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A distributed controller for the rotor speed
synchronous control problem of multiple PMSMs

with port-Hamiltonian dynamics
Jingyi Zhao, Yongxin Wu, and Yuhu Wu

Abstract—In this paper, the synchronous rotor speed control
problem of multiple permanent magnet synchronous motors
(PMSMs) with port-Hamiltonian (PH) dynamics is considered.
Firstly, we convert the synchronous rotor speed problem to an
optimization problem, and based on this, a distributed controller
is proposed for each PMSM using the information exchange
between PMSMs. However, the exchanged information is the
average rotor speed estimation value of each PMSM rather
than the direct rotor speed, which may facilitate the sensitive
state protection. Then, the stability of the closed-loop system is
analyzed and we prove that the equilibrium of the closed-loop
system is consistent with the optimum of the value function of the
optimization problem. Finally, a simulation example is provided
to validate the effectiveness of the proposed distributed controller.

Index Terms—port-Hamiltonian system, distributed control,
permanent magnet synchronous motors.

I. INTRODUCTION

Permanent magnet synchronous motors (PMSMs),
which encompass both surface-mounted permanent magnet
synchronous motors and internal permanent magnet
synchronous motors, exhibit distinctively preponderant
characteristics within the realm of variable speed drives.
These remarkable traits comprise high power density,
favorable dynamics, remarkable efficiency, as well as
an extensive operating speed range, as illustrated in [1,
2]. Consequently, PMSMs find extensive utilization in a
multitude of industrial applications, spanning servo drives,
high speed trains, electric vehicles, and household appliances,
as indicated in [3].

However, in the context of certain practical engineering
applications, it has been observed that a solitary PMSM
falls short of fulfilling the requisite demands. In such
scenarios, it becomes necessary for multiple PMSMs to
operate in a coordinated manner so as to meet the
engineering necessities. For example, in the manufacturing-
oriented market environment, driven by the pursuit of
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fabricating commodities of superior manufacturing quality at
a diminished production related cost, the manufacturing sector
has proposed manufacturing-operational strategies centring
on synchronizing two or more rotational shafts within
mechanical assemblies. However, these established approaches
are encumbered with a multiplicity of drawbacks (as
mentioned in [4]), including the prolonged part-replacement
time, uncertainties caused by wear-related degradation,
unrefined speed trajectories, and relatively low mechanical-
transmission reliability. To circumvent these obstacles, the
rotor speed synchronous control of multiple motors has
emerged as a highly effective countermeasure (as demonstrated
in [5]). Consequently, the rotor speed synchronous control
of multiple motors is of great significance as it enables
each shaft, which is driven and controlled by an individual
motor without physical connection to others, to maintain the
synchronous operation during acceleration, deceleration, and
under varying load conditions. This ensures the stability and
consistency of the manufacturing process. As demonstrated
in the research presented in [6], the implementation of
multi-motor rotor speed synchronous control is conducive to
significant improvements in production output volume, product
manufacturing quality, and energy utilization efficiency.

There are some related researches about the speed
synchronous control of multiple motors. For example,
Zhao et al. [7] investigated a real-time speed synchronous
control approach for multiple induction motors with speed
acceleration and load changing based on the sliding
mode control theory. Wang et al. [8] proposed a novel
tracking and synchronization control strategy for multi-motor
driving systems with unknown parameters including two
subcontrollers: the adaptive immersion and invariance tacking
and the robust integral of the sign of the error synchronization
controller. Hu et al. [9] put forward a robust adaptive
synchronization and tracking control strategy which was based
on neural network for multi-motor driving servo systems. More
details can be found in the review paper [10].

Since the concept of cyber-physical systems was introduced,
research in this field has advanced rapidly with increasing
attention from scholars toward distributed strategies combined
with physical systems. In fact, since systems in multi-
physical domains can be modeled using port-Hamiltonian
(PH) frameworks, PH systems offer a broader range of
applications compared to EL systems, and inherently benefit
from their interconnected structure, making them well-suited
for networking (see [11] and [12]). Due to its powerful
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functions, some scholars have investigated the PMSM model
under the PH framework and based on which designed the
controller. Petrovic et al. [13] developed an energy-shaping
controller for the speed regulation of PMSMs. Yaghmaei et
al. [14] designed a full-order observer by using the notion of
contractive PH systems and applied it into PMSMs. However,
these works focus on the control of a single PMSM rather than
the rotor speed synchronous control of multiple PMSMs.

This paper design a distributed controller for each PMSM
to achieve the rotor speed synchronous of multiple PMSMs
modeled under PH framework. The main contributions are
summarized as follows:

1) Within the realm of networked communication control
for multiple agents, the PH framework exhibits distinct
advantages over alternative frameworks, owing to its
inherent inter-connectivity and extensive application
scope. Hence, this paper designs a distributed speed rotor
synchronous controller for multiple PMSMs with PH
dynamics. Under the action of the designed controller,
the closed-loop system exponentially converges to the
equilibrium where all PMSM achieve the rotor speed
synchronization.

2) The proposed distributed controller empowers PMSMs
to conduct information exchange through estimated
values and auxiliary variables, rather than relying on
exact state values. This approach effectively mitigates
the risk of sensitive data disclosure. Concurrently, when
contrasted with the central ized controller, the proposed
distributed controller substantially alleviates the burden
of network communication.

The paper is organized as follows. In Section 2, some
preliminaries are introduced and in Section 3, the problem
is formulated. Then, a distributed controller is proposed in
Section 4 and the convergence is analyzed. Section 5 gives an
example to verify the proposed algorithm. Finally, Section 6
conclude this paper.

Notations. Rn denotes n-dimensional Euclidean space.
1n ∈ Rn and 0n ∈ Rn represent the vector of all ones and
all zeros, respectively. x> is the transpose of x. The set
{i, i + 1, · · · , j− 1, j} described by [i: j] where i, j ∈ R and
i < j. col(x1, · · · ,xN) = (x>1 , · · · ,x>N )> ∈ RNn with xi ∈ Rn,
i ∈ [1:N]. In is the identity matrix in Rn×n. diag(λ1, · · · ,λn)
is the diagonal matrices of elements λ1, · · · ,λn ∈ R. For a
function f (x,y) : Rm ×Rn → R, the partial derivative with
respect to x is ∇x f (x,y) = ∂ f (x,y)

∂x , the gradient of f (x,y) =
∇ f (x,y) = col( ∂ f (x,y)

∂x , ∂ f (x,y)
∂y ). The symbol ker(L) represents

the zero space of L while range(L) represents the range space
of L.

II. PRELIMINARIES

This section mainly introduces some basic preliminary
knowledge used below and describes the problem investigated
in this work.

A. Some basic concepts

Consider an undirected graph G := {V ,E ,A }, where V =
[1 : N] and E denote the node set and the edge set, respectively,

and A := (ai j)N×N denotes the adjacency matrix. If i is a
neighbor of j, then the pair (i, j) ⊂ E is an edge of G as
well as ai j = 1. Moreover, for all i ∈ V , aii = 0. If ai j =
1, we said j is the neighbor of i, and the set of all such j
is the neighbor set of i, denoted by N (i). With the degree
matrix D = diag(deg1, · · · ,degN) where degi = ∑

N
j=1 ai j, the

Laplacian matrix of G is defined by L = D−A . If there is a
connection path between any pair of nodes, then G is called
connected. If the eigenvalues of L are denoted by λ1 ≤ ·· · ≤
λN , then G is connected if and only if λ2 > 0 by [15]. In this
paper, we use the undirected connected graph to describe the
communication topology between multiple players.

A function f : Rn → R is said to be convex on Rn when
f (αx+(1−α)x′) ≤ α f (x)+ (1−α) f (x′) is satisfied for all
x,x′Rn and for all α ∈ [0,1].

A function f : Rn→ Rn is L f -Lipschitz (L f > 0) on Rn if
‖ f (x)− f (x′)‖ ≤ L f ‖x− x′‖ is satisfied for all x,x′ ∈ Rn.

If there exists a w > 0 such that (x− x′)>( f (x)− f (x′)) ≥
w‖x− x′‖2 holds for all x,x′ ∈ Rn and x 6= x′, the function
f : Rn→ Rn is w-strongly monotone. More details about the
above definitions can be found in [16].

B. The PH model of PMSMs

If an undirected graph G is used to describe the
communication topology among multiple PMSMs which is
shown as Fig. 1 [17], and the node set is denoted by V =

Fig. 1. The structure diagram of interior permanent magnet (IPM) and surface-
mounted permanent magnet (SPM) synchronous motor.

{1, · · · ,N}, then by basic principles of electromagnetics such
as voltage equation, the kth PMSM (k ∈ V ) is modeled with
the standard d-q model given as follows [13]:

Ldk
didk
dt =−Rskidk +wkLqkiqk +Vdk,

Lqk
diqk
dt =−Rskiqk−wkLdkidk−wkφk +Vqk,

J̃k
dwk
dt = nk((Ldk−Lqk)idkiqk +φkiqk)− τlk,

(1)

where the meanings of different symbols is listed:
nk is the number of pole pairs;
Ldk and Lqk are stator inductances in d-q frame, mH;
Rsk is stator winding resistance, Ω;
τlk is a known constant load torque, Nm;
φk is the d-q back emf constant, Vs;
J̃k is the moment of inertia, kg ·m2;
wk is the angular velocity, rad/s.
The viscous friction is neglected in this model, because

it is usually small. By define the state vector as xk =
col(x1k,x2k,x3k), where x1k = Ldkidk, x2k = Lqkiqk, x3k =
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(J̃k/nk)wk), the energy function of system (1) can be given
as

H(xk) =
1
2
(

1
Ldk

x2
1k +

1
Lqk

x2
2k +

nk

J̃k
x2

3k). (2)

Based on the energy function (2), the system (1) can be
rewritten in PCH form as

ẋk = (Jk(xk)−Rk)
∂H(xk)

∂xk
+gkuk +ξk. (3)

with

gk =

1 0
0 1
0 0

 , uk =

[
Vdk
Vqk

]
, ξk =

 0
0
− τlk

nk

 ,
the structure matrix Jk(xk) and the dissipation matrix Rk are

Jk(xk)=

 0 0 x2k
0 0 −(x1k +φk)
−x2k x1k +φk 0

 ,Rk =

Rsk 0 0
0 Rsk 0
0 0 0

 ,
respectively.

III. PROBLEM FORMULATION

In this paper, we consider the speed synchronization
problem of multiple PMSMs with the dynamic described by
(3). The problem is presented as follows:

Problem 1 Design a controller uk for the kth PMSM (k ∈ V )
such that the rotor speed wk of the kth PMSM asymptotically
converge to the minimum point w∗k of the value function

Vk(w) =
αN

N−1
(wk−σ(w(t)))2 +β (wk−wk(0))2, (4)

where w = col(w1, · · · ,wN), the average rotor speed of all
PMSMs is denoted by

σ(w(t)) =
1
N

N

∑
k=1

wk(t),

and the initial speed of the kth PMSM is denoted by wk(0),
the constant parameter α >> β > 0.

The value function (4) is consistent with two parts:
• Each PMSM aims to achieve the speed synchronization

with the control objective

lim
t→∞

wk(t)−σ(t) = 0, k ∈ V . (5)

• Every PMSM does not want to change its own initial
speed, that is,

min
uk
‖wk(t)−wk(0)‖, k ∈ V .

Since the rotor speed synchronization objective is more
important, we define α >> β to enlarge the weight of the
first term in the value function (4). Hence, the rotor speed
synchronous control problem is converted to the optimization
problem 1.

It should be noticed that, in this optimization problem, only
the rotor speed of the kth PMSM (k∈V ) and the average rotor
speed σ(w(t)) is required for the kth PMSM. Since the rotor
speed of other PMSMs j ∈ V /{k} is unavailable for the kth

PMSM with sensitive state concerns, we define ηk(t) as the
estimation of σ(w(t)) for the kth PMSM to design a controller
solve Problem 1.

It’s easy to find that the value function Vk(w) is continuously
differentiable in w and convex in wk when w j, j ∈ V /{k} is
fixed, the following Lemma is given.

Lemma 1 [18] The minimum point of the value function (4)
is w∗ if and only if

∇wkVi(w∗) = 0, k ∈ V .

Hence, our task is to find a distributed controller for the kth
PMSM (k ∈ V ) to solve Problem 1.

IV. MAIN RESULTS

Before given the distributed controller, the following
mappings are defined as

Fk(wk,σ(t)) := ∇wkVk(w),

Gk(wk,ηk) := Fk(wk,σ(t))|σ(t)=ηk
,

(6)

where ηk ∈ R is the estimation of the kth PMSM (k ∈ V ) to
the average rotor speed σ(t).

Furthermore, define

F(w) := col(∇w1V1(w), · · · ,∇wNVN(w)),

G(w,η) := col(G1(w1,η1), · · · ,GN(wN ,ηN)),

where η = col(η1, · · · ,ηN) ∈ RN .
Based on these mappings, the distributed controller of the

kth PMSM is defined as
uk =−Ak

[
∂H(xk)

∂x1k
∂H(xk)

∂x2k

]
−Bkwk +Ck,

η̇k = sk,

ṡk =−k2sk−δ (ηk−wk)−∑
N
j=1 ak j((ηk−η j)− (vk− v j)),

v̇k = ∑
N
j=1 ak j(ηk−η j)+∑

N
j=1 ak j(sk− s j),

(7)
where the matrix Ak = diag(−Rsk,−Rsk), the matrix
Bk = col(x2k,−(x1k + φk), the matrixCk = col(0,k1(−k2ẇk −
Gk(wk,ηk))), the constant k1 =

Lqk J̃k
((Ldk−Lqk)idk(0)+φk)nk

, the
constant k2 > 0 is given in Theorem 1, and we assume the
initial value of each agent satisfies idk(0) 6= φk

Lqk−Ldk
, k ∈ V .

In the distributed controller (7), the first equation is designed
relate to the coupled-state relationship of the PH system (3),
and the estimation ηk of the kth PMSM (k ∈ V ) is updated by
the estimation from its neighbours j ∈N (k), and sk, vk are
auxiliary variable to ensure the accuracy of the estimation.

By inserting xk and Ak, Bk, Ck, we have

uk =

[
Rskidk−Lqkiqkwk

Rskiqk +(Ldkidk +φk)wk + k1(−k2ẇk−Gk(wk,ηk))

]
.

Then, we are going to illustrate the convergence of the
closed-loop system (the PH system (3) under the action of
the distributed controller (7)), the following theorem is given.

Theorem 1 The PH system (3) of the kth PMSM (k ∈ V ) is
exponentially convergent to the equilibrium under the action

of the distributed controller (7) with k2 > 1 + 1
4 λN +

L2
f

γ
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where L f > 0 and γ > 0 are the Lipschitz constant and the
strongly monotone parameter of mapping Ξ defined in (11),
respectively.

Proof Consider the multi-agent systems (3), taking the
derivative of x3k with respect to time, we have

ẅk =
nk

J̃k

(
− ẋ2kidk− x2k i̇dk + ẋ1kiqk +(x1k +φk)i̇qk

)
. (8)

By inserting the distributed controller (7) into the PH model
(3) of the kth PMSM (k ∈ V ), we obtain

i̇dk = 0,
i̇qk =

k1
Lq
(−k2ẇk−Gk(wk,ηk)),

η̇k = sk,

ṡk =−k2sk−δ (ηk−wk)−∑
N
j=1 ak j((ηk−η j)− (vk− v j)),

v̇k = ∑
N
j=1 ak j(ηk−η j)+∑

N
j=1 ak j(sk− s j).

(9)
Combination (8) and (9), we have

ẅk =−k2ẇk−Gk(wk,ηk),

η̇k = sk,

ṡk =−k2sk−δ (ηk−wk)−∑
N
j=1 ak j((ηk−η j)− (vk− v j)),

v̇k = ∑
N
j=1 ak j(ηk−η j)+∑

N
j=1 ak j(sk− s j), k ∈ V .

(10)
Define a map as

Ξ =

[
G(w,η)

δ (η−w)

]
, (11)

where η = col(η1, · · · ,ηN).
Let w̃ = col(w,η), s̃ = col(ẇ,s), v = col(v1, · · · ,vN), ẇ =

col(ẇ1, · · · , ẇN) and s = col(s1, · · · ,sN). By virtue of the
definition of (11) and write the closed-loop system (10) in
a compact form, we have

˙̃w = s̃,
˙̃s =−k2s̃−Ξ(w̃)−Φ1w̃−Φ2v,
v̇ = Φ3(w̃+ s̃).

(12)

where

Φ1 =

[
0 0
0 L⊗ In

]
,Φ2 =

[
0

L⊗ In

]
,Φ2 =

[
0 L⊗ In

]
.

With the following coordinate transformation, we have{
w̄ = col(w̄q, w̄y) = w̃− w̃∗,
s̄ = col(s̄q, s̄y) = s̃− s̃∗, v̄ = v− v∗,

where w̃∗ = col(w∗,0), w̄q, w̄y, s̄q, s̄y ∈RN . Then the following
system is obtained by (12),

˙̄w = s̄,
˙̄s =−ks̄−h−Φ1w̄−Φ2s̄,
˙̄v = Φ3(w̄+ s̄),

(13)

where h = Ξ(w̃,η)−Ξ(w̃∗,η).
Since w̃ → w̃∗ is equivalent to w̄ → 0, we are going to

analyze the convergence of w̄→ 0.

With the eigenvalue decomposition of Laplace matrices,

col(wqr,wqR) = [r R]>w̄q,

col(wyr,wyR) = [r R]>w̄y,

col(sqr,syR) = [r R]>s̄q,

col(syr,wsR) = [r R]>s̄y,

col(δ1,δ2) = [r R]>v̄,

(14)

where wqr, wyr, sqr, syr, δ1 ∈R, wqR, wyR, sqR, syR, δ2 ∈RN−1,
r = 1√

N
1N , RR> = IN− 1

N 1N1>N and r>R = 0>N−1, R>R = IN−1.
Let wr = col(wqr,wyr), wR = col(wqR,wyR), sr = col(sqr,syr),

sR = col(sqR,syR), and then we rewritten (13) as
ẇr = sr,

ṡr =−k2sr−

[
r 0
0 r

]>
h,

δ̇1 = 0N−1,

(15)



ẇR = sR,

ṡR =−k2sR−

[
R 0
0 R

]>
h−

[
0

R>LR

]
(wR−δ2),

δ̇2 =
[
0 R>LR

]
wR +

[
0

R>LR

]
sR.

(16)

Take the following candidate Lyapunov function as

L =
1
2
(
‖wr + sr‖2 +(k2−1)‖wr‖2 +‖wR + sR‖2

+(k2−1)‖wR‖2 +‖δ2‖2 +θ‖syR +δ2‖2), (17)

where 0 < θ < min{ 2λ2k2γ

2k2+λ2
,

2λ2(k2−
L2

y
γ
− 1

4 λN−1)
k2(k2+1)+2λ2λN

} and k2 >
L2

y
γ
+

1
4 λN +1.

Let r̃ =
[

r 0
0 r

]
and R̃ =

[
R 0
0 R

]
, then the derivative of Ly

along (15) and (16) is

L̇y =−w>r r̃>h−w>R R̃>h− (k2−1)‖sr‖2− (k2−1)‖sR‖2

− s>r r̃>h− s>R R̃>h−w>yRR>LRwyR− s>yRR>LRwyR

+θ(−k2δ
>
2 syR−δ

>
2 [0 R>]h−δ

>
2 R>LRδ2

+ s>yRR>LRsyR− k2‖syR‖2− s>yR[0 R>]h).
(18)

With the definition of Ξ(w,η) in (11) and Fk, Gk in (6), it is
easy to find that the mapping Ξ(w,η) is γ-strongly monotone
and L f -Lipschitz for some δ > 0 on R2, and G(w,η) is lg-
Lipschitz. Hence, we have

w>r r̃>h+w>R R̃>h≥ γ(‖wr‖2 +‖wR‖2), (19)

and

s>r r̃>h+s>R R̃>h≤ 1
2
(L2

f

γ
(‖sr‖2+‖sR‖2)+γ(‖wr‖2+‖wR‖2)

)
,

(20)
With the schur complement lemma, the matrix[

R>LR 1
2 R>LR

1
2 R>LR 1

4 λNI

]
≥ 0

implies that
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w>yRR>LRwyR + s>yRR>LRwyR

= [w>yR s>yR]

[
R>LR 1

2 R>LR
1
2 R>LR 1

4 λNI

][
wyR
syR

]
− 1

4
λN‖syR‖2

≥−1
4

λN‖sR‖2.

(21)

In addition, with ab≤ c
2 a2 + 1

2c b2, c > 0, we have

−k2δ
>
2 syR ≤

1
2

k2(
λ2

k2 +1
‖δ2‖2 +

k2 +1
λ2
‖syR‖2), (22)

−δ
>
2 [0 R>]h≤ 1

2
(λ2‖δ2‖2 +

1
λ2

(‖wr‖2 +‖wR‖2)), (23)

−s>yR[0 R>]h≤ 1
2
(2k2‖syR‖2 +

1
2k2

(‖wr‖2 +‖wR‖2)), (24)

With (19)-(24), the derivative of Ly satisfies

L̇y ≤−(
1
2

γ−θ(
1

2λ2
+

1
4k2

))(‖wr‖2 +‖wR‖2)

− (k2−
l2

f

γ
−1)‖sr‖2− (k2−

l2
f

γ
−1− λN

4

−θ(λN +
k2(k2 +1)

2λ2
)‖sR‖2− θλ2

2(k2 +1)
‖δ2‖2.

(25)

Since Ly and its derivative L̇y are quadratic, and all states
occur in Ly also in L̇y, the rotor speed w exponentially
converges to w∗.

Next, we are going to prove that the equilibrium w∗ where the
closed-loop system (12) converges to is the minimum point of
the value function Vk(w) in Problem 1.

Theorem 2 If w∗ is a minimum point of the value function
Vk(w) that is defined in Problem 1, then there exist η∗,s∗,v∗ ∈
RN such that (w∗,η∗,s∗,v∗) is an equilibrium of multi-
agent systems with PH dynamic (3) under the action of the
distributed controller (7). Conversely, if (w∗,η∗,s∗,v∗) is an
equilibrium of multi-agent systems with PH dynamic (3) under
the control of the distributed controller (7), then w∗ is a
minimum point of the value function Vk(w) which is defined
in Problem 1.

Proof If (12) is at its equilibrium, we have
s̃∗ = 02N ,

−ks̃∗−Ξ(w̃∗)−Φ1w̃∗−Φ2v∗ = 02N ,

Φ3(w̃∗+ s̃∗) = 02N .

(26)

which indicated that
Lη∗ = 0N ,

G(w∗,η∗) = 0N ,

δ (η∗−w∗)+Lv∗ = 0N .

(27)

Since the undirected connected graph G has a character that
its Laplace matrix L satisfies 1>N L = 0>N , if we multiply both
sides by 1>N to the left of the third equation of (27), then we
have

η
∗
k =

1
N

N

∑
j=1

w∗j , (28)

and at this time

Gk(w∗k ,η
∗
k ) = Fk(w∗k ,σ) = 0, (29)

for any k ∈ V .
Combing with the definition of Fk(w∗k ,σ) in (6), and with

(24) and (28), it can be obtained that

∇wkVk(w∗) = 0, ∀k ∈ V

and this indicates w∗ is the minimum point of the value
function defined in Problem 1.

On the other hand, if w∗ is a minimum point of the
value function defined in Problem 1, then Fk(w∗k ,σ) = 0m. By
choosing

η
∗
k = σ(w∗), k ∈ V ,

we have
Gk(w∗k ,η

∗
k ) = 0.

In addition, take any r̂ ∈ R and let r′ = 1N r̂, we have

(η∗−w∗)>r′ = 0.

And by 1>N L = 0>N , we have r′ ∈ ker(L). With the orthogonal
decomposition of zero space and range space, it can be
obtained that δ (η∗ − ψ(w∗)) ∈ range(L), where δ > 0.
Therefore, there exists v∗ such that

δ (η∗−ψ(w∗))+Lv∗ = 0N .

Finally, when we choose

s̃∗ = 02N ,

the proof is completed. �

With Theorem 1 and Theorem 2, we can find that with
the distributed controller (7), the PH system (3) exponentially
converges to the equilibrium w∗ which is the minimum point
of the value function defined in Problem 1. And at this time,
the rotor speed of N-PMSMs will reach a consensus.

V. SIMULATION

In this section, a simulation example is presented to
illustrate the effectiveness of the proposed distributed
controller (7).

Consider 6-PMSMs (modeled as (3)) communicate with a
undirected connected graph G as in Fig. 2.

Fig. 2. The communicate topology of 6-PMSMs.

As described in Section III Problem Formulation, each
PMSM has two goals
• To synchronize the rotor speed of multiple PMSMs, that

is t→ ∞,wk→ σ(w) = 1
6 ∑

6
k=1 wk, k ∈ [1:6];
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TABLE I
THE PARAMETER TABLE OF EXAMPLE 2

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
nk 2 4 2 4 2 4
φk 0.25 0.14 0.15 0.20 0.24 0.18
Lqk 5.45 5.4 5.5 5.8 5.65 5.35
Ldk 4.48 5.24 5.15 5.18 4.65 4.45
J̃k 0.2 0.15 0.24 0.18 0.22 0.26

wk(0) 80 144 70 135 122 90
iqk(0) 2.1 1.9 2.2 1.5 1.2 1.9
idk(0) 0 0 0 0 0 0

• Try to maintain the initial angular speed to reduce
changes of its working state, that is wk→wk(0), k∈ [1:6].

Since the first goal is far more important than the second one,
the value function for the kth PMSM (k ∈ [1:6]) is designed
as

Vk(w) = 10(wk−σ(w))2 +0.1(wk−wk(0))2. (30)

Let Rsk = 1, τlk = 2, k ∈ [1:6], and other parameters are
assignment in Table I. Then the simulation results is shown as
Fig. 3.

Fig. 3. The evolution of rotor speed of 6 PMSMs.

As shown in Fig. 3, the rotor speeds of the 6 PMSMs
eventually converge to unity, achieving synchronised speed
control of multiple PMSMs, which illustrate the effectiveness
of the designed distributed controller (7).

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This work investigate the rotor speed synchronous problem
of multiple PMSMs with dynamics modeled under the
port-Hamiltonian framework. By converting the rotor speed
synchronous problem into an optimization problem and
designed a properly value function, we proposed a distributed
controller for each PMSM. The proposed distributed controller
only requires PMSMs to exchange its estimation of the average
rotor speed rather than the exact rotor speed of each PMSM
which may benefit the sensitive state protection. Under the
action of the distributed controller, the closed-loop system
exponentially convergent to the equilibrium which is also the
minimum of the value function. Finally, a simulation example
is given to demonstrate the effectiveness of the proposed
distributed controller.

B. Future Works

This paper considers simple connected undirected graphs,
which can be considered next to relax some assumptions and
broader topologies. The unknown torque and the uncertainty
of model may also be considered in the future.
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