation of the CPU

[3]. Different results have been reported for stochastic

RDSs in [4,15,13]. However, real applications are of-

ten disturbed by energy-limited noise, therefore it is of

engineering interest to investigate the random reaction-

diffusion systems (RRDSs) with coloured noise.

In control theory, analyzing stability is a crucial and

foundational task. In [29], Wu investigated several types

of stability for random systems and established the the-

oretical framework for Lyapunov stability analysis. The

stability analysis of RDSs is also well developed with

the help of Lyapunov’s second method. The impulsive

RDSs is considered in [24]. Han in [5] proposed suffi-

cient conditions to ensure that RDNNs are stochastic

finite-time bounded. With the development of modern

control theory, different control strategies has been in-

vestigated. Reaction-diffusion systems typically employ

two fundamental control strategies: distributed control

and boundary control. However, in some environments

of the applications, such as high internal environmental

temperatures (inside a boiler) or limited component size

(inside a CPU or battery), implementing distributed ac-

tuations at every point in the spatial domain is nearly

unfeasible. Thus boundary control seems to be a more

efficient and less costly control strategy. The boundary

control theory of reaction-diffusion systems has been

developed in recent years [14,26,7]. Nevertheless, there

has been limited focus on RDSs influenced by colored

noise. It is interesting to study the RRDSs, while the

following challenges should be investigated.

I Existing Lyapunov stability results for ODEs are

not directly applicable to RRDSs. The inclusion of

spatial diffusion terms and boundary control intro-

duces challenges in extending these theories. Conse-

quently, the stability analysis of RRDSs remains an

open and challenging problem.

II The stability of stochastic differential systems driven

by BM was explored in [16] using the Itô formula

and stopping time theory. For RRDSs with colored

noise, foundational tools such as the Itô formula are

no longer applicable. This necessitates the develop-

ment of alternative analytical methods, making the

stability analysis of RRDSs a complex task.

III Applying the results to boundary control presents

several challenges. A key difficulty lies in determin-

ing the appropriate form of the boundary controller

while ensuring it effectively integrates boundary in-

formation into the system analysis. Moreover, un-

derstanding how system parameters influence stabil-

ity requires careful consideration, adding complexity

to the overall process.

Based on the above discussion, this study develops

a Lyapunov stability theoretical framework for RRDSs.

The results are utilized in a specific type of boundary

control problem. Additionally, the theoretical results

are demonstrated through numerical examples. The key

contributions of this research are outlined as follows.

I To handle diffusion terms and incorporate bound-

ary information, this research develops new criteria

for RRDSs (conditions (4)-(7) and (13)-(16)), differ-

ing from existing ODEs stability theories. By con-

structing an integral Lyapunov functional, it estab-

lishes conditions for exponential stability in the sec-

ond moment and asymptotic stability in probabil-

ity, offering a new theoretical foundation for RRDSs

stability analysis.

II Unlike stochastic RDSs, this research leverages the

weak law of large numbers (WLLN) and inequal-

ity techniques to develop a probability-based crite-

rion for ensuring the asymptotic stability of RRDSs.

This approach offers a novel framework for analyz-

ing the asymptotic stability of random partial dif-

ferential systems.

III Applying the obtained stability results, a class of

boundary stabilization problem is investigated by

designing an integral boundary controller. Further-

more, these results facilitate the investigation of how

Lipschitz constants and diffusion coefficients impact

the stability of RRDSs.

Notations: The symbol | · | denotes the Euclidean

norm. Rn×m is used to denote the set of real matri-

ces with dimensions n × m. The unit matrix of size

n × n is denoted by In, while the “⊤” indicates the

transpose of a vector or matrix. For a matrix Z, “Z−1”

denotes the inverse of Z. The function sym(Z) is de-

fined as ZT + Z, and the symbol λmax(Z) stands for

the maximum eigenvalue of the symmetric matrix Z.

The expression Z < 0 (or ≤ 0) indicates that Z is

a real symmetric matrix that is negative definite (or

negative semi-definite). The space L2([0, 1];Rn) repre-
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sents the Hilbert space of square-integrable vector func-

tions θ(x), where the L2-norm is given by ∥θ(·)∥2 =∫ 1

0
θ(x)Tθ(x)dx. C2,1(Rn × R+;R+) denotes the set of

non-negative functions V (y, t) on Rn × R+, which are

continuously differentiable to the 2-nd order with re-

spect to y and differentiable to the 1-st order with re-

spect to t. Lastly, W 1,2([0, 1];Rn) refers to the Sobolev

space of vector functions ζ(x) : [0, 1] → Rn that are

absolutely continuous, with derivatives dly(x)
dxl that are

square integrable up to order l.

2 Preliminaries

In this work, we consider a non-linear RRDS described

by

∂y(x, t)

∂t
= f(y(x, t)) +A

∂2y(x, t)

∂x2
+ g(y(x, t))ξ(t), (1)

where ξ(t) ∈ Rm, defined on a complete probability

space (Ω,F ,Ft, P ) with a filtration Ft that meets the

usual conditions, represents a stochastic process (SP)

rather than white noise. y(x, t) = [y1(x, t), . . . , yn(x, t)]
T

∈ Rn is the state of the system. A represent positive def-

inite diffusion matrix. f : Rn → Rn and g : Rn → Rn×m

are non-linear functions.

The initial value function for the RRDS (1) is spec-

ified as follows

y(x, 0) = φ(x), (2)

where φ ∈ L2([0, 1];Rn).

The boundary conditions (Neumann) for the RRDS

(1) are defined as follows

∂y(x, t)

∂x

∣∣∣
x=0

= 0,
∂y(x, t)

∂x

∣∣∣
x=1

= µ(t), (3)

where µ(t) is the known function.

Assumption 1 For non-linear functions f : Rn → Rn

and g : Rn → Rn×m, there exist positive constants L1

and L2 such that the following inequalities are satisfied

for any ρ ∈ Rn

fT(ρ)f(ρ) ≤ L1ρ
Tρ,

λmax(g
T(ρ)g(ρ)) ≤ L2ρ

Tρ.

Assumption 2 ([29]) The process ξ(t) is adapted to

the filtration Ft and is piecewise continuous. Moreover,

there is a constant M > 0 such that

sup
t≥0

E|ξ(t)|2 < M.

Remark 1 Assumption 1 ensures that f and g satisfy

Lipschitz condition. The Lemma 3 in [29] follows that

|ξ(t)| < ∞ almost surely for ∀t ∈ [0, T ] when T is de-

termined. In fact, the term g(y(x, t))ξ(t) in the system

(1) can be considered to also satisfy the Lipschitz con-

dition. Combining the results of Chapter 8 in [20], there

exists a unique classical solution for the system (1) on

[0, T ]. Moreover, since T ≥ 0 is arbitrary, this result is

valid for the entire time interval.

Remark 2 It should be noted that Assumption 2 is a

standard assumption, which can be inferred from the

results in [29] that both widely stationary and strictly

stationary processes satisfy supt≥0 E|ξ(t)|2 < M . From

physically point of view, energy of random disturbances

in nature is generally finite, then physical feasibility re-

quires that the mean power of ξ(t) is bounded, which

implies Assumption 2. In more details, Wu et al. in

[30] explained the reasonableness of Assumption 2 by

mathematical theoretical analysis and physical exam-

ples, respectively.

To guarantee y(x, t) ≡ 0 being the equilibrium, let

the functions f and g vanish at the origin, i.e. f(0) =

0, g(0) = 0. The following sets of functions are specified

before the definition is presented.

K = {γ : R+ → R+

∣∣ γ(0) = 0, γ is continuous, strictly

increasing};
KL = {β : R+×R+ → R+

∣∣ β(·, t) ∈ K,∀t ∈ R+ and β(s, t)

strictly decreases to 0 as t → +∞ for ∀s ≥ 0};
K∞ = {γ : R+ → R+

∣∣ γ ∈ K and γ is unbounded}.
Definitions of stability for SDEs are provided in [1,

18,16]. Recently, Wu introduced some stability defini-

tions for random systems in [29], which are now adapted

for RRDSs in this paper.

Definition 1 If there exists parameters k1, k2 > 0 such

that the following holds for ∀t ≥ 0

E∥y(·, t)∥2 ≤ k1∥φ(·)∥2e−k2t,

then, we say that RRDS (1) is exponentially stable in

2-nd moment (ES-2-M).

In the sequel, we use ES-2-M for both exponentially

stable in 2-nd moment and exponential stability in 2-

nd moment when there is no confusion arises.

Definition 2 For any ε > 0, if there exists a class-K
function γ(·) such that the following holds for ∀t ≥ 0

P
{
∥y(·, t)∥2 ≤ γ

(
∥φ(·)∥2

)}
≥ 1− ε,

then, we say that RRDS (1) is stable in probability.



4 Zhuo Xue et al.

Definition 3 For any ε > 0, if exists a class-KL func-

tion β(·, ·) and T > 0 such that the following holds for

∀t ≥ T

P
{
∥y(·, t)∥2 ≤ β(∥φ(·)∥2, t)

}
≥ 1− ε,

then, we say that RRDS (1) is attractive in probability.

For any ε > 0, if there exists a class-KL function

β(·, ·) such that the following holds for ∀t ≥ 0

P
{
∥y(·, t)∥2 ≤ β(∥φ(·)∥2, t)

}
≥ 1− ε,

then, we say that RRDS (1) is asymptotically stable in

probability (AS-P).

In the sequel, we use AS-P for both asymptotically sta-

ble in probability and asymptotic stability in probabil-

ity when there is no confusion arises.

Lemma 1 (Wirtinger’s inequality [25]) Consider

a vector function θ ∈ W 1,2([0, 1];Rn) such that θ(0) = 0

or θ(1) = 0. For a matrix Γ > 0, the following holds∫ 1

0

θT(s)Γθ(s)ds ≤ 4

π2

∫ 1

0

(
d θ(s)

ds

)T

Γ

(
d θ(s)

ds

)
ds.

3 Stability analysis of RRDSs

In the following analysis, we will investigate the stabil-

ity for RRDSs both in 2-nd moment and in probabil-

ity. By utilizing the Lyapunov functional method, the

WLLN and inequality techniques, a theoretical frame-

work on stability of RRDSs will be established prelim-

inarily.

3.1 Exponential stability in moment

In the first part, we will consider the exponential sta-

bility in moment sense of system (1). To derive the key

results, we impose the following assumption on the SP

ξ(t).

Assumption 3 ([29]) For a stationary process ξ(t),

there exists a function ς(·) such that for any σ > 0 and

t1 ≥ 0, the following inequality holds:

E exp

{
σ

∫ t1

0

|ξ(s)|ds
}

≤ exp {ς(σ)t1} .

Remark 3 The reasonability of Assumption 3 has been

stated in Section VI of [29], and the fact that a station-

ary Gaussian process satisfies this estimate has been

determined.

In the sequel, we suppress the variables (x, t) wherever

no confusion arises.

Theorem 4 For the system (1), under Assumptions 1-

3, assume there exist functions W ∈ C2,1(Rn×R+;R+),

a non-negative function ϱ(·) ≥ 0, and positive constants

m1, m2, and c such that

trace

(
1

2

(
WT

yyA+ATWyy

))
≥ ϱ(t), (4)

|Wy(y, t)g(y)| ≤ cW (y, t), (5)∫ 1

0

Ψdx ≤
∫ 1

0

−ς(c)W (y, t)dx, (6)

m1∥y(·, t)∥2 ≤
∫ 1

0

W (y, t)dx ≤ m2∥y(·, t)∥2, (7)

where

Ψ =Wt(y, t) +Wy(y, t)f(y) +Wy(y(1, t), t)Aµ(t)

− π2ϱ(t)

4
(y − y(1, t))T(y − y(1, t)).

Then system (1) achieves ES-2-M.

Proof. Consider the integral Lyapunov functional given

by

V (t) =

∫ 1

0

W (y, t)dx.

To find its derivative along RRDS (1)

V̇ (t) =

∫ 1

0

Wt(y, t) +Wy(y, t)ytdx

=

∫ 1

0

Wt(y, t) +Wy(y, t)(f(y) +Ayxx

+ g(y)ξ(t))dx

=

∫ 1

0

Wt(y, t) +Wy(y, t)f(y) +Wy(y, t)Ayxx

+Wy(y, t)g(y)ξ(t)dx.

(8)

By applying integration by parts and using condition

(4), it becomes evident that∫ 1

0

Wy(y, t)Ayxxdx

=Wy(y, t)Ayx

∣∣∣x=1

x=0
−
∫ 1

0

(Wy(y, t))xAyxdx

=Wy(y(1, t), t)Aµ(t)−
∫ 1

0

(Wy(y, t))xAyxdx

=Wy(y(1, t), t)Aµ(t)−
∫ 1

0

yTxWyy(y, t)Ayxdx

=Wy(y(1, t), t)Aµ(t)−
∫ 1

0

trace

(
1

2

(
WT

yyA+ATWyy

))
yTx yxdx

≤Wy(y(1, t), t)Aµ(t)− ϱ(t)

∫ 1

0

yTx yxdx.
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Define ȳ(x, t) = y(x, t)−y(1, t). It is straightforward to

show that ȳ(1, t) = 0 and yTx yx = ȳTx ȳx. Furthermore,

it follows Lemma 1 that we get∫ 1

0

Wy(y, t)Ayxxdx

=Wy(y(1, t), t)Aµ(t)− ϱ(t)

∫ 1

0

ȳTx ȳxdx.

≤Wy(y(1, t), t)Aµ(t)−
π2ϱ(t)

4

∫ 1

0

(y − y(1, t))T

× (y − y(1, t))dx.

(9)

Substituting (9) into (8) and referring to conditions (5)

- (6) yield the following

V̇ (t)

≤
∫ 1

0

Wt(y, t) +Wy(y, t)f(y) +Wy(y(1, t), t)

×Aµ(t)− π2ϱ(t)

4
(y − y(1, t))T(y − y(1, t))

+Wy(y, t)g(y)ξ(t)dx

≤
∫ 1

0

−λW (y, t) + cW (y, t)|ξ(t)|dx

=(−λ+ c|ξ(t)|)V (t),

(10)

where λ is a positive constant such that
∫ 1

0
Ψdx ≤∫ 1

0
−λW (y, t)dx ≤

∫ 1

0
−ς(c)W (y, t)dx.

From (10) and (7), we arrive at

m1∥y(·, t)∥2

≤V (t) ≤ V (0) exp

{∫ t

0

(−λ+ c|ξ(s)|)ds
}

≤m2∥y(·, 0)∥2e−λt exp

{
c

∫ t

0

|ξ(s)|ds
}
.

(11)

Taking expectations on both sides of (11), we have

E∥y(·, t)∥2 ≤ m2

m1
∥φ(·)∥2e−λtE exp

{
c

∫ t

0

|ξ(s)|ds
}
.

By adopting Assumption 3, it is followed that

E∥y(·, t)∥2 ≤ m2

m1
∥φ(·)∥2 exp [−(λ− ς(c))t] . (12)

It is evident that system (1) can achieve ES-2-M.

As of now, the exponential stability in the sense of

moment was discussed under the Assumption 3. It is

known that stability in 2-nd moment guarantees sta-

bility in probability, that is, the latter requires a much

weaker condition. Next, we will consider the stability

in probability without Assumption 3.

3.2 Asymptotic stability in probability

In this part, by virtue of the WLLN, a sufficient con-

dition to ensure the AS-P for system (1) will be estab-

lished. At first, we state the WLLN.

Assumption 5 ([29]) The SP ξ(t) satisfies the WLLN,

that is, for any ε > 0, κ > 0, there exists a T > 0 such

that for all t ≥ T

P

{∣∣∣∣ 1t
∫ t

0

|ξ(s)|2ds− E|ξ(t)|2
∣∣∣∣ ≥ κ

}
≤ ε.

Remark 4 Based on the results of [19,23], we recognize

that the mean-ergodic widely stationary process, the

variance-ergodic widely stationary process, and the er-

godic strictly stationary process all obey the WLLN.

More details on reasonability of Assumption 5 has been

provided in Section VI of [29].

Theorem 6 For system (1), under Assumptions 1-2

and Assumption 5, assume that there exist functions

W ∈ C2,1(Rn × R+;R+), ϱ(·) ≥ 0, K∞ functions χ, χ̄

and positive constant c such that

trace

(
1

2

(
WT

yyA+ATWyy

))
≥ ϱ(t), (13)

|Wy(y, t)g(y)| ≤ cW (y, t), (14)∫ 1

0

Ψdx ≤
∫ 1

0

−2c
√
MW (y, t)dx, (15)

χ(∥y(·, t)∥2) ≤
∫ 1

0

W (y, t)dx ≤ χ̄(∥y(·, t)∥2), (16)

where

Ψ =Wt(y, t) +Wy(y, t)f(y) +Wy(y(1, t), t)Aµ(t)

− π2ϱ(t)

4
(y − y(1, t))T(y − y(1, t)).

Then system (1) achieves AS-P.

Proof. Following Definition 3, we will demonstrate asymp-

totic stability by establishing both the attraction and

stability of the system.

To achieve this, we will employ a Lyapunov func-

tional with the same form as the one in Theorem 4

V (t) =

∫ 1

0

W (y, t)dx.

Then, following the line of the proof for Theorem 4 and

in light of condition (15), we can obtain that

V̇ (t) ≤
∫ 1

0

Wt(y, t) +Wy(y, t)f(y)Wy(y(1, t), t)Aµ(t)

− π2

4
ϱ(t)(y − y(1, t))T(y − y(1, t))

+Wy(y, t)g(y)ξ(t)dx

=(−λ+ c|ξ(t)|)V (t),
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where λ is positive constant such that
∫ 1

0
Ψdx ≤

∫ 1

0
−λ

W (y, t)dx ≤
∫ 1

0
−2c

√
MW (y, t)dx.

It can be deduced that

V (t) ≤V (0) exp

{∫ t

0

(−λ+ c|ξ(s)|)ds
}

=V (0)e−λt exp

{
c

∫ t

0

|ξ(s)|ds
}
.

(17)

Claim 1 (Attraction): By specifying

W =

{∣∣∣∣ 1t
∫ t

0

|ξ(s)|2ds− E|ξ(t)|2
∣∣∣∣ ≤ κ

}
,

for each ε > 0 and κ ∈ (0, 3M). In combination with

Assumption 5, we get that there exists a T > 0 such

that P {W} ≥ 1− ε for all t ≥ T .

Together with supt≥0 E|ξ(t)|2 < M , it implies∫ t

0

|ξ(s)|2ds ≤ (E|ξ(t)|2 + κ)t ≤ 4Mt.

The above inequality yields the following∫ t

0

|ξ(s)|ds ≤

√
t

(∫ t

0

|ξ(s)|2ds
)

≤ 2
√
Mt, (18)

for all ω ∈ W, t ≥ T .

Substituting (18) into (17), we have

V (t) ≤ V (0) exp
{(

−λ+ 2c
√
M
)
t
}
.

In accordance with conditions (16) and P {W} ≥ 1− ε,

the following formula is valid, for t ≥ T ,

P

{
∥y(·, t)∥2 ≤ χ̄(∥φ(·)∥2)

χ
e(−λ+2c

√
M)t
}

≥ 1− ε.

(19)

So far, the proof of attraction is complete.

Claim 2 (Stability): By employing Chebyshev’s in-

equality and considering Assumption 2, we have that

for every ε, there exists a κ0 > 0 such that

P {|ξ(t)| > κ0} ≤ E|ξ(t)|2
/
κ2
0 < M

/
κ2
0 = ε, t ≥ 0.

Together with (17)

P {V (t) ≤ V (0) exp {(−λ+ cκ0)T}} ≥ 1− ε, t ≤ T,

which means that, for t ≤ T ,

P

{
∥y(·, t)∥2 ≤ χ̄(∥φ(·)∥2)

χ
e(−λ+cκ0)T

}
≥ 1− ε. (20)

It’s convenient to get the following from (19) and (20)

P
{
∥y(·, t)∥2 ≤ γ(∥φ(·)∥2)

}
≥ 1− ε, t ≥ 0, (21)

where

γ(∥φ(·)∥2) =χ−1
(
χ̄(∥φ(·)∥2)

)
e(−λ+cκ0)T

+ χ−1
(
χ̄(∥φ(·)∥2)

)
e(−λ+2c

√
M)T .

Definition 2 is obviously satisfied, thus Claim 2 is veri-

fied.

Combining (19) with (21) (attraction and stability)

gives

P
{
∥y(·, t)∥2 ≤ β(∥φ(·)∥2, t)|

}
≥ 1− ε, t ≥ 0,

where β(·, ·) is a class-KL function. From Definition 3,

it can be concluded that the system achieves AS-P. This

completes the proof.

Remark 5 Section V in [29] have discussed global asymp-

totic stability, where α ≤ V (x) ≤ ᾱ is equal to radially

unbounded and Vxf(x, t) ≤ −c1V (x(t)), |Vxg(x, t)| ≤
c2V (x(t)) imply distinct criteria for nominal term and

noise term. However, the object of investigation is or-

dinary differential random nonlinear systems, and the

published results do not work for partial differential sys-

tems. To develop a framework for the stability analy-

sis of RRDSs, the new sufficient conditions (4)-(7) and

(13)-(16) are presented in Theorem 4 and Theorem 6.

In this section, we have established the Lyapunov

stability theory for RRDSs, focusing primarily on the

qualitative analysis of system behavior. Building on

these stability results, we will now delve deeper into the

boundary control problem of the system, which serves

as the ultimate objective of this study.

4 Boundary control of RRDSs

In this section, boundary control problem for RRDSs

will be considered to support our theoretical results.

The boundary inputs µ(t) in Section 3 will be designed

as a boundary controller in integral form and the suf-

ficiency conditions for the system to achieve boundary

stabilization will be provided.

Still considering system (1)
∂y(x, t)

∂t
= f(y(x, t)) +A∂2y(x,t)

∂x2 + g(y(x, t))ξ(t),

∂y(x, t)

∂x

∣∣∣∣
x=0

= 0,
∂y(x, t)

∂x

∣∣∣∣
x=1

= µ(t),

y(x, 0) = φ(x).

The boundary control strategy employed is described

by

µ(t) = U

∫ 1

0

y(x, t)dx, (22)
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where U ∈ Rn×n denotes the boundary control gain to

be determined.

At first, as an application of Theorem 4, we consider

the ES-2-M of RRDS (1) with boundary controller (22).

Theorem 7 If there exists matrix U , positive constants

ε and ε1 such that the following holds(
Φ1 −(AU)T

−AU Φ2

)
< 0, (23)

where

Φ1 =
[
ε+ ε−1L1 + ς

(
ε1 + ε−1

1 L2

)]
In + sym(AU),

Φ2 = −π2

2
A+ ς

(
ε1 + ε−1

1 L2

)
In.

Then system (1) achieves ES-2-M under boundary con-

troller (22).

Proof. The integral Lyapunov functional is selected in

the form

V (t) =

∫ 1

0

W (y, t)dx =

∫ 1

0

yTydx.

One seen that W (y, t) satisfies (7). Then we arrive at

trace

(
1

2

(
WT

yyA+ATWyy

))
= trace (2A) > 0. (24)

Taking ϱ(t) = trace (2A), then condition (4) holds. By

virtue of Assumption 1 and inequality 2XTY ≤ εXTX+

ε−1Y TY , gives

Wy(y, t)g(y) =2yTg(y)

≤ε1y
Ty + ε−1

1 L2y
Ty

=
(
ε1 + ε−1

1 L2

)
yTy.

(25)

Based on the fact that ȳ = y − y(1, t), we have∫ 1

0

Wt(y, t) +Wy(y, t)f(y) +Wy(y(1, t), t)Aµ(t)

− π2ϱ(t)

4
(y − y(1, t))T(y − y(1, t))dx

≤
∫ 1

0

2yTf(y) + 2[y(x, t)− ȳ(x, t)]TAµ(t)− π2

2
ȳTAȳdx.

In light of the technology of (25), we obtain

2yTf(y) ≤ εyTy + ε−1L1y
Ty.

The boundary controller (22) indicates that∫ 1

0

Wt(y, t) +Wy(y, t)f(y) +Wy(y(1, t), t)Aµ(t)

− π2ϱ(t)

4
(y − y(1, t))T(y − y(1, t))dx

≤
∫ 1

0

εyTy + ε−1L1y
Ty + 2(y − ȳ)TAUy − π2

2
ȳTAȳdx

=

∫ 1

0

(
y

ȳ

)T
(

Φ̂1 −(AU)T

−AU −π2

2 A

)(
y

ȳ

)
dx,

where

Φ̂1 =
(
ε+ ε−1L1

)
In + sym(AU).

Condition (23) implies that(
Φ̂1 −(AU)T

−AU −π2

2 A

)
< −ς

(
ε1 + ε−1

1 L2

)
In. (26)

Thus, we derive that∫ 1

0

Wt(y, t) +Wy(y, t)f(y) +Wy(y(1, t), t)Aµ(t)

− π2ϱ(t)

4
(y − y(1, t))T(y − y(1, t))dx

≤− ς
(
ε1 + ε−1

1 L2

) ∫ 1

0

(yTy + ȳTȳ)dx

≤− ς
(
ε1 + ε−1

1 L2

) ∫ 1

0

(yTy)dx.

(27)

As a result of Theorem 4, it follows by (24) - (27) that

system (1) is ES-2-M. The proof is complete.

Remark 6 According to condition (23) in Theorem 7,

a larger minimum eigenvalue of A facilitates satisfying

inequality (23). In other words, a higher diffusion co-

efficient is advantageous for the ES-2-M of system (1).

We illustrate this fact in the numerical simulation.

Remark 7 From Theorem 4 and Theorem 7, it can be

observed that the convergence rate of the mean square

exponential stability can be controlled. Specifically, in-

equality (12) shows that the convergence rate is bounded

by the function e(−(λ−ς(c))t) Moreover, from (26) in

Theorem 7, it is evident that by selecting an appro-

priate control gain U , the parameter −ς
(
ε1 + ε−1

1 L2

)
can be adjusted, thereby ultimately controlling the con-

vergence rate of the system state.

Secondly, asymptotic stabilization in probability sense

will be discussed in the remainder.

Theorem 8 If there exists matrix U , positive constants

ε and ε1 such that the following holds(
Φ3 −(AU)T

−AU Φ4

)
< 0, (28)

where

Φ3 =
[
ε+ ε−1L1 + 2(ε1 + ε−1

1 L2)
√
M
]
In + sym(AU),

Φ4 = −π2

2
A+

[
2(ε1 + ε−1

1 L2)
√
M
]
In.

Then system (1) achieves AS-P under boundary con-

troller (22).
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Proof. Still considering the Lyapunov functional

V (t) =

∫ 1

0

yTydx.

Following the line of the proof for Theorem 7, it can be

shown that

trace
(1
2

(
WT

yyA+ATWyy

) )
= trace (2A) = ϱ(t) > 0,

and

2yTg(y) ≤
(
ε1 + ε−1

1 L2

)
yTy. (29)

Condition (28) implies that(
Φ̂3 −(AU)T

−AU −π2

2 A

)
<
(
−2(ε1 + ε−1

1 L2)
√
M
)
In,

where Φ̂3 =
(
ε+ ε−1L1

)
In + sym(AU). Based on this

fact, we derive that∫ 1

0

Wt(y, t) +Wy(y, t)f(y) +Wy(y(1, t), t)Aµ(t)

− π2ϱ(t)

4
(y − y(1, t))T(y − y(1, t))dx

≤
∫ 1

0

(
y

ȳ

)T
(

Φ̂3 −(AU)T

−AU −π2

2 A

)(
y

ȳ

)
dx

≤− 2(ε1 + ε−1
1 L2)

√
M

∫ 1

0

(yTy)dx.

In accordance with Theorem 6, it can be concluded that

the system achieves AS-P.

Remark 8 From equation (29), we can deduce that matrix-

valued function g(y) is limited by L2. Then it follows

that the smaller L2 is, the less ξ(t) disturbs the sys-

tem. In other words, smaller L2 benefits to the AS-P

for system (1). This fact is also evident in condition

(28).

5 Numerical simulations

In the subsequent discussion, the validity of the ob-

tained results is illustrated using the example of a tem-

perature management system for cylindrical lithium-ion

batteries.

In recent years, the rapid advancement of new en-

ergy vehicles has led to the widespread use of lithium-

ion batteries. The stability of the temperature in these

batteries is crucial for both economic and safety consid-

erations. Research in [31,6] demonstrates that a reaction-

diffusion system is effective for modeling the tempera-

ture behavior of lithium-ion batteries.

We consider a cylindrical lithium-ion battery cell as

shown in Fig. 1. Assuming the same temperature on

across circle of equal radius centered on the battery

pole, hence it is sufficient to analyze the radial temper-

ature change of the battery pole.

Fig. 1 Temperature diffusion of cylindrical lithium-ion bat-
tery

The forward Euler method and the central difference

scheme are used to construct the numerical scheme.

Example 1 The temperature system of lithium-ion bat-

tery is described as

∂T (x, t)

∂t
= f(T (x, t)) +A

∂2T (x, t)

∂x2
+ g(T (x, t))ξ(t),

x ∈ (0, R), t > 0,

(30)

where T (x, t) ∈ R2 is the radially distributed temper-

ature inside the battery cell. x = 0 denotes the centre

of battery and x = R denotes the surface of battery,

where R is the radius of the cylindrical lithium battery.

The function f(T (x, t)) ∈ R2 represents the heat pro-

duced within the battery during its operation. Matrix

A represents the diffusion coefficient, which describes

the rate at which a material responds to temperature

changes (A higher thermal diffusivity indicates a bet-

ter thermal conductivity of the material). The SP ξ(t)

represents the power-limited coloured noise existing in

the battery with E|ξ(t)|2 < M .

ξ(t) as a class of stationary Gaussian process will be

produced by

ξ(t) = 0.5 cos(1.2t+ ℵ)sin(2πt) + 0.3N (t),

where the random variable ℵ follows a uniform distribu-

tion over the interval [0, 2π], and N (t) represents Gaus-

sian white noise with EN (t) = 0 and variance 1. It is

demonstrated in Fig. 2 that ξ(t) satisfies E|ξ(t)|2 < 1.

The stationarity of ξ(t) as a Gaussian process is detailed

in the Appendix.
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Fig. 2 Random process ξ(t)

The diffusion matrix is taken as A = [0.3 0; 0 0.5].

Two non-linear functions are

f(T (x, t)) = [0.7 sin(T1(x, t)), 0.7 sin(T2(x, t))]
⊤,

g(T (x, t)) = [0.9 sin(T1(x, t)), 0.9 sin(T2(x, t))]
⊤.

The initial conditions for RRDS (30) are specified as

follows

T (x, 0) =

(
0.8(1− cos(3πx))

0.9(1− cos(2πx))

)
.

The boundary control strategy employed is described

by
∂T (x, t)

∂x

∣∣∣∣
x=0

= 0,

∂T (x, t)

∂x

∣∣∣∣
x=R

= U
∫ R

0
T (x, t)dx.

Set ε = 1.5, ε1 = 0.8 and ς(C) = 2C3 + 3C2. A

simple calculation shows that L1 = 0.49, L2 = 0.81 and

ς
(
ε1 + ε−1

1 L2

)
= 2

(
ε1 + ε−1

1 L2

)3
+ 3

(
ε1 + ε−1

1 L2

)2
=

21.7642. By solving inequality (23) in Theorem 7, one

can obtain the boundary control gain

U =

(
−4.5837 0

0 −2.7502

)
.

By implementing the control gain U into the RRDS

controller (30), as illustrated in Fig. 3, it is evident that

E∥T (·, t)∥2 diminishes to 0, indicating that system (30)

achieves ES-2-M. In other words, the controller can ef-

fectively stabilize the system, which is consistent with

the result of Theorem 7.

Secondly, situations in probability sense will be dis-

cussed.

Still considering system (30) and maintaining the

same parameters. ξ(t) will be regenerated by

ξ̂(t) = 0.9 cos(1.5t+ ℵ) sin(2πt),

where ξ̂(t), as a class of mean-ergodic widely stationary

process, satisfies E|ξ̂(t)|2 < 1, which is shown in Fig. 4.

0 2 4 6 8 10
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0.5

1
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2

1

0.5
0
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3
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6 8 010

Fig. 3 Response of RRDS (30) with controll in moment
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Fig. 4 Random process ξ̂(t)

In the Appendix it is verified that the ξ(t) and ξ̂(t) are

our desired.

Since to ε1 = 0.8, L2 = 0.81 and M = 1, one gets

that 2(ε1+ε−1
1 L2)

√
M = 3.6250. The following bound-

ary control gain can be obtained by solving inequality

(28),

Û =

(
−4.9102 0

0 −3.5111

)
.

By employing the control gain Û , it follows from The-

orem 8 that system (30) is AS-P. ∥T (·, t)∥2 is shown in

Fig. 5 and we can seen that all sample paths converge

to 0, i.e., system (30) is AS-P, which agrees with the

theoretical results. Therefore, the validity of Theorem

8 is also verified. (To show the spatio-temporal proper-

ties of the system, the ET 2(x, t) of the system (30) is

also shown in the Fig. 5.)

Finally, in order to illustrate the effectiveness of the

controller, Fig. 6 depicts the state response of system

(30) when the boundary controller disappears (taking
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Fig. 5 Response of RRDS (30) with controll in probability

U =

(
0 0

0 0

)
). It can be seen that neither E∥T (·, t)∥2

(Fig. 6(a)) nor the sample paths (Fig. 6(c)) converge

to 0, which means that the system cannot be stabilized

without the controller. In other words, since heat is gen-

erated inside the battery during normal operation, the

temperature of system cannot be stabilized when no

control is applied under the Neumann boundary condi-

tions.

0 2 4 6 8 10
0

5

10

15

20

(a) E∥T (·, t)∥2
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Fig. 6 Response of RRDS (30) without controll

The performance of boundary controller (22) is ver-

ified in above example. Next, a simple example will be

used to verify the claims in Remark 6.

Example 2 RRDS (30) with ξ(t) is further analyzed us-

ing different values for the diffusion coefficients as de-

tailed

A1 =

(
0.3 0

0 0.4

)
, A2 =

(
0.5 0

0 0.5

)
,

and other parameters are the same as in Example 1 .

The state responses corresponding to different diffusion

coefficients are shown in Fig. 7. (For a clearer compar-

ison, only E∥T (·, t)∥2 is depicted.)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

Fig. 7 Response of the RRDS under different diffusion coef-
ficients

It is evident that the system state converges more rapidly

with a larger minimum eigenvalue of the diffusion ma-

trix, which verifies the statement in the Remark 6. Phys-

ically, better thermal conductivity of the battery mate-

rial will improve controller performance.

6 Conclusion

In this paper, the asymptotic stability of random reaction-

diffusion systems (RRDSs) and its applications to bound-

ary control problems are investigated. This work ad-

dresses a gap in research on random systems within the

field of partial differential equations (PDEs). Firstly,

based on Lyapunov stability theory and statistical meth-

ods, sufficient criteria for the asymptotic stability of

RRDSs are established in both the second moment and

in probability. Next, as an application, the boundary

control problem for RRDSs is addressed by designing

an integral boundary controller and constructing a Lya-

punov functional. Furthermore, the influence of param-

eters on stability is analyzed using the established crite-

ria. Finally, the performance of the designed boundary

controller and the validity of the theoretical results are

confirmed through numerical examples involving a bat-

tery temperature management system.

In order to establish a more complete theoretical

framework for the stability of RRDSs, some related

issues, such as the noise-to-state stability of RRDSs,

boundary control of impulsive RRDSs and switched

RRDSs deserve further thorough investigation.
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APPENDIX

In this appendix, we will show that the stochastic pro-

cesses (SPs) modeled in Section 5 are stationary Gaus-

sian process and mean-ergodic widely stationary pro-

cess (WSP), respectively.

Proposition I. ξ(t) = z cos(ht + Φ) is a mean-

ergodic WSP, where z and h are constants, the stochas-

tic variable Φ follows a uniformly distributed over the

interval [0, 2π].

Proof: It should first be noted that if the SP satis-

fies

E[ξ(t)] = m(t) = m,

Rξ[t1, t1] = Rξ(t)(t1 − t2),

E[ξ2(t)] < ∞,

then ξ(t) is said to be a WSP.

Eξ(t) and autocorrelation function of ξ(t) are given

by the following expressions

E[ξ(t)] = E[z cos(ht+ Φ)]

=

∫ ∞

−∞
z cos(ht+ ϕ)fϕ(ϕ)dϕ

=

∫ 2π

0

z cos(ht+ ϕ)
1

2π
dϕ = 0,

Rξ(t)(t, t+ τ) = E[z cos(ht+ Φ)z cos(ht+ hτ + Φ)]

=
z2

2
E[cosh τ + cos(2ht+ 2Φ)],

where

E[cos(2ht+ 2Φ)] =

∫ 2π

0

cos(2ht+ 2ϕ)
1

2π
dϕ = 0.

Consequently, we get

Rξ(t)(t, t+ τ) =
z2

2
cosh τ = Rξ(t)(τ).

Combined with the fact that E[ξ(t)2(t)] < ∞, the SP

ξ(t) is a WSP.

The time average of SP ξ(t) is represented as ξ(t) =

limT→∞
1

2T

∫ T

−T
ξ(t)dt. ξ(t) is considered a mean-ergodic

WSP if ξ(t) = E[ξ(t)] = m holds with probability 1.

Since the sine function is bounded, the time average

value of ξ(t) is

ξ(t) = lim
T→∞

1

2T

∫ T

−T

z cos(ht+ Φ)dt

= lim
T→∞

z

hT
cosΦ sinhT = 0,

thus there is

ξ(t) = E[ξ(t)] = 0.

One can finally obtain that ξ(t) is a mean-ergodic WSP.

Proposition II. ξ̂(t) = z cos(ht+Φ)+N (t) is a sta-

tionary Gaussian process, where z and h are constants,

Φ is the same as in Proposition 1, N (t) is the Gaussian

white noise with EN (t) = 0 and variance 1.

Proof: It has been demonstrated that z cos(ht+Φ)

is a stationary process. Combined with the fact that

N (t) is Gaussian white noise, it follows that ξ̂(t) is a

stationary Gaussian process.
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