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diffusion systems perturbed by second-order processes
is investigated in this work. It extends the results from

random ordinary differential equations to random reaction-

diffusion systems (RRDSs). First, the stability analysis
of RRDSs with boundary input is presented. Using the
Lyapunov method and stochastic process estimation,
two criteria of asymptotic stability are established in 2-
nd moment and in probability, by applying Wirtinger’s
inequality and the weak law of large numbers. Sec-
ond, based on the obtained stability criteria, a class
of boundary control problems is solved by constructing
a Lyapunov functional and designing integral bound-
ary controllers. Additionally, the influence of nonlinear
terms and the diffusion coefficient on stability is ana-
lyzed. Finally, numerical simulations demonstrate the
effectiveness of the boundary controller.
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1 Introduction

In many branches of engineering and science, systems
are often disturbed by stochastic noise from the ex-
ternal environment. Such systems are typically repre-
sented by the stochastic differential equations (SDESs)
dz = f(z,t)dt + g(x,t)dB(t) driven by Brownian mo-
tion (BM). The statistical characteristics of BM are ex-
tensively employed in mathematical analysis. Based on
the well known It6 formula, the fundamental theory
of various types of stochastic systems has been intro-
duced in [1,17,16]. SDEs have seen significant devel-
opment, with numerous theoretical results have been
reported in [28,27,9,32]. However, it is worth noting
that BM is not differential. In addition, the variance
of BM is unbounded since its mean power is infinite.
This leads SDEs seem not to be the most applicable
model. In other words, not all environmental distur-
bances can be well modelled by white noise, deduced
from the BM [12]. The disadvantage of SDEs has driven
the work of [21] and [2] on random differential equa-
tions. In contrast to the stochastic system, the second-
order processes £(t) is introduced in the random differ-
ential system & = f(x,t) + g(z,t)&(t). Modelling with
random systems in practical applications is more rea-
sonable from the energy perspective than SDEs due to
the finite mean power of £(t). Recently, the research on
random systems has attracted much attention [10,8,
22,11]. The existence-and-uniqueness of solutions have
been investigated for non-linear random systems by Wu
et al. in [29], and the fundamental theoretical results
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for the analysis of the system have been established.
Based on this work, Zhang et al. extended the results
to switching systems in [8] and applied the results to
analyze the stationary process of a spring pendulum
suspended from a randomly vibrating ceiling. All the
aftermentioned works have been established for systems
described by ordinary differential equations (ODEs).

Diffusion is an important phenomenon to present
many applications in the real world, and the reaction-
diffusion systems (RDSs), as a class of partial differen-
tial equations (PDEs), are suitable to describe the dif-
fusion effect. RDSs have a widely application in practi-
cal engineering, such as the internal temperature of the
lithium battery is modelled by RDSs [31]; RDSs are
also used to describe the heat dissipation of the CPU
[3]. Different results have been reported for stochastic
RDSs in [4,15,13]. However, real applications are of-
ten disturbed by energy-limited noise, therefore it is of
engineering interest to investigate the random reaction-
diffusion systems (RRDSs) with coloured noise.

In control theory, analyzing stability is a crucial and
foundational task. In [29], Wu investigated several types
of stability for random systems and established the the-
oretical framework for Lyapunov stability analysis. The
stability analysis of RDSs is also well developed with
the help of Lyapunov’s second method. The impulsive
RDSs is considered in [24]. Han in [5] proposed suffi-
cient conditions to ensure that RDNNs are stochastic
finite-time bounded. With the development of modern
control theory, different control strategies has been in-
vestigated. Reaction-diffusion systems typically employ
two fundamental control strategies: distributed control
and boundary control. However, in some environments
of the applications, such as high internal environmental
temperatures (inside a boiler) or limited component size
(inside a CPU or battery), implementing distributed ac-
tuations at every point in the spatial domain is nearly
unfeasible. Thus boundary control seems to be a more
efficient and less costly control strategy. The boundary
control theory of reaction-diffusion systems has been
developed in recent years [14,26,7]. Nevertheless, there
has been limited focus on RDSs influenced by colored
noise. It is interesting to study the RRDSs, while the
following challenges should be investigated.

I Existing Lyapunov stability results for ODEs are
not directly applicable to RRDSs. The inclusion of
spatial diffusion terms and boundary control intro-
duces challenges in extending these theories. Conse-
quently, the stability analysis of RRDSs remains an
open and challenging problem.

II The stability of stochastic differential systems driven
by BM was explored in [16] using the [t6 formula
and stopping time theory. For RRDSs with colored

noise, foundational tools such as the It6 formula are
no longer applicable. This necessitates the develop-
ment of alternative analytical methods, making the
stability analysis of RRDSs a complex task.

III Applying the results to boundary control presents
several challenges. A key difficulty lies in determin-
ing the appropriate form of the boundary controller
while ensuring it effectively integrates boundary in-
formation into the system analysis. Moreover, un-
derstanding how system parameters influence stabil-
ity requires careful consideration, adding complexity
to the overall process.

Based on the above discussion, this study develops
a Lyapunov stability theoretical framework for RRDSs.
The results are utilized in a specific type of boundary
control problem. Additionally, the theoretical results
are demonstrated through numerical examples. The key
contributions of this research are outlined as follows.

I To handle diffusion terms and incorporate bound-
ary information, this research develops new criteria
for RRDSs (conditions (4)-(7) and (13)-(16)), differ-
ing from existing ODEs stability theories. By con-
structing an integral Lyapunov functional, it estab-
lishes conditions for exponential stability in the sec-
ond moment and asymptotic stability in probabil-
ity, offering a new theoretical foundation for RRDSs
stability analysis.

IT Unlike stochastic RDSs, this research leverages the
weak law of large numbers (WLLN) and inequal-
ity techniques to develop a probability-based crite-
rion for ensuring the asymptotic stability of RRDSs.
This approach offers a novel framework for analyz-
ing the asymptotic stability of random partial dif-
ferential systems.

ITT Applying the obtained stability results, a class of
boundary stabilization problem is investigated by
designing an integral boundary controller. Further-
more, these results facilitate the investigation of how
Lipschitz constants and diffusion coefficients impact
the stability of RRDSs.

Notations: The symbol | - | denotes the Euclidean
norm. R™*™ is used to denote the set of real matri-
ces with dimensions n x m. The unit matrix of size
n X n is denoted by I,, while the “T” indicates the
transpose of a vector or matrix. For a matrix Z, “Z~1”
denotes the inverse of Z. The function sym(Z) is de-
fined as ZT + Z, and the symbol Apax(Z) stands for
the maximum eigenvalue of the symmetric matrix Z.
The expression Z < 0 (or < 0) indicates that Z is
a real symmetric matrix that is negative definite (or
negative semi-definite). The space L?([0,1];R™) repre-
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sents the Hilbert space of square-integrable vector func-
tions 6(z), where the L?-norm is given by [|0(-)||*> =
fol O(x)T0(z)dz. C2H(R™ x R+;R+) denotes the set of
non-negative functions V(y,t) on R™ x R+, which are
continuously differentiable to the 2-nd order with re-
spect to y and differentiable to the 1-st order with re-
spect to t. Lastly, W2(]0, 1]; R™) refers to the Sobolev

space of vector functions ((x) : [0,1] — R™ that are

d'y(x)

v that are

absolutely continuous, with derivatives
square integrable up to order I.

2 Preliminaries

In this work, we consider a non-linear RRDS described
by

y(z,t)
ot

0%y(x,t)
02

= fly(z, 1)) + A + (e, 0)E), (1)
where £(t) € R™, defined on a complete probability
space (2, F,F;, P) with a filtration F; that meets the
usual conditions, represents a stochastic process (SP)
rather than white noise. y(x,t) = [y1(z,1),...,yn(x,t)]T
€ R™ is the state of the system. A represent positive def-
inite diffusion matrix. f : R™ — R™ and g : R™ — R™"*™
are non-linear functions.

The initial value function for the RRDS (1) is spec-
ified as follows

y(z,O) = @(I)a (2)

where ¢ € L2([0,1]; R™).
The boundary conditions (Neumann) for the RRDS
(1) are defined as follows

y(x,t) _ y(x,t) _
dr lz=0 or  lz=1 (o),

where p(t) is the known function.

Assumption 1 For non-linear functions f : R™ — R"
and g : R™ — R"*™  there exist positive constants L
and Lo such that the following inequalities are satisfied
for any p € R™

) f(p) < Lip*p,
)\max(gT(p)g(p)) S L2pr-

Assumption 2 ([29]) The process £(t) is adapted to
the filtration F; and is piecewise continuous. Moreover,
there is a constant M > 0 such that

supE|£(1)]? < M.
>0

Remark 1 Assumption 1 ensures that f and g satisfy
Lipschitz condition. The Lemma 3 in [29] follows that
|€(t)| < oo almost surely for V¢ € [0,7] when T is de-
termined. In fact, the term g(y(x,t))£(¢) in the system
(1) can be considered to also satisfy the Lipschitz con-
dition. Combining the results of Chapter 8 in [20], there
exists a unique classical solution for the system (1) on
[0, T]. Moreover, since T' > 0 is arbitrary, this result is
valid for the entire time interval.

Remark 2 Tt should be noted that Assumption 2 is a
standard assumption, which can be inferred from the
results in [29] that both widely stationary and strictly
stationary processes satisfy sup,~qE|£()[? < M. From
physically point of view, energy of random disturbances
in nature is generally finite, then physical feasibility re-
quires that the mean power of £(t) is bounded, which
implies Assumption 2. In more details, Wu et al. in
[30] explained the reasonableness of Assumption 2 by
mathematical theoretical analysis and physical exam-
ples, respectively.

To guarantee y(x,t) = 0 being the equilibrium, let
the functions f and g vanish at the origin, i.e. f(0) =
0, g(0) = 0. The following sets of functions are specified
before the definition is presented.

K={y: Ry — R+| ~(0) = 0, ~ is continuous, strictly
increasing};

KL={B:RyxRy — Ry|B(-t) € K,Vt € Ry and B(s, 1)

strictly decreases to 0 as t — +o0o for Vs > 0};

Ko ={v:Ry — R+| v € K and ~ is unbounded}.

Definitions of stability for SDEs are provided in [1,
18,16]. Recently, Wu introduced some stability defini-
tions for random systems in [29], which are now adapted
for RRDSs in this paper.

Definition 1 If there exists parameters k1, ko > 0 such
that the following holds for V¢ > 0

Ely(,t)II* < kallo()lPe™*",

then, we say that RRDS (1) is exponentially stable in
2-nd moment (ES-2-M).

In the sequel, we use ES-2-M for both exponentially
stable in 2-nd moment and exponential stability in 2-
nd moment when there is no confusion arises.

Definition 2 For any € > 0, if there exists a class-K
function «(-) such that the following holds for V¢ > 0

P{lyCol? <v(leOI?)} =1 -,

then, we say that RRDS (1) is stable in probability.
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Definition 3 For any € > 0, if exists a class-KCL func-

tion B(-,+) and T > 0 such that the following holds for
Vi>T
P{llyC0)1* < BleOI%6)} = 1 —e,

then, we say that RRDS (1) is attractive in probability.
For any ¢ > 0, if there exists a class-KCL function
B(+, ) such that the following holds for ¥t > 0

P{llyC o1 < B0t

then, we say that RRDS (1) is asymptotically stable in
probability (AS-P).

)} >1—¢,

In the sequel, we use AS-P for both asymptotically sta-
ble in probability and asymptotic stability in probabil-
ity when there is no confusion arises.

Lemma 1 (Wirtinger’s inequality [25]) Consider
a vector function § € W12([0,1]; R™) such that 6(0) = 0
or (1) = 0. For a matriz I > 0, the following holds

/aT )I0(s)ds <7/0 (dg(s))Tr<dz(j)>ds.

3 Stability analysis of RRDSs

In the following analysis, we will investigate the stabil-
ity for RRDSs both in 2-nd moment and in probabil-
ity. By utilizing the Lyapunov functional method, the
WLLN and inequality techniques, a theoretical frame-
work on stability of RRDSs will be established prelim-
inarily.

3.1 Exponential stability in moment

In the first part, we will consider the exponential sta-
bility in moment sense of system (1). To derive the key
results, we impose the following assumption on the SP

£(t).

Assumption 3 ([29]) For a stationary process &(t),
there exists a function ¢(-) such that for any o > 0 and
ty > 0, the following inequality holds:

Bew o [ elds} < e st

Remark 8 The reasonability of Assumption 3 has been
stated in Section VI of [29], and the fact that a station-
ary Gaussian process satisfies this estimate has been
determined.

In the sequel, we suppress the variables (x,t) wherever
no confusion arises.

Theorem 4 For the system (1), under Assumptions 1-
3, assume there exist functions W € CZ1(R" xR+; R+),
a non-negative function o(-) > 0, and positive constants
m1, ma, and c such that

trace <; (W;;A + ATWyy)> > o(t), (4)

Wy (y, )g(y)| < W (y,1), (5)

/0 wdz < /O (W (y, t)da, (6)

1

maly(-, )] < / W (y, t)da < mally(-,1)]?, (7)
0

where

U =Wi(y,t) + Wy(y,t) f(y) + Wy(y(1,1),¢) Au(t)

7T2
-y 1, 0) T - (L))

Then system (1) achieves ES-2-M.

Proof. Consider the integral Lyapunov functional given

by
1
= / W (y,t)dx
0

To find its derivative along RRDS (1)
1
t) =/ Wiy, t) + Wy (y, t)yrde
0

-/ W)+ Wy, )W) + Avas

+ g(y)&(t))dx
-/ W0, 0) £ Wy, )7 0) + Wy, 1) A
Yy, 1)g(y)§(t)dz.

By applying integration by parts and using condition
(4), it becomes evident that

(8)

+ Wy (

1
/ Wy (y7 t)AyaL’zdx
0

z=1

=W, (y,t) Ay,

- / (W, (. 1)) Ayoda

W, (1.0, 040(0) = [0, 0.0). Ao
1

VW, (y(L, 1), £) Apu(t) — / YW, (9,8) Ayada

! 1
=W, (y(1,t),t)Ap(t) — / trace (2 (W;E/A + ATWyy)>
0
Yy Yadz

<W (1,040 = o(0) [ T vrd
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Define g(z,t) = y(z,t) —y(1,t). It is straightforward to
show that 7(1,t) = 0 and yly, = 7L y,. Furthermore,
it follows Lemma 1 that we get

1
/ Wy (ya t)Aymmdx
0

1
—W, (y(1, ), ) Au(t) — olt) / 7 7.dz. o

0] ! _ T
<W,(y(1,1),t)Ap(t) 1 /0 (y —y(1,1))
x (y —y(1,t))dx.

Substituting (9) into (8) and referring to conditions (5)
- (6) yield the following

V(t)
< / Wi (y, ) + Wy (4, ) () + Wy (y(1, 1), )

<) - 2 g0 -uLn) g

+ Wy (y,t)g(y)&(t)dz
< / AW (y, 1) + W (y, DEH)|da
0

=(=A+ €DV ),

where A\ is a positive constant such that fol Udr <
fol AW (y,t)dz < fol —s(e)W (y, t)dz.
From (10) and (7), we arrive at

maly(, )|

<V(t) < V(0) exp{/ot(—)\+c|£(s)|)ds} )
<ma|ly(-, 0)[*e™ exp {C/Ot 5(5)|d$} :

Taking expectations on both sides of (11), we have

m - t
Elly(-,t)* < —lo()[Pe MEexp {6/ IE(S)dS}-
my 0
By adopting Assumption 3, it is followed that
m
Elly(-,t)]* < Trflleﬁ(')ll2 exp [—(A —¢(e))t]. (12)

It is evident that system (1) can achieve ES-2-M.

As of now, the exponential stability in the sense of
moment was discussed under the Assumption 3. It is
known that stability in 2-nd moment guarantees sta-
bility in probability, that is, the latter requires a much
weaker condition. Next, we will consider the stability
in probability without Assumption 3.

3.2 Asymptotic stability in probability

In this part, by virtue of the WLLN, a sufficient con-
dition to ensure the AS-P for system (1) will be estab-
lished. At first, we state the WLLN.

Assumption 5 ([29]) The SP&(t) satisfies the WLLN,
that is, for any € > 0,k > 0, there exists a T > 0 such

that for allt > T
1 rt
P{’t/o 1€(s)Pds — E|E(t) | > KJ} <.

Remark 4 Based on the results of [19,23], we recognize
that the mean-ergodic widely stationary process, the
variance-ergodic widely stationary process, and the er-
godic strictly stationary process all obey the WLLN.
More details on reasonability of Assumption 5 has been
provided in Section VI of [29].

Theorem 6 For system (1), under Assumptions 1-2
and Assumption 5, assume that there exist functions
W e CEHR™ x Ry;Ry), o(r) > 0, Koo functions x, ¥
and positive constant ¢ such that B

trace <; (WZ};A + ATWyy)> > ot), (13)

Wy(y, )g(y)| < cW(y,1), (14)

/1 Udz < /1 —QCx/MW(y,t)d:E, (15)
0 0

©(lCOID) < [ Wnae <30, (6)

where

U =Wi(y,t) + Wy(y, t) f(y) + Wy (y(1,t),1) Ap(t)

7r29(t)

_ T(y — y(l,t))T(y —y(1,7)).

Then system (1) achieves AS-P.
Proof. Following Definition 3, we will demonstrate asymp-
totic stability by establishing both the attraction and
stability of the system.

To achieve this, we will employ a Lyapunov func-
tional with the same form as the one in Theorem 4

1
V(t):/o W (y,t)dx.

Then, following the line of the proof for Theorem 4 and
in light of condition (15), we can obtain that

V() < / Wiy, £) + Wy, £) F ()W, (y(1, 1), ) Ap(t)



6

Zhuo Xue et al.

where )\ is positive constant such that fol Udr < fol Y

W(y,t)dz < fol —2cV MW (y,t)dx.
It can be deduced that

V() <V(0)exp { / At c|5<s>>ds}

=V (0)e M exp {c/ot |§(s)d3} .

Claim 1 (Attraction): By specifying

w={|+ [leoras—zewr| < o}

for each ¢ > 0 and x € (0,3M). In combination with
Assumption 5, we get that there exists a T > 0 such
that P{W} >1—cforallt > T.

Together with sup,q E[¢(t)[* < M, it implies

(17)

/Ot [€(s)%ds < (E[E(t)]* + r)t < 4M.

The above inequality yields the following

/ e(s)lds < \/t ( / t |5<s>|2ds> <A, (1)

foralweW, t>T.
Substituting (18) into (17), we have

V(t) <V(0)exp { (—)x + 20\/M> t} .

In accordance with conditions (16) and P {W} > 1—«,
the following formula is valid, for ¢ > T,

P{||y(,t)||2 (”(P( )H ) ( A+2cm)t} >1—¢c
) (19)

So far, the proof of attraction is complete.

Claim 2 (Stability): By employing Chebyshev’s in-
equality and considering Assumption 2, we have that
for every ¢, there exists a kg > 0 such that

P{lE@)] > ko < EIE(¢
Together with (17)

)P /K < M /g =€, t=>0.
P{V(t) <V(0)exp{(—=A+cro)T}} >1—¢, t<T,

which means that, for t < T,
P{||y(,t)||2 (”90( )” ) (—)\+cm0)T} >1—c¢. (20)

It’s convenient to get the following from (19) and (20)

P{lyC- O <v(lleO)I*)} 21—, t =0, (21)

where

1(le)11?)

Acro)T

=x"" (xUle()lP) e~

17 (Rl el AT2VAT,
Definition 2 is obviously satisfied, thus Claim 2 is veri-
fied.

Combining (19) with (21) (attraction and stability)
gives

P{lly)I* < Bllle ()1 ¢

where §(+,-) is a class-KL function. From Definition 3,
it can be concluded that the system achieves AS-P. This
completes the proof.

N} >1-—¢, t>0,

Remark 5 Section V in [29] have discussed global asymp-
totic stability, where a < V(x) < @ is equal to radially
unbounded and V. f(x,t) < —c1V(x(t)), |Vag(z,t)| <
coV (z(t)) imply distinet criteria for nominal term and
noise term. However, the object of investigation is or-
dinary differential random nonlinear systems, and the
published results do not work for partial differential sys-
tems. To develop a framework for the stability analy-
sis of RRDSs, the new sufficient conditions (4)-(7) and
(13)-(16) are presented in Theorem 4 and Theorem 6.

In this section, we have established the Lyapunov
stability theory for RRDSs, focusing primarily on the
qualitative analysis of system behavior. Building on
these stability results, we will now delve deeper into the
boundary control problem of the system, which serves
as the ultimate objective of this study.

4 Boundary control of RRDSs

In this section, boundary control problem for RRDSs
will be considered to support our theoretical results.
The boundary inputs p(t) in Section 3 will be designed
as a boundary controller in integral form and the suf-
ficiency conditions for the system to achieve boundary
stabilization will be provided.

Still considering system (1)

%ﬂiﬁ = f(y(a, b)) + AZLED L gy (2, 1))E(),
y(z,t)| 81/(1:,15) _

o =Y o | T u(t),

y(:ZZ,O) = (p(.I)

The boundary control strategy employed is described

ut) = U [yl )i, (22)
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where U € R™ "™ denotes the boundary control gain to ~ where
be determined. &1 = (e +e "'Ly) I, + sym(AU).
At first, as an application of Theorem 4, we consider .. . .
the ES-2-M of RRDS (1) with boundary controller (22).  Condition (23) implies that
Theorem 7 If there exists matriz U, positive constants &, —(AD)T 1
€ and g1 such that the following holds (—AU —%214 << (51 te LQ) In. (26)
o1 —(AU)T _
<AU &, <0, (23)  Thus, we derive that
where !
B B Wiy, t) + W, (y,t) f(y) + Wy (y(1,¢),t)Au(t
@y = [e+e 'Ly + < (e1+e7 ' La)] I, + sym(AU), /0 i(y:1) y(v: D)) y(W(1,), ) Au()
72 mo(t) T
Oy = — A+ (e1 + e L) L - w-yL)) (v -y 0))de
1
Then system (1) achieves ES-2-M under boundary con- <—c (51 + 5;1L2) / (yTy + 575)dz
troller (22). 0
1

Proof. The integral Lyapunov functional is selected in << (51 + 51_1L2) / (yTy)dx.
the form 0

(27)

1 1
V(t) = / W(y,t)dax = / yTydz.
0 0
One seen that W(y, t) satisfies (7). Then we arrive at
1
trace (2 (W, A+ ATWyy)) = trace (24) > 0.  (24)

Taking o(t) = trace (24), then condition (4) holds. By
virtue of Assumption 1 and inequality 2X7Y < eXTX+
e 1YTY, gives
Wy(y,t)g(y) =2y" 9(y)
<ery'y+er Lay'y
= (e1 47" La) yTy.

(25)

Based on the fact that § = y — y(1,¢), we have

/O Wiy, 1) + Wy (5,0 F () + W,y (y(L,£), ) Aps(2)

-T2 (g 1,0y - y(L. )i

< [ 2" ) + 2ol 6) -yl O Au(e) - 5" Apd.
0

In light of the technology of (25), we obtain
29" fly) <eyly+e Layty.
The boundary controller (22) indicates that
1
| Wit + W 0110 + W, (001004000
0

1 2
T
< / eyTy+e 'LiyTy +2(y — 9) T AUy — ) y" Agdz
0

L0 () @)

As a result of Theorem 4, it follows by (24) - (27) that
system (1) is ES-2-M. The proof is complete.

Remark 6 According to condition (23) in Theorem 7,
a larger minimum eigenvalue of A facilitates satisfying
inequality (23). In other words, a higher diffusion co-
efficient is advantageous for the ES-2-M of system (1).
We illustrate this fact in the numerical simulation.

Remark 7 From Theorem 4 and Theorem 7, it can be
observed that the convergence rate of the mean square
exponential stability can be controlled. Specifically, in-
equality (12) shows that the convergence rate is bounded
by the function e(~(A=s(e)t) Moreover, from (26) in
Theorem 7, it is evident that by selecting an appro-
priate control gain U, the parameter —¢ (51 +€;1L2)
can be adjusted, thereby ultimately controlling the con-
vergence rate of the system state.

Secondly, asymptotic stabilization in probability sense
will be discussed in the remainder.

Theorem 8 If there exists matriz U, positive constants
€ and €1 such that the following holds

( s _(AU)T> <0, (28)

AU @
where
By — [g e Ly 4206 + E;ILQ)\/M] I, + sym(AU),
71'2 —1
Oy =T A+ [2(51 te LQ)\/M} I.

Then system (1) achieves AS-P under boundary con-
troller (22).
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Proof. Still considering the Lyapunov functional

1
V(t):/ yTyde.
0

Following the line of the proof for Theorem 7, it can be
shown that

1
trace(i (W;E/A + ATWyy)> = trace (24) = p(t) > 0,
and
2yTg(y) < (e1+ 61 L2) y'y. (29)

Condition (28) implies that

5 _ T
<%43U EAﬂ_gji ) < (-2(81 +5I1L2)\/M) In,

2
where &3 = (e +e1Ly) I,, + sym(AU). Based on this
fact, we derive that
1
| Wil t) 4 Wy 000 ) + W, 1,1, 400
0

-0 )y~ (1, 1)

)T
[0 () ()

1
<—2(e1 + El_ng)\/M/ (yTy)dx.
0

In accordance with Theorem 6, it can be concluded that
the system achieves AS-P.

Remark 8 From equation (29), we can deduce that matrix-

valued function ¢(y) is limited by L. Then it follows
that the smaller Lo is, the less £(¢) disturbs the sys-
tem. In other words, smaller Ly benefits to the AS-P
for system (1). This fact is also evident in condition
(28).

5 Numerical simulations

In the subsequent discussion, the validity of the ob-
tained results is illustrated using the example of a tem-
perature management system for cylindrical lithium-ion
batteries.

In recent years, the rapid advancement of new en-
ergy vehicles has led to the widespread use of lithium-
ion batteries. The stability of the temperature in these
batteries is crucial for both economic and safety consid-
erations. Research in [31, 6] demonstrates that a reaction-
diffusion system is effective for modeling the tempera-
ture behavior of lithium-ion batteries.

We consider a cylindrical lithium-ion battery cell as
shown in Fig. 1. Assuming the same temperature on
across circle of equal radius centered on the battery
pole, hence it is sufficient to analyze the radial temper-
ature change of the battery pole.

Battery pole

Fig. 1 Temperature diffusion of cylindrical lithium-ion bat-
tery

The forward Euler method and the central difference
scheme are used to construct the numerical scheme.

Ezxample 1 The temperature system of lithium-ion bat-
tery is described as

OT (x,t) 0*T (z,t)

o = (T t) + A + 9Tl &),

xz € (0,R),t >0,
(30)

where T'(z,t) € R? is the radially distributed temper-
ature inside the battery cell. x = 0 denotes the centre
of battery and x = R denotes the surface of battery,
where R is the radius of the cylindrical lithium battery.
The function f(T'(z,t)) € R? represents the heat pro-
duced within the battery during its operation. Matrix
A represents the diffusion coefficient, which describes
the rate at which a material responds to temperature
changes (A higher thermal diffusivity indicates a bet-
ter thermal conductivity of the material). The SP &(¢)
represents the power-limited coloured noise existing in
the battery with E|£(¢)|> < M.

£(t) as a class of stationary Gaussian process will be
produced by

&(t) = 0.5cos(1.2t + W)sin(2wt) + 0.3N(t),

where the random variable X follows a uniform distribu-
tion over the interval [0, 27], and N (t) represents Gaus-
sian white noise with EN(¢) = 0 and variance 1. It is
demonstrated in Fig. 2 that £(¢) satisfies E|£(¢)]? < 1.
The stationarity of £(t) as a Gaussian process is detailed
in the Appendix.
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Fig. 2 Random process &(t)

The diffusion matrix is taken as A = [0.3 0;0 0.5].

Two non-linear functions are
f(T(x,t)) = [0.7sin(T (z,1)),0.7sin(Ta(z, )],
g(T(z,t)) = [0.9sin(T (x,1)),0.9sin(Ta(z, t))] .
The initial conditions for RRDS (30) are specified as
follows
e = (036 -6

The boundary control strategy employed is described
by

ot _,
or |,
oT (z,t) R
7 n = UfO T(m,t)dx

Set ¢ = 1.5, ¢y = 0.8 and ¢(C) = 2C3 + 3C2%. A
simple calculation shows that L; = 0.49, Ly = 0.81 and
s(e1+ 61_1L2) =2 (g +€1_1L2)3 + 3 (e1 +61_1L2)2 =
21.7642. By solving inequality (23) in Theorem 7, one
can obtain the boundary control gain

—4.5837 0
U_( 0 —2.7502)'

By implementing the control gain U into the RRDS
controller (30), as illustrated in Fig. 3, it is evident that
E||T(-,¢)||? diminishes to 0, indicating that system (30)
achieves ES-2-M. In other words, the controller can ef-
fectively stabilize the system, which is consistent with
the result of Theorem 7.

Secondly, situations in probability sense will be dis-
cussed.

Still considering system (30) and maintaining the
same parameters. £(t) will be regenerated by

£(t) = 0.9 cos(1.5¢ + N) sin(27t),

where é (t), as a class of mean-ergodic widely stationary
process, satisfies E|£(t)|? < 1, which is shown in Fig. 4.

9
2
15}
< 1f
&
R
0.5
0 ‘
0 2 4 6 8 10
t
5
4
o3
P
S|
1
1
i 5 0.5
4 6 8 0 0
t x

Fig. 3 Response of RRDS (30) with controll in moment

15

&(t)

Fig. 4 Random process £(t)

In the Appendix it is verified that the £(t) and £(t) are
our desired.

Since to e; = 0.8, Ly = 0.81 and M = 1, one gets
that 2(e; +e; ' La)vV'M = 3.6250. The following bound-
ary control gain can be obtained by solving inequality

(28),
- —-4.9102 0
U= ( 0 —3.5111) '

By employing the control gain U, it follows from The-
orem 8 that system (30) is AS-P. ||T(-,¢)||? is shown in
Fig. 5 and we can seen that all sample paths converge
to 0, i.e., system (30) is AS-P, which agrees with the
theoretical results. Therefore, the validity of Theorem
8 is also verified. (To show the spatio-temporal proper-
ties of the system, the ET?(z,t) of the system (30) is
also shown in the Fig. 5.)

Finally, in order to illustrate the effectiveness of the
controller, Fig. 6 depicts the state response of system
(30) when the boundary controller disappears (taking
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T¢I

2
15
1
0.5
Ny 6 8 10

1
0.5
T

10 0

0 2 4
t
0
2
4 6 s
t

Fig. 5 Response of RRDS (30) with controll in probability

U= <8 8)) It can be seen that neither E|T'(-,t)|?

(Fig. 6(a)) nor the sample paths (Fig. 6(c)) converge
to 0, which means that the system cannot be stabilized
without the controller. In other words, since heat is gen-
erated inside the battery during normal operation, the
temperature of system cannot be stabilized when no
control is applied under the Neumann boundary condi-
tions.

E||T(- )|

o 2 4 6 8 10

(a) E[IT(, 1)

o 2 4 6 8 10
t

© ITC, 02 (d) ET?(=,1)

Fig. 6 Response of RRDS (30) without controll

The performance of boundary controller (22) is ver-
ified in above example. Next, a simple example will be
used to verify the claims in Remark 6.

Ezample 2 RRDS (30) with £(¢) is further analyzed us-
ing different values for the diffusion coefficients as de-

tailed

0.3 0 0.5 0
Al(o 0.4)’ A2<0 0.5)’

and other parameters are the same as in Example 1 .
The state responses corresponding to different diffusion
coefficients are shown in Fig. 7. (For a clearer compar-
ison, only E||T'(-,t)||? is depicted.)

—4,
-4,

Fig. 7 Response of the RRDS under different diffusion coef-
ficients

It is evident that the system state converges more rapidly
with a larger minimum eigenvalue of the diffusion ma-
trix, which verifies the statement in the Remark 6. Phys-
ically, better thermal conductivity of the battery mate-
rial will improve controller performance.

6 Conclusion

In this paper, the asymptotic stability of random reaction-
diffusion systems (RRDSs) and its applications to bound-
ary control problems are investigated. This work ad-
dresses a gap in research on random systems within the
field of partial differential equations (PDEs). Firstly,
based on Lyapunov stability theory and statistical meth-
ods, sufficient criteria for the asymptotic stability of
RRDSs are established in both the second moment and
in probability. Next, as an application, the boundary
control problem for RRDSs is addressed by designing
an integral boundary controller and constructing a Lya-
punov functional. Furthermore, the influence of param-
eters on stability is analyzed using the established crite-
ria. Finally, the performance of the designed boundary
controller and the validity of the theoretical results are
confirmed through numerical examples involving a bat-
tery temperature management system.

In order to establish a more complete theoretical
framework for the stability of RRDSs, some related
issues, such as the noise-to-state stability of RRDSs,
boundary control of impulsive RRDSs and switched
RRDSs deserve further thorough investigation.
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APPENDIX

In this appendix, we will show that the stochastic pro-
cesses (SPs) modeled in Section 5 are stationary Gaus-
sian process and mean-ergodic widely stationary pro-
cess (WSP), respectively.

Proposition I. £(t) = zcos(ht + @) is a mean-
ergodic WSP, where z and h are constants, the stochas-
tic variable @ follows a uniformly distributed over the
interval [0, 27].

Proof: It should first be noted that if the SP satis-
fies

E[E(t)] = m(t) = m,

Relty, t1] = Reqy(t — t2),
E[¢*(1)] < oo,

then &(¢) is said to be a WSP.

E¢(t) and autocorrelation function of £(t) are given
by the following expressions

E[¢(t)] = E[z cos(ht + D))

[ seostie + ) gutoas

— 00

27
1
= ht —d¢ =
[ sont o Lo

Rey(t,t + 1) = E[z cos(ht 4 @)z cos(ht + h1 + )]
2
= %E[coshr + cos(2ht + 29)],

where
2w 1
E[cos(2ht + 29)] = / cos(2ht + 2¢)2—d¢ =0.
0 ™

Consequently, we get

2
z
R&(t) (t, t+ T) = ? cosht = R{(t) (T)

Combined with the fact that E[¢(t)2(t)] < oo, the SP
&(t) is a WSP. L
The time average of SP £(t) is represented as £(t) =
1
limy_, 00 o f_TT &(t)dt. £(t) is considered a mean-ergodic

WSP if £(t) = E[£(¢)] = m holds with probability 1.
Since the sine function is bounded, the time average
value of £(t) is

_ ) 1 [T
£(t) %?wﬁ[TZCOS(ht+@)dt

. z .
= lim T cos@sinh T = 0,

T—o0

thus there is

One can finally obtain that £(t) is a mean-ergodic WSP.

Proposition II. £(t) = z cos(ht+®)+N (t) is a sta-
tionary Gaussian process, where z and h are constants,
& is the same as in Proposition 1, MV (¢) is the Gaussian
white noise with EN () = 0 and variance 1.

Proof: It has been demonstrated that z cos(ht + @)
is a stationary process. Combined with the fact that
N(t) is Gaussian white noise, it follows that £(¢) is a
stationary Gaussian process.
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