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Abstract

In recent years, propelled by the rapid development of information technology and the Internet, the formation control
of multi-agent systems has gradually emerged as a research hotspot. This paper focuses on the formation control
problem of multi-agent mechanical systems with port-Hamiltonian (PH) dynamics. Firstly, the formation problem is
converted to an optimization problem whose solution meets the formation requirements. Subsequently, in order to
guide the closed-loop system to converge to the solution of this optimization problem, we propose two distributed
controllers. The first controller is designed for multi-agent systems where the formation output is defined by position.
Notably, this controller preserves the PH structure in the closed-loop, which simplifies the selection of candidate
Lyapunov functions for proving the asymptotic convergence of the system to the desired formation. To characterize the
minimum convergence rate of the closed-loop system, the second controller is proposed. Based on this controller, the
exponential stability and the minimum convergence rate of the closed-loop system are provided. Additionally, these
controllers only require agents to exchange estimations of the average state with their neighbors, thereby protecting
the privacy of their state and value function information. Finally, the effectiveness of these controllers is verified
through an application case on nonholonomic wheeled robots.
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1. Introduction

Due to the practical potential in various applications and the theoretical challenges of collaborative control in
multi-agent systems, significant research efforts have been devoted to this field [1]. Formation control, as one of
the most active research topics in collaborative control, generally aims to satisfy prescribed constraints on states of
multi-agent systems based on local and partial information [2]. Consequently, distributed controllers, which require
only local information, have broader applications in formation control problems and can reduce the burden of network
communication compared to centralized controllers that require global information [3].

At present, there have been numerous achievements in formation control, such as in [4, 5, 6, 7, 8]. Focusing on
the formation control of a fleet of unmanned surface vehicles, Zhang et al. [9] proposed a distributed global output-
feedback control scheme to achieve the formation control without velocity measurement. The results of a study on
nonlinear symmetric control systems in [10] contribute to the stability of a large-scale system interconnected by a
given number of components. These findings can also be applied to the shape formation of multiple robots. Based
on aggregative games, Deng et al. designed different distributed algorithms for multiple quadrotor unmanned aerial
vehicles [11] and high-order multi-agent systems [12]. Further details can be found in [13].
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Recently, the port-Hamiltonian (PH) system has often been chosen to describe the agent’s dynamics by emphasiz-
ing its physical properties and interconnection characteristics. Under the PH framework, the agents are interconnected
using a well-defined geometric structure and the interconnected ports [14]. The PH structure has proven to be par-
ticularly suitable for control design due to its passivity [14, 15]. A wide range of complex systems in multi-physical
domains could be described by PH dynamics, including the important class of mechanical systems and several chemi-
cal, electromechanical, and electrical systems. For example, Matei et al. [16] modeled the interacting particle systems
by virtue of the PH framework and analyzed their dynamical properties. In addition, Donaire et al. [17] mentioned
that some systems allow Hamiltonian but not Lagrangian representations, and in [18], the PH framework is more
convenient and natural in spacecraft dynamics than the Lagrangian.

There are some related results regarding the control of PH systems. For example, Kumar et al. [19] investigated
the tracking control for the fractional order system with PH dynamics and designed an effective controller. However,
this work is only useful for the control of single and chaotic fractional order systems. For the formation or tracking
control in multi-agent systems in the PH framework, some researchers have made efforts. For example, Vos et al.
[20] presented a controller for a fleet of nonholonomic wheeled robots to accomplish the formation as well as velocity
tracking control. Subsequently, they investigated a specific formation control problem of multiple agents with coulomb
friction in [21]. Javanmardi et al. [18] used the leader-multi-followers architecture to develop tracking controllers
for spacecraft formation flying based on Interconnection Damping Assignment Passivity-Based Control (IDA-PBC).
Notably, these works are primarily based on traditional methods, such as energy shaping, damping injection, and
IDA-PBC, and aim at a specific mechanical system dynamic or a specific formation control problem like leader-
follower formation. Li et al. [22, 23] proposed an approach for many different types of formation control problems
of mechanical systems. However, in this work, every agent directly exchanges states with their neighbors, which may
cause privacy concerns.

In many practical situations, sensitive information leakage generally has negative effects on the normal operation
of the multi-agent systems, even disrupting or devastating it, as described in [24]. For example, Yue et al. [25] men-
tioned that cooperative formation is a typical swarm behavior by which multiple Unmanned Aerial Vehicles (UAVs)
execute combat missions, and recently research has focused on the privacy-preserving issues in the process of multiple
UAVs’ cooperative formation control. Specifically, in typical applications where UAVs from different stakeholders
conduct joint operations, and the formed UAV swarm is used as monitoring units, each USV carries sensitive in-
formation from its group, hence, the protection of its individual privacy is particularly significant. Considering the
protection requirements of sensitive information in the formation control of multi-agent systems, some researchers
have proposed control schemes, like homomorphic encryption [26], differential privacy [27]. These methods effec-
tively protect agents’ privacy information using encryption, decryption, or perturbations. However, encrypting and
decrypting messages are complex and cause time delays. To the best of the authors’ knowledge, no research has been
conducted on the formation control problems for multiple PH systems with privacy protection. This gap motivates us
to explore the distributed formation controller with privacy protection within the PH framework.

Different from these works as [11, 12, 28, 29], we consider multiple mechanical systems with PH dynamics, due
to the PH framework’s inherent advantage in its physical systems’ descriptive capability, property of interconnection,
and extensive applicability. Firstly, a distributed controller is proposed when the formation output is equal to the
position. Under the action of this controller, the overall multi-agent closed-loop system maintains the PH structure
and is asymptotically stable. The PH structure admits the Hamiltonian function to be chosen as a candidate Lyapunov
function, which decreases the difficulty of stability analysis. To furnish a well-defined quantitative metric for the
convergence rate of the system, the second controller is designed, based on which, the exponential stability of the
corresponding closed-loop system is proved in theory, although the design of the formation output function disrupts
its PH structure. Meanwhile, these two distributed controllers do not require the agents to obtain the state of their
neighbours and, therefore, protect agents’ privacy. The main contributions are listed as follows.

(1) Different from [21, 30, 31, 32], under the proposed controllers, the agents exchange information through
the average state estimations and the error auxiliary variables instead of the exact states with their neighbors. This
approach protects agents’ state and value function, while achieving the desired formation.

(2) The first controller preserves the PH structure of the multi-agent systems, with the Hamiltonian naturally
serving as a Lyapunov function candidate. This simplifies the selection of a Lyapunov function for stability analysis
compared to the previous studies in [11, 12, 31, 33].

(3) Inspired by the first controller and those proposed in previous works [20, 34, 35], the controllers in these works
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guarantee asymptotic stability, where the convergence rate cannot be estimated. In contrast, the second proposed
controller is designed to ensure the exponential stability of the desired formation. It can achieve a convergence rate
greater than a specified value, thus theoretically offering a convergence guarantee with a minimum convergence rate.

The remainder is organized as follows. Section 2 provides essential preliminaries, then, Section 3 describes the
considered formation control problem. Section 4 proposes two controllers and analyzes the stability of the corre-
sponding closed-loop systems, respectively. Section 5 presents a simulation example, and the final section concludes
the work and gives some perspectives.

2. Preliminaries

In this section, the notations and preliminaries mainly used in this work are introduced.

2.1. Notations

The symbol R” denotes the n-dimensional Euclidean space and Z denotes the set of integers. 1, € R" and 0, € R”
represent the vectors with all components being one and zero, respectively. || - || denotes the Euclidean norm. The
Kronecker product is denoted by ®. A = (a;;)nxn denotes the matrix A € RM*N with the element in row i and column
Jj being a;; € R. ||x||i := x"Ax is the norm of the vector x € R™ with respect to the matrix A € R"™ ™ where x' is
the transpose of x. For an invertible matrix A, the symbol A~ is short for (A~!). For any two integers i, j € Z with
0 < i< j,[i: j]dentoes the set of successive integers {i,i+1,--- , j—1, j}. For a collection of columns vectors x; € R™,
i € [1:N], col(xy, -+, xn) = (x],--- ,x)" € RM". For a collection of diagonal matrices Q; € R™" i € [1:N], and
any j € [1:m], Q;; represents the jth diagonal element of Q;. I, is an identity matrix in R™". diag(d;,--- ,1,) € R™"
is the diagonal matrix of elements A;,--- ,4, € R. For any ordered index set S = [1:s], ns is short for the vector
(- my).

2.2. Some basic concepts

This paper considers N agents communicating over an undirected connected graph G := {V, &, A}, where V =
[1:N] represents the node set, & C V x V represents the edge set, and the symmetric matrix A := (a;;)nyxn represents
the adjacency matrix. The agent i € V is a neighbour of j € V if (i, j) € &, in which case a;; = 1. Otherwise, if
(i, j) ¢ &, then a;; = 0. That is, if i is a neighbour of j, then j is also a neighbour of i. Moreover, we always assume
that for any i € V, it holds that a; = 0. The set of all neighbours of i is denoted by N(i) := {j € Vl]a;; = 1}. The
degree matrix is defined as D := diag(deg,, - - - , degy), where deg; := 2?1:1 a;j, i € [1:N], and the Laplacian matrix of
G is defined by L := D — A. The eigenvalues of L are denoted by 4; < --- < Ay. If there exists a connection path
from any node to another, G is said to be connected. A criterion is that G is connected if and only if 4, > 0. To find
more details, please see [36].

In addition to the above-mentioned graph-related concepts, some important properties and definitions of functions
are also involved in this paper. A function f : R" — R" is L,-Lipschitz (L; > 0) on R" if || f(x) = f(x")I| < Lyllx—x'|| is
satisfied for all x, x’ € R". If there exists a w > 0 such that (x —x')T(f(x) = f(x)) > wl|lx — x’||> holds for all x, x’ € R",
the function f : R” — R” is w-strongly monotone. More details about the above definitions can be found in [37].

2.3. The PH model of mechanical agents
The ith (i € V) agent’s dynamic is described by the following standard PH system' :

X = (Si(x) - Rf(xi))”g’ﬁf") + gi(xi)u;, )
yi = g?(xi)ﬁ’é"—)ﬁj"'),

where x; € R™ represents the state of the ith agent, the smooth function H;(x;) : R — R represents the total energy

of the ith agent called the Hamiltonian function, the structure matrix J;(x;) : R™ — R™™ gatisfies J;(x;) = =JT(x),

In system (1), x; = xi(0), ui = wi(®), Ji(x;) = Ji(xi(0), Ri(x;) = Ri(xi(0)), Hi(xi) = Hi(xi(0)), g = gi(xi(®), yi = yi(®). In the following text, for
simplicity of description, 7 is omitted without causing ambiguity.



the dissipation matrix R;(x;) : R™ — R™™ i5 a symmetric semi-positive definite matrix, that is R;(x;) = Rl.T(xl-) > 0.
gi(x;) : R™ — R™" jg called the input mapping. The control input ; € R" and the system output y; € R" are power
conjugated variables, like force and velocity in a mechanical system or current and voltage in a circuit.

In this work, we mainly focus on the formation control of multiple mobile mechanical systems such as unmanned
aerial vehicles (UAVs) [38] and robots [39], which are of a natural PH structure. In system (1), let m and m, be
positive integers such that m + m, = . We define the state of the ith (i € V) agent as x; = col(g;, p;), where the
position ¢; € R™ and the momentum p; € R™». Then, the dynamic of the ith agent can be described as

{ = Ai(gi p) 20D 4 B (g, p 2t @

= C;(qi,p,)‘m(q’ 2) 4 p (q,,p,)aH("’ L) 4 3(qi, piui,

aq; opi

where g:(q;, pi) € R™*" is of full row rank. We decompose the structural matrix as

Ai(gi,p)) Bigi, pi)
= Ji(gi, pi) — Ri(qi» p),
[Ci(%”pi) Di(qi, pi) (@i-P1) = Rilgi. pi)

and define
8i(qi, pi) = col(0pxn, 8i(qis Pi))-

Based on the above analysis, we have shown that the mechanical system (2) is an equivalent expression of system (1)
with the Hamiltonian function Hi(g;, p;).

3. The motivation example and problem formulation

This section presents the formation control problem of multi-agent systems described in the PH form, commencing
with a motivating example.

3.1. Formation control of multiple wheeled robots

Consider a practical scenario. There are N = 10 wheeled robots with PH dynamics described by (2). These robots
communicate over an undirected connected graph G. They move from their initial positions to form a certain shape on
a square to perform a cooperative task. A specific example is shown in Fig.1, where the left figure illustrates the initial
positions (red points) of the 10 agents, and the right one shows the desired formation, i.e., one of the blue pentagrams.
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Figure 1: The diagram of a pentagram formation problem.
As in [40], the formation goal is mathematically expressed as
lim llg:(1) = 4;(0) = 631l =0, i, j eV, 3)

where g;(7) and ¢;(t) are the position of agent i and agent j (i, j € V, t > 0), respectively. In general, the constant
vector (5* is the predefined displacement difference between agent i and agent j. The desired displacement differences
between agents are determined by the desired formation satisfying

5 = &

G= =0 S +0y =0 VikjeV.
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Remark 1. When 5;‘]. =0, Eq. (3) becomes lim;_, |lgi—g;ll = 0,1, j € V, and this describes a state consensus problem
[41]. If the 1st agent is the leader, others are the followers, then the formation goal lim; . |lq; — q1 — 631l = 0,i € V
describes a leader-follower formation problem [21, 28, 31, 42]. Thus, Eq. (3) can also describe the leader-follower
formation goals.

However, the formation objective (3) allows us to ascertain whether the desired shape has formed but not to
determine its location. As illustrated in Fig.1, we cannot determine which blue pentagram is wanted. From an
ornamental perspective, we hope all robots achieve the formation and perform near the center of the square (green
pentagram) as Fig.2. Consequently, a simple single-objective formation problem (like in [43]) is insufficient to address
this issue.
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Figure 2: The diagram of a pentagram formation at the center.

Hence, to achieve the target formation in the desired location, the value function V; of the ith agent (i € V) is
formulated as

N
&3 1 £
2 Nai = 4= Siliz, + Sl = Bl )

where P;, Q; € R™ are symmetric positive definite matrices, 8* is the location coordinate of the center of the square.
We aim to develop a controller for the ith (i € V) agent under the action of which, the position ¢;(0) — g}, t — oo,
where ¢; = argmin,, .. V1; implies that the desired formation is formed.

The value function Vj; contains two parts:

(1) The first item of the value function Vj; in (4) is designed to ensure formation (3) can be achieved.

(2) The second item? of (4) is designed as a target position constraint.

Remark 2. It is useful to consider the formation problem in optimization theory, such as in [33]. In practical
applications of the formation control, it is reasonable to consider other requirements like destination location and
fuel restrictions [44].

Accordingly, the value function (4) of the formation objectives is comprised of the above two parts. Based on the
requirements, the first objective, representing the formation goal, is of greater importance than the second one. Hence,
we design the diagonal elements of Q;, P; satisfy Q;; << P;j, j € [1:m] to enlarge the weight of the first item, such
that the desired formation is ensured. This approach is common in optimization problems [45].

3.2. Formation control without direct state exchange
3.2.1. Formation objective
Based on the motivation example mentioned in Section 3.1, we define the formation output function

Yi(g) i R" - R

2This goal can also be described as an agent wanting to reach the center of the square. However, since each agent in the pentagram formation
needs to be distributed at specific positions, if one agent is located at the center of the square, it will disrupt the geometric structure of the pentagram,
causing the geometric center of the pentagram not to be at the center of the square. Therefore, we design this item to weigh each agent’s requirement
to obtain a formation close to the center of the square.



Then, the objective (4) is written in a more general form as
&
Vo = 5 Wilan) = () = 535, + Iwican) =1, )
i=1

If we choose ;(g;) = K;q; with K; = I, the objective (5) degenerates into (4).

3.2.2. State protection
To calculate the value function Vj; in (4), it is necessary for every agent to obtain its own position ¢; and the
position g; of its neighbours j € N(i). However, this is nearly impossible due to privacy concerns.

Remark 3. In the aforementioned approaches of the formation control of multiple PH systems, such as those presented
in [22, 30, 32], each agent explicitly discloses their states to their neighbors. However, the direct exchange of states
may result in significant privacy concerns in practical applications. For instance, in the rendezvous problem, the
control objective can be described as (4) with Q; = 0,xm and 6;; =0y, i, j € V. If agents exchange explicit states, the
initial location may be revealed to neighboring agents. This situation is undesirable, as pointed out in [46].

In the considered communication topology, each agent only is allowed to exchange information with neighbours.
Consequently, without global information, a distributed algorithm rather than a centralized controller is employed to
accomplish the formation objective.

Then we aim to develop a distributed controller u; for the ith agent (i € V) such that under the action of the
controller, the ith agent converges to the minimum point g; of the optimization problem (5). To safeguard the state
information of each agent, the controller u; is designed to be only related to its own position ¢; and is independent of
the state of other agents.

3.3. Problem formation

To avoid disclosing private state information such as the position of each agent, we consider the average formation
output ¢,,.(q) of all agents:

1 N
Vanel@) = Zl Wiq),

where ¢ = col(qy,- - ,qn). To further illustrate the physical meaning of the average formation output, we see an
example first. Let y;(¢;) = g, then we have ¥,,.(q) = qave = % Zﬁi 1 ¢i- In this case, the average formation output gy,
is equivalent to the geometric center of all agents’ positions, clearly demonstrating that the average formation output
can be regarded as a representation of this central location.

With privacy concerns, the estimation #;(r) of the ith agent (i € V) to the average formation output ¥,,.(g) is
designed, and we hope the estimation 7;(¢) of the agent i € V converges exactly to ¥/,,.(q) as

ﬁi(t) - lyl’ave(q(t))9 1 — oo, i€ (V,

the rigorous mathematical analysis will be given in Section 4.
Define 0;(¢) as the displacement deviation between the formation output i;(g;) of the ith agent (i € V) and the
average formation output ¥,,.(q) of all agents, we have

| &
0i(t) = ¥i(qi(D) = Yavelq(®) = Z(lﬁi(qi(t)) = ¥(q;(0)).
=1

With the desired formation objective (4), if we design the desired displacement deviation between ¥;(g;) and ¥4,.(q")
as 67, where ¢* = col(q}, - , qy), then we have

T : : 1 - 1 = 2
5 = lim 6,(1) = lim ;wi(q,-(r)) ~Ui(gO) = 5 ,Z: 5

Based on the displacement deviation ¢;(¢), the following theorem is given.
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Theorem 3.1. If ¢* = col(q}, - - ,q},) satisfies

IWi(q)) = wi(q)) = S;lip, =0, i, j eV, (6)
then

1i(g7) = Yane(q") = §{llp, = 0, i€V, ©)
vice versa.
Proof. It should be noted that we assume that there must be at least one state g* = col(qj, -, ¢y) in which the

formation objective (6) can be met. Otherwise, the formation problem will be meaningless.
On one hand, if ¢" satisfies (6), then i,(q}) — glrj(q;) - 61*.}. =0, Vie V. Thatis

vilg?) —yn(q)) — 65 =0,
Yilg;) — n(gy) — 63y = 0.
Sum the above equations, we have

1 N
vila)) =5 D W@ +67) =0, i€V,
j=1

which means (7) is satisfied.
On the other hand, the fact g satisfied (7) means that

d’z(qr) - lﬁave(q*) - 5,* = O,

% 8
Uig) ~ Yarelg) =85 =0, Vi jeV. ®

Make a difference between y/;(g}) and ¥ j(qj.), then, we get
vilg)) = ¥i(gp) — (6] = 8) = 0.

By the definition of 67, we have &7 = 8% = § XL, (67, = 6%) = § i, 6;; = 6;;, which means that (6) is accomplished.

=N
O
With Theorem (3.1), the minimum point of (5) for the ith agent (i € V) is equivalent to the minimum point of
1 Tk *
ViWi(@i), Yare( @) = 5UWi(g0) = Yave = 6115, + i) = Bl 9

where the constant vector §* is predefined according to the specific requirements.

Above all, our task is to design a distributed controller for the ith (i € V) agent by using its own information g;, f;
and the estimation #7; from its neighbor j € N (i), such that the ith agent’s system state ¢;(f) converges to g* as t — oo,
where ¢* is the minimum point of (9). The formation control problem is summarized as follows:

Problem 3.1. Consider N agents described by (2) communicating in an undirected connected topology G. For the
ith (i € V) agent, design a distributed controller ui(q;, i, ine), invg = (A, j € N(D) such that the ith closed-loop
system from the given initial state q;(0) asymptotically converges to the minimum point q; of the value function (9).

To find a solution of Problem 3.1, we refer to Theorem 3.9 and Theorem 4.8 in [47]. Then, the following Lemma
is given.

Lemma 3.1. A state g* = col(q}," - , qy) is a solution to (9) if and only if

Vaern Vihi(q;)s Yave(q)) = Oy i €V (10)
7



4. Distributed algorithms and Convergence Analysis

In this section, two different distributed controllers are designed to solve Problem 3.1. One controller focuses on
maintaining the PH structure for simplicity in stability analysis, while the other emphasizes a guaranteed convergence
rate. Then, the convergence of the corresponding multi-agent systems is analyzed, respectively.

With the definition of the value function V;(g;, ¥4,.(¢g)) in Problem 3.1, the following maps are defined.

Fi(qi, lpave(q)) = ti‘/i(qi» Yave(q)),

. (11
Gi(qi, 11i) = Fi(qi, Yave( @)y ()=t >

where #; € R'. Define
F(q) := col(F1(q1, Yave(@), - -+ FN(GN, Yave(@)))s
G(q’ ﬁ) = COI(GI(CII 5 ﬁl)a Tt GN(QN’ ﬁN))’

where 7 = col(#jy, - -+ , fjy) € RV,

4.1. PH structure preserving distributed controller

In this subsection, we consider the specific example proposed in Section 3.1. In this case, ¥i(g;) = g;. With the
definition in (11) and let @ = %, we have
Gi(gi» M) = (@Pi + 0))gqi — aPifj; — (aPi6; + Q). (12)

For the ith (i € V) agent, design the closed-loop system as

. OH.i(qi,PisMis5i)
qi oqi
P OHi(qi,piMi,5i)

il _ ap;
AT (Jai = Rai) 31‘151,'(4,‘,’;7,',?71'.51') ’ (13)
ni T
Si OH.i(qi,PisMis5i)

ads;

where the initial value s5;(0) = 0,,, 7:(0) = ¢:(0)?, and ¢;(0), p:(0) are the given initial states of the agent i € V, the
structure matrix Jg4; and the dissipation matrix Ry are

0 0 0 Ja 1 0 0 0

;2|0 00 0 R |01 0 0

A= 0 0 0 1|7 MTI0 0 I+@aP)'o)T 0|
-J5, 0 I 0 0 0 0 Rui

with Jy1; = —(aP; + Qi)il((XPi), Ry =1+ ((aP; + Qi)il((tpi))T and the Hamiltonian function

I P S I
Hei = 5Gilgis ) Gilgn i) + 5 D, (=) (i =)

JEN() (14)
1 1 . . .
+5pipit 5@i= =) @i=fi—s), i€V
Since P; and Q; are positive definite matrices, we have the structure matrix J;;; = —J;ll. and the dissipation matrix

Rui1 = R;n > 0. Hence, the closed-loop system (13) maintains the PH structure.

By the closed-loop system (13), the system trajectory g;(f) can be obtained. Subsequently, the momentum p}(z)
can be calculated according to the coupling relationship between displacement and momentum in mechanical systems.
With the PH dynamic (2), the controller is implemented as

OHi(g; (0, p;(1)  OHi(g; (1), p; (1)
04 (1) S0

ui(t) = &ilq; (), p; () (p; (1) = C; ) s)

3The initial value of #;(0) can be chosen arbitrarily. Considering the meaning of 7); is the ith agent’s (i € V) estimation of the average formation
output, we use its own position ¢;(0) as the first estimation.
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Figure 3: The control scheme of the ith agent (i € V).

By comparing the state X; = col(g;, p;, 71;, s;) in the closed-loop system (13) and the system state x; = col(g;, p;)
in the PH system (2), one can observe that different from the inherent state characteristics of the ith agent system (the
position ¢; and the momentum p;), the state #; and s; as the interconnected variables represent the interconnection
relationship between multi-agent systems, similar to virtual springs [21]. The control scheme is shown in Fig.3. First,
the desired formation parameters (_51’.‘, B and the initial value x;(0) = col(g;(0), p;(0)), #:(0), s5;(0) = 0; are given. Then,
with the value function (9), the gradient G;(g;, ;) is calculated and input into the closed-loop system as the desired
direction of change for the system position ¢; and #;. Getting the estimation #}; from neighbor j € N(i), the system
state X; of agent i € V is updated by (13). The updated estimation #; and the error auxiliary variables are sent to its
neighbors through a shared communication network. Finally, the state of the closed-loop system (13) converges to its
equilibrium X! = col(q;}, p}, 7, s7). With the desired trajectory ¢;(#), the controller (15) is obtained. By inserting (15)
into the PH system (2), the equilibrium x of the ith PH system (2) satisfies the formation objective.

Define P = diag(Py,---, Pn), O = diag(Q1, - ,0On), p = col(p1,--+ , pn), s = col(sy, -, sy). Then we have
the compact form of (13):

. OH/(q.p.7.5)
Z 0ch(§?p,ﬁ,s)
ﬁ =(Ja—Ra) 3H(-1(q{:p,f7,s) > (16)
S 0Hc/(?17p,ﬁ,S)
s

where the structure matrix J; and the dissipation matrix R, are

0 0 0 Jy I 0 0 0
0 0 0 0 0 I 0 0
Ja=l o 0 0o 1| ®=lo 0 1+@eP 0T o a7
-J;, 0 -1 0 0 0 0 Ry
with J;1 = (@P + Q) '(=aP), Ryt = I + (@P)"(aP + Q)T and the total Hamiltonian function
1 o N D 1 o R
H, = EG(‘]’ ) G(q,7) + P P+ (L 1,)h+ E(q —-f1+s) (g—H+59). (18)

It is easy to verify that when P;, Q; > 0 holds in the formation goal (9), the dissipation matrix R; = R; > 0 and the
structure matrix J,; = —J; in (17). Hence, the structure of PH systems is maintained.

Theoretically, the fact that the distributed controller (15) is a solution to Problem 3.1 implies that, under the action
of this controller, the system state of agent i € V in (2) converges to the equilibrium of system (13). Meanwhile, at
this equilibrium X7, the value function (9) reaches its minimum value, where the formation objective is achieved. The
following two theorems, with detailed theoretical derivations and analysis, illustrate these points. Specifically, The
first is a convergence analysis of the closed-loop system (16).



Theorem 4.1. The PH system (16) is asymptotically convergent to an equilibrium point X* = (¢*, p*, 7", s*) which
belongs to the invariant set

S ={X = col(q, p, 7, )G(q, ) =0,g—7+5=0,p=0,(L& L) =0,(13 ® L,)s = Oy} (19)

Proof. With the property of the PH structure of system (16), directly choosing the Hamiltonian function H,; > 0 in
(18) as a candidate Lyapunov function. The time derivative of H,; is

6Hcl
1104

. oH,;
H,=- TR;—=. 20
el ( ) Ry X (20)

It follows that H,; < 0. Recalling LaSalle’s invariance principle, system (16) asymptotically converges to the largest

invariant set
OH, cl

0X

Then we are going to analysis the elements X € S. Based on (12), we have the gradient of G;(g;, 7};) with respect
to g; and 7j; respectively represented as

S ={X|

0}.

9G(qi, ;)

94, =aPi+ 0,
R 21
0G(qi, 7)) — _oP, @b
on; :

Inserting (12), (16) and (21) into (20), we have
Hoy=-l@P+Q)G+q—n+sl*=1pl* =g =+ slI? = LS L) — (g -7+ s)I.

Since (@P + Q)T > 0, then H, = 0 if and only if G(¢,7) = 0,g—f+s =0, p = 0, (L ® I,)i = 0. Noticing that
(15, ®1,)5 = 0 and 5(0) = Oy, we have (15, ® I,,)s(1) = 0,V > 0.
Hence, the PH system (16) asymptotically converges to the set S in (19). O

Then, the relationship of the equilibrium X* of the PH system (16) and the minimum point ¢* of the value function
(9) is summarized as follows.

Theorem 4.2. If X* = col(q*, p*, 71", s¥) is an equilibrium of the PH system (16), then q* is one of the minimum point
of the value function (9) where the formation goal (4) is achieved.

Proof. If X* is an equilibrium of (16), then by Theorem 4.1, we have X* € § that means

G(q".7") = Onm,

g =7 + 5" = Onm,

(L LT = Oppms (22)
P* =0y,

(T ® I,,)s = Oy,

As the Laplacian matrix of G, L has and only has one 0 eigenvalue, with the corresponding eigenvector 1y. The
third formula in (22) implies that ;* = @1y, & € R. Therefore, 7} = i ¥i, j € V. Noticing that (15y®L)s=0,Yt>0
and ¢ — /" + 5" = 0, we have (1], ® I,)(¢" — ") = (1}, ® I,)g" — (1}, ® I,)i* = 0. It indicates that 3\ | 77 = Ng,,,
where ¢}, = % 2,]'\;1 q;. Above all, for any i € V, Fi(q;, quelg,.=i; = Gi(q;,f;) = 0. With the help of Lemma 3.1,
the proof is completed. O

By Theorem 4.1 and Theorem 4.2, the PH system (16) asymptotically converges to the equilibrium X* where the
desired formation is achieved.
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4.2. The second distributed controller

In this subsection, another controller is proposed. The goal of this controller is to solve Problem 3.1 by utilizing
the formation output i;(g;). There is a significant difference compared to the previous subsection. Under the action
of the controller proposed here, the PH structure of the closed-loop system will be disrupted. However, we manage
to find a suitable Lyapunov function. By using this Lyapunov function, we proved the exponential stability of the
corresponding closed-loop system.

Assumption 1. Assume that the gradient F(q) of the value function (9) is w-strongly monotone and L-Lipschitz.
The formation output y(q) and the mapping G(q,#) are Ly-Lipschitz and Lg-Lipschitz, respectively, where y(q) =
col(i(q1), -+ . ¥n(gn))-

This assumption is general in aggregative games, such as in [12, 11]. For example, this assumption is satisfied
if we let ¥;(q;) = K;q; + b; with the matrix K; > 0 and an arbitrary constant vector b;, then with the definition of
Vi(qi, Yave(q@)) in (9), the assumption is satisfied.

Similar to Section 4.1, we first design a closed-loop system as

qi = vi,

Vi = —kivi — kaGi(qi» 1),

i = ¥i(g) = fi =y ZjeneyBi — 1)) — zi»
Zi =y Xjene @i — 1)),

(23)

where 7;(0) = g;(0), z;(0) = 05, v;(0) can be chosen arbitrarily, and the parameters vy, k;, k; will be determined later.

From a physical perspective, g; represents the position of agent i € V, while v; represents velocity as the derivative
of g;. The change in velocity is related to itself and the mapping G;(g;, 77;). The update of the estimation #; of the ith
agent is dependent on three parts: (1) the difference between the ith agent’s estimation #; and its own formation output
¥i(gi); (2) the total difference between #); and the estimation #}; from its neighbor j € N(i); (3) negative feedback term
z;. The final formula of (23) serves as an integrator to eliminate the error. As the system runs, the desired system
trajectory ¢;*(¢) can be obtained, after which the corresponding controller can be implemented.

Remark 4. The closed-loop system (23) cannot maintain PH structure. This is due to the mapping yi(q;) such that the
structure matrix Jg; and the dissipation matrix Ry; may not satisfy the anti-symmetric or positive-definite conditions.

By the system (23), the desired trajectory ¢;*(?) is obtained. Further, pi* and p;* are got according to the coupling
relationship between position and momentum in mechanical systems. Then we can solve the second controller as

OHi(q;"(®), p;" (1)) 0Hi(g;" (1), p;*(1))

ui() = gi(q;" (1), p;" () (P} (1) - D; - i - ). 24
S R0 7RO e
Letv = col(vy, -+ ,vy), 2 =col(zy, - ,zy), we rewrite (23) in a compact form:
q=v,
v = —k1v — koG(q, 1)),
v 1v = kG(q, 1) 25)

n=w(@-n-yLeh—-z, 7(0)=q(0),
Z=y(L®I)h, z(0)=0n.

To make our control methods more comprehensible, the flow diagram is given as Fig.4.

As can be seen from Fig.4, each agent calculates based on its own value function V; and initial values ¢;(0), v;(0),
71:(0), 5;(0). Then, it obtains 7; through information interaction with its neighbors j € N(i). Further, the controller u;(f)
is solved by (23). Substituting the controller (24) into the multi-agent systems (2), the achievement of the formation
objective (4) will be proven. First, the following theorem is given to analyze the convergence of system (25).

Theorem 4.3. Under Assumption 1, the system (25) exponentially converges to the equilibrium point (q*,v*, 7", 7")
with the designing parameters

2
whky . RLy | sN+a g2
ky 2 e+ 2+ + 25 Lw
8
Y=, (26)
ke < 2%, ky,e>0.
213> >

11



the initial value the initial value
the value function V;, §; 4:(0),v;(0), 5(0), z:(0) Vi.6: | q;(0),v;(0),7;(0), z;(0)

Mappings in (11) Mappings in (11)

Gilai, i) l(:,[(,,./,,)

) . i
agent 7 with dynamic (22)L:‘agent j with dynamic (22)‘

fj-Jje N@).
lq,**(f) l 7 (#)

‘ Distributed controller (23) ‘ | Distributed controller (23) ‘
| o | w0
‘ PH system (1) ‘ | PH system (1) ‘

l q:(n) l q,(D)

‘ achieve the desired formation goal (3) ‘

Figure 4: The flow diagram of our control method operations.

Proof. The equilibrium (g%, v*, ", z*) of (25) satisfies that:

q* = ONm’
—kv' — kaG(q", 7T*) = Oy
v A f (g*.7") = On @7
() =" —y(L @ IN" — 2" = Opy,
y(Le® 11)77 = Oni-
Letg=q—-q".v=v—-Vv',1=7—7"and 7 = z — z*. Make a difference between (25) and (27), we have the following
system by the decomposition of the Laplacian matrix L.

V= —k1v - kaG(q, 1), 28)
i = 71— YL )i -7~ (" @ INP(g),
z=y(L® )7 — (RR" ® I)Y(q).

where G(q, 1) = G(q. 1) = G(g". 1), ¥(@) = (@) = ¥(q"), r = 1y, rTR = O3, R'R = Iy_1, RR™ = Iy — 3 1n1}.
Then, our task is to prove § — 0 (¢ — ¢*). Through the orthogonal transformation of » and R:

= col(fin, i) = ([r - R1" ® 1),
z=col@Z, ) =([r RI'®I),

where 77,7 € R/, 75,7, € RV-D After that, Eq. (28) is rewritten as

Gg=",

V= —kiv - kaG(q, )

T? = =i = (" ® [ (q), 29)
i = ~fp = Z — Y(RTLR ® I))ija,

21 =0,

% = y(RTLR® 1))if, = (R™ ® 1)/(q).

The Lyapunov function is taken as
V=Vi+Vo+ V3

12



where | |

Vi =S lleg + pl* + 5 (et = &)llgl*, & > 0,
1 1 . B

Vo =1l Vs = sl + <l + 2%
2 2

The derivative of V| along (29) is
Vi =(eq + V)" (eV — kv — kaG(q, 7)) + e(ky — £)G ',
= —koeq" G(q, 1) — (ki — &IFI* — k¥ Glq, ).

According to Assumption 1, due to the w-strongly monotone of F'(q) and L-Lipschitz of G(g, 7)), the first term of
V, can be scaled down to

—ky6q" G(q.9) = —k2e(q — ¢") " (G(q. ) = G(x", 7))
= —kye(qg — ") (G(q, 7)) — G(q, 7)) — kaelg — ¢") (F(q) — F(q"))

S _ 3 _
< koL llgllAl - kaewligl < —4—‘1628W||61|I2 +

Similarly, the third term of V, is scaled down to

kov" G(q. 1) = ko(v = v) " (G(gq. 1) — G(q". 7))

= k(v =) (G(g. 1) - G(g. 7)) + k(v — V*)T(F(q) - F(q")
2

L:koe wky
< ko Lellnlllivll + k2 L¢llglllivi] < gw [zl . ||61||2 NP )IIVII2

Hence, V; is scaled down to

R wk koL kaw
Vi < —(k —s——z——f)n [

4e

2L2k28
gl + ——1Il’*.
w
Under Assumption 1, due to the L,-Lipschitz of ¢(q), the derivative of V, along (29) is
. . 2L, L
Vo =201 (= = (r" @ L)w(q) < =2lill* — —=llllivll < —llil> + =9I,
‘ VN N
and the derivative of V3 along (29) is
Vs =713 (=7 = 22 = Y(RTLR ® I})iin) + (712 + 22) " (= 12 — 22 — (R™ @ I)(q))
= =20l = 122l = 3713 22 = ¥iiy (RTLR ® 1)l — iy (RT ® L(q) — 2 (RT ® L) (q).

For the undirected connected G, only the minimum eigenvalue A; of matrix L is equal to 0, the others 0 < A, <
-+ < Ay such that
—ii, (RTLR ® 1,)if> < = sl (30)

By ab < 3-a* + 5b?, ¢ > 0, we have

. L2
- MR ® L)(g) < Il + 7‘”||v||2,

-5 (R @ L,)(g) < —||Z2||2 + Ly |1, G
- 3i1; 2 < 31zl < Z||22||2 + 9l 1.
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It follows from (30) and (31) that
~(yd2 = ®)llill” + 3 L2||v||2 - —||zZ||2 (32)
Then, the derivative of V along (29) can be calculated by the analysis above as

2
o, wky keLy 5N +4
V=Vi+WV+WV<—-(kj—6— — — —— —

! 2 3s—th-e 4e we 4N

1
LI = Sllzalf

k2 ew

2L2k28
—— il = (1 = ———)IIfll* = (yA2 = 8)lI7alI*.

2L kz"-:

Lety =kj —&— %2 - W—Ef - 5{4\’;4Li, bH = kzw LG=1- , {4 = yA, — 8. If the parameters k|, &, k, satisfies

the condition in (26), we have {1, %, (3,44 = 0. Notlcmg that ||77||2 51117 + |Ii2]1> and (@ + b)* < 2(a® + b*), we have

. _ 1 _ . . .
V< =GliP = Slzl? - &liegl” = Sl = &1l - il

gs

L-% & 2G5+ 8=8)
2 112 =2 = 12 = 112
< —-=|leg + ——e(k; - - - Z|lzo + -
7 llea +vII" = T )8( v = ollgll” = llinll™ = Zliea + ol > 1721
< —§V,
where ¢s = min(¢;. o). 4 = min(3, 58], ¢ = min{2, 250 65,4265 + &4~ £5)). By the Lyapunov stability
theorem, the proof is completed. O

Next, we will illustrate the relationship between the minimum point g* of the value function (9) and the equilibrium
point (¢*,v*, 7%, %) that system (25) converges to.

Theorem 4.4. Under Assumption 1, if there exists an equilibrium point (q*,v*, 7", 2%) of the closed-loop system (25),
then q* is the minimum point of the value function (9). Conversely, there extsts v e RV 7" € RV z* € RV such
that (g*,v*, 7", 7") is an equilibrium of (25) if x* is the minimum point of (9).

Proof. If (¢*,v*,fi", z") is an equilibrium of system (25), then the conditions in (27) are satisfied, that is,
V* = ONm,
G(q". ") = Oy,

W(g) -7 —z" = Oy,
(LI = Oy,

(33)

For the undirected connected communicate topology G, we have L1y = Oy. Then by the last formula in (33),
we have (15, ® I))(L ® I)) = Oy;. Noticing that z(0) = Oy, by (25) we have (1], ® [))z* = 0. As a result of
(13 ® I(W(g*) = 7*) = 0 and (L ® I))* = Oy;, we obtain 7} = r] = Ywe(q"), where i, j € V. In consideration of
the definition of G(x*,7*) = F(x* )|¢,W(q =i G(x*,71") = Onm 1nd1cates that V,, Vi(g!, Yave(q")) = O, for every i € V.
Hence, by Lemma 3.1, ¢ is the minimum point of the value function (9).

Conversely, if ¢* is the minimum point of (9), by Lemma 3.1, we have Fi(q},¥ae(g")) = 0,. If we choose
17 = Yave(q") for any i € (V then we obtain G(¢*, 71*) = F(q")ly,..cs")= = = Oy and (L ® 1™ = Oy;. When we choose
v = Onp and 2 = ¥(q*) — 1%, Eq. (27) is satisfied. The proof is completed. O

With the help of Theorem 4.3 and Theorem 4.4, the equilibrium of system (25) is the minimum point of the value
function (9) in Problem 3.1 and further meets the requirements of formation control. Hence, the controller (24) is a
solution to Problem 3.1.
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Figure 5: The communicate topology of 10 nonholonomic wheeled robots.

5. Simulation examples

This section presents simulations of a fleet of nonholonomic wheeled robots to illustrate the proposed controllers’
effectiveness. The formation control goals are aligned with the motivational example mentioned in Section 3.1.

We consider N nonholonomic wheeled robots with N = 10 that are connected by an undirected graph as Fig.5.

As shown in Fig.6, the ith (i € [1:10]) nonholonomic wheeled robot has a center of the axle (X¢;, Y¢;) and the
heading is represented by ¢;. To model the ith (i € [1:10]) wheeled robot system in PH form, we choose the system
state as x; = col(g;, p) € R, where §; = col(g;, ¢;) € R? is constituted by the position ¢; = col(X¢;, Yc,) € R? and the
angle ¢; € R between the x-axis and the heading direction, the momentum p! € R3.

/ The front end

\. .‘Cﬁﬁj___\;)___

Figure 6: The structure diagram of the wheeled robot.

As a result of the coordinate transformation, the original rigid body momentum p; € R3 is converted into three
parts, including the sideward momentum p;; € R, the forward momentum p;; € R, and the angular momentum
pi3 € R. Based on the new coordinates, the sideward momentum is eliminated, i.e., p;3 = 0. Hence, the dynamics of
wheeled robot i with a nonholonomic constraint are given as [20]:

2 ~ OH;

%] _[ 0 Ji(%’)] AP

.| = T/~ OH; + Ui, (34)
[pi -Ji @) R e J4)

with the dissipation matrix R; = JiT(ZI,-)diag(R,-l,Riz,Ri3)Ji(51i) and the Hamiltonian function H; = % piT(M,-)‘1 pi. The

cos¢; O
mass matrix M; and the structure matrix J;(¢;) of robot i are M; = [’g’ 10 ] ,Ji(g;) = |sing; 0], in which the mass
cm,i 0 1

m; € R, the rotational inertia I,,; € R. The vector p; = col(p;1, pin) € R? is consistent with the forward momentum
pi1 and the angular momentum p;, of the ith (i € [1:10]) robot.

Based on the motivational example, the square is designed with 4 vertices on (-6, —6), (6, —6), (—6,6) and (6, 6),
respectively. The formation goal is to form a pentagram shape near the center of the square (0, 0). Hence, the value
function of ith (i € [1:10]) wheeled robot is designed as

10
1 1 I )
Vi(gi) = 5”%‘ T § qi — o;llp, + 5”%‘ =B llg;- (35)
=
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Part of the system parameters of 10 agents are listed in Table 1. Besides, 8 = (0,0)7, #;(0) = ¢:(0), P; =
diag(100, 100), Q; = diag(0.1,0.1), i € [1:10]. Ignore the damp so that R;; = 0,i € [1:3]. Above all, the optimization
problem of general formation control is established.

mi(kg)  ri(m) qi(0) 0; $i(0)
agentl] 0.1 0.1 (6,37 (-2.50,096)" Orad
agent2 03 02 (-6,6T  (-0.50,0.96)  rrad
agent3 02 015  (0,6)7 (0.00,2.96)T  Orad

agent 4 0.1 0.2 6,6)7 (0.50,0.96)T 5 rad
agent 5 0.2 0.3 6,3)7 (2.50,0.96)T 5 rad
agent 6 0.3 0.25 6,0)7 (0.90,-0.34)T 5 rad
agent 7 0.1 0.3 6,-6)7 (1.50,-2.54)"  —mrad

agent 8 0.3 0.1 0,-6)T (0.00,-1.04)T % rad
agent 9 0.1 0.15 (=6,-6)" (-1.50,-2.54)" —Z rad
agent 0 0.2 0.2 (-6,0)"  (-0.90,-0.34)" Orad

Table 1: Parameters of 10 wheeled robots.

5.1. Simulations of system (16) (preserving the PH structure)

Based on the PH dynamic (34) and the value function (35), the closed-loop system (16) is used to obtain the
desired system trajectory, and then the controller is obtained based on (15).

5.1.1. Simulation results
The evolutions of the ith (i € V) agent’s position trajectory X¢; and Y¢,; are shown in Fig.7 and Fig.8, respectively.

8 T
——agent | ——agent 5 ——agent 9
6 agent 2 agent 6 agent 0
agent 3 agent 7
4 agent 4 agent 8
Y ——
= / /\//\/W
=0 > ‘/\\Ai
< \\/ %N\’—'—*——
2HN\Y \/ V\/\,/\,_\'
4 ]
-6
8 L L L L s
0 10 20 30 40 50 60

Time (s)
Figure 7: The evolutions of X¢; of system (16).

The position of 10 agents at different times is given as Fig.9. In this figure, we can find that these 10 agents begin
att = 0s. Att = 10s, a rough pentagram shape was formed. Then, after adjustment, the target pentagram was reached.
Fig. 10 shows the changing of the Hamiltonian function H.. At around 40s, H,; — 0 implies that the system (16)
converges to the equilibrium.

5.1.2. The controller implementation

With system (16), we got the target position trajectory g; (7). By Fig. 7 and Fig.8, the curves of X (#) and Y¢. (1)
are obtained. With the system dynamic (34) of the ith (i € [1:10]) wheeled robot, the forward momentum p;; and the
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Figure 8: The evolutions of Y¢; of system (16).
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Figure 9: Positions of the 10 agents at ¢ = 0s, 3s, 10s, 20s.
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Figure 10: The evolutions of H,; of system (16).

angular momentum p;, are calculated by ([48]),

. . YeiXci— YeiXci
— 2 2 _ GAC C,iACii
piv =miXe, + Yo, po=lpmi——F0 >
’ ’ Xeit Y,

Remark 5. Since the system trajectory q;(t) is continuous and remains in a constant state only at the equilibrium, it
follows that the denominator of p> is O when and only when the equilibrium is reached. Therefore, before the system
reaches the equilibrium, p; can be solved by using (36). And when the equilibrium is reached, we let p;; = 0.

(36)

Furthermore, by virtue of (34) and (36), the heading angle ¢; and the equivalent control input u; are

¢i(1) = ¢i(0) +/0 pi(),  ui(r) = pi(0). (37

Icm,i
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Remark 6. We are going to design a controller for the ith PH system to drive the state from q;(0) to g, where g is
the equilibrium of (16). According to the specific control objectives, we can design different controllers. For example,
the shortest distance is desirable from the perspective of fuel efficiency. Hence, we control the ith agent (i € V) to run
to q} in a straight line from q;(0). A multitude of related studies have been conducted on the controller design of PH
systems with known initial and final positions. Therefore, this paper will not elaborate on this aspect.

5.2. Simulations of system (25) (disturbing the PH structure)

5.2.1. Simulation results

It is easy to find that Assumption 1 is satisfied in the designed value function (35). And the parameters ki, k;, ¥
are chosen properly by (26) in Theorem 4.3. Choosing v;(0) = (0,0)". By system (25), the evolutions of X; and Y;
are shown in Fig.11 and Fig.12, respectively. Fig.13 illustrates the positions of 10 agents at Os, 5s, 10s, and 20s.

agent 1 agent 9

agent 5
—agent 2 agent 6 agent 0|
4 agent 3 agent 7 ¥
agent 4 agent 8

5 \\/”\ NN~

NN~

0 5 10 15 20 25 30
Time (s)

Figure 11: The evolutions of X¢,; of system (25).

—agent | —agent 4 ——agent 7 agent 0
(3 ——agent 2 ——agent 5 —agent 8
agent 3 agent 6 ——agent 9

ZW—»——
a—
_4/\/\/\/\/\""“’“_’-

-6

YCi (m)

0 10 20 30 40
Time(s)

Figure 12: The evolutions of Y¢; in system (25).

Fig.11-Fig.13 shows that the system reached the desired shape. As is shown in Fig.13, when 7 = 0, agents began
to move around the square. At 5Ss, the shape of a pentagram is almost formed, but this is not entirely consistent with
the desired shape in the formation objective. Finally, the system stabilized to a predefined pentagram after fine-tuning.
The entire motion video can be seen via the link: https://youtu.be/WUWpVX0Tc6¢.

Fig.14 is a three-dimensional diagram that shows the trajectory changes of x¢; and y¢; over time. The multiple PH
systems converge to the pentagram shape (green dotted line) with center (0, 0) from the initial point (red points) under
the proposed algorithm, which satisfies the formation objective.

The above simulations illustrate that all wheeled robots move from the square’s boundary to its center and are still,
after completing the formation of the pentagram shape, realizing the desired formation described in the motivational
example. And the actual input u; can also be calculated by (24).
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Figure 13: Positions of the 10 agents at ¢ = Os, 55, 10s, 20s.
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Figure 14: The evolutions of trajectory of system (25).

5.2.2. Parameter analysis
From the proof of Theorem 4.3, we find that the convergence speed of system (25) is not worse than { =

&
min{%, % 43,86, 2(83 + &4 — &5)}, then we analyze which parameters have an impact on £.

With the definition of £, k € [1:6], the parameters influencing { are: (1) the controller parameters ki, k», v; (2)
the Lyapunov function parameter &; (3) parameters related to the value function V; in (9): the strong monotonicity
coefficient w and the Lipschitz constant L, and Ly; (4) the number N of agents (5) the smallest positive eigenvalue A,
of the Laplacian matrix L of the communication topology.

Obviously, it is difficult to analyze the effects of all parameters simultaneously. Therefore, we only consider select-
ing some of the parameters for analysis. Since the value function V; is designed according to the actual requirements
of formation control, the weight matrices P; and Q; also need to be balanced based on the actual formation goals, we
cannot forcibly change them to improve the convergence performance. Therefore, we do not consider the influence
of the parameters related to the value function. In addition, the parameter ¢ is designed for stability analysis, and we
cannot use it in the controller so that the influence of & will not be considered. Hence, only the parameters ki, k>, v, N
and A, need to be considered.

It should be noted that the value of k; is restricted by constraints in (26). Since the variation range of k, is very
small, we ignore its influence on the system (25). As the gain of the negative feedback terms in v = —k|v — k,G(q, 1)
in (25), increasing the value of k; will accelerate the convergence speed of the system (25). As shown in Fig.15, the
convergence speed of the system trajectory with k; = 20, k, = 4 is quicker than that with k; = 8, k, = 4. However, we
can find that there exists an error between the equilibrium of these two groups of system trajectories. That is because
even the value of k; is not restricted by a upper bound, if the difference between the selected values of k; and k; is too
large, the system state component v may ignore the influence of G(q, 7}) and directly converge to 0, which will cause
error from the equilibrium of the desired. Therefore, we should not choose an overly large value for k;. Instead, we
need to make a trade-off between the convergence speed and the formation accuracy.

Similarly, as the negative feedback gain of the interaction term —y(L ® I;)7} in (25), increasing the value of y will
also accelerate the convergence speed of the system, enabling the multi-agent systems to quickly achieve a consensus
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Figure 15: The contrast diagram of the system trajectory Xc; with k; = 8, ko =4 and k| = 20, kp = 4.

estimation. The simulation results are shown as Fig.16.

k1=8, k2=4, =16 (solid line)
4 k,=8. k,=4, 7=60 (dashed line) |
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Figure 16: The contrast diagram of the system trajectory Xc; with y = 16 and y = 60.

Remark 7. The restriction of inequality (26) leads to a very small variation range of ky. However, when k, does not
satisfy the restriction of (26), the system can still converge exponentially to the equilibrium. That is because (26) is
proposed based on the Lyapunov function chosen in this paper. If we choose another candidate Lyapunov function, the
restriction of ky may be decreased. But as there is currently no theoretical support for the selection of ks, it can only
be chosen based on engineering experience or the trial-and-error method. Therefore, the impact of k; is not analyzed
here.

Next, we will analyze the influence of the agent number N and the eigenvalue A,. By recalling the definition of ¢,
we have

romin, E73  rt -
- 2 ’83(k1 —S), 3’ 6» 3 4 5 9
2 2
wky kly 5N+4 kyw 2Lskre (38)
h =k -—e—-—m-—L -—"]2, = —, =1- ,
where ¢ 1-e 4g we 4N Y & 2e 3 w
1 +4

{a =y -8, {5=min{{1,{>}, §6=min{z, > }.

By (38), we can find that the increase of N may lead to an increase in k;, and an increase in A, will only cause an
increase in {4, thereby affecting the convergence rate of the system (25). Therefore, if an appropriate communication
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topology graph is selected, the convergence speed of the system can be accelerated. Due to the excessive number of
selectable graph types, we only present a comparative simulation in Fig.17 to verify our theoretical analysis. Fig.17
shows the contrast diagram of the system trajectory when multi-agent systems communicate with Fig.5 or a fully
connected graph (all agents communicate with each other). The convergence speed of system (25) with a fully
connected graph G, is quicker than they communicating by G in Fig.5, that is because 1,(G;) = 10 > A4,(G).

6 T

kl:& k2:4, =16

4 Fig.5 (solid line) 4
I\ fully connected graph (dashed line)

\ ~ P ¢ e i o ) |
, ~-}% - \:7‘;},%—%; o]

Time (s)

Figure 17: The contrast diagram of the system trajectory Xc,; with communication topology as Fig.5 and a fully connected graph.

However, full connectivity requires more channels for information interaction, which poses higher requirements
for the communication network. Therefore, we should also balance the communication difficulty and the convergence
speed, and select an appropriate communication network to complete the task.

5.3. Comparison of control schemes

With the explanation in the previous subsections, the simulation results demonstrate that the required formation
mission of the 10 nonholonomic wheeled robots can be accomplished under the proposed two control methods by
designing an appropriate value function. We will then discuss the difference between these two methods.

From the perspective of stability analysis of the closed-loop systems, the first one (16) can maintain the structure of
the PH system and has the natural advantage of selecting Hamiltonian as a candidate Lyapunov function, significantly
reducing the difficulty of stability analysis. However, this only works when the formation output function satisfies
VYi(gi) = gqi. The second closed-loop system (25) relaxes the restrictions on ¥;(g;) but increases the difficulty of
selecting Lyapunov functions in stability analysis. Fortunately, we still found a suitable Lyapunov function to prove
the exponential convergence of the system (25) and during the proof process, its minimum convergence rate is given.

A comparison of Fig.7, Fig.8 with Fig.11, Fig.12 reveals that the overshoot is more significantly present in the first
closed-loop system (16) than the second one (25). However, this influence may be due to the selection of parameters
in the closed-loop system, such as vy, ki, and k,. This paper did not provide a theoretical comparison between the two
methods and will be considered further in subsequent research.

6. Conclusion

This paper investigates the formation control problem in multi-agent systems with the dynamics described in PH
form. After expressing the formation control problem as an optimization objective, two distributed control algorithms
with privacy protection are presented, which stabilize the multi-agent systems to the solution of the optimization
problem. The first method has the advantage of maintaining the PH closed-loop system structure, which is beneficial
for the stability analysis. The second method has quicker convergent speed and smaller overshoot. The efficacy of
the proposed approaches is verified through a simulation instance on the pentagram formation control of multiple
nonholonomic wheeled robots.

Further work will focus on the trajectory tracking problems of multi-agent systems with time delays and dynamic
agent failures. Besides, the communication topology between multi-agent systems may be more complex, such as a
directed graph, a time-varying graph, and so on.
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