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Abstract

This paper deals with the robust mean square exponential stabilization for

uncertain Markovian stochastic reaction-diffusion systems (UMSRDS) via the

observer-based sliding mode boundary control (SMBC). First, a suitable boundary-

output-based observer is constructed for estimating the unknown system states.

Next, to process the impact of Markovian switching, a mode-dependent integral

sliding mode surface (SMS) is established, on which the closed-loop system is

mean square robust exponentially stable. Furthermore, an observer-based slid-

ing mode boundary controller (SMBCr) is designed to guarantee the almost sure

reachability of the predefined SMS. Then, a mode-dependent condition is pro-

vided to ensure the robust mean square exponential stability of the closed-loop

system. Finally, the proposed method is applied to a CPU thermal model to

illustrate the effectiveness of theoretical results.
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1. Introduction

The phenomenon of diffusion is prevalent in various real-world engineering

applications, such as thermal diffusion, chemical reaction processes, and fluid

dynamics [1, 2]. As a result, reaction-diffusion systems have been extensively in-

vestigated in both theoretical and practical contexts. Additionally, factors such5

as component failures or repairs, changes in subsystem interconnections, and

abrupt environmental disturbances frequently introduce random and sudden

changes in the structure and parameters of hybrid systems. Markovian switch-

ing systems have garnered significant attention [3, 4, 5] due to their effectiveness

in modeling these complex scenarios. Furthermore, the study of Markovian10

reaction-diffusion systems with coefficient uncertainty is of significant impor-

tance [6]. This is because real-world systems often face inherent variations and

unpredictable fluctuations in their parameters, which, if neglected, can lead to

models that fail to capture the true dynamics of the system. To more accu-

rately represent practical systems exhibiting diffusion phenomena, it is critical15

to consider stochastic white noise [7]. Consequently, increasing emphasis has

been placed on the study of uncertain Markovian stochastic reaction-diffusion

systems (UMSRDS).

Sliding mode control (SMC), a robust control methodology, is used in dy-

namic systems to achieve stability and precise tracking of desired trajectories,20

particularly in the presence of uncertainties, disturbances, and nonlinearities

[8, 9, 10]. Furthermore, SMC has since gained popularity in various fields,

including robotics, aerospace, and automotive control [11, 12, 13, 14]. The fun-

damental idea of SMC is to create a sliding mode surface (SMS) within the

system state space. The SMC law forces system states to reach the predefined25

SMS within a finite time and then maintain their trajectory on it. Once system

states reach the SMS, it exhibits a unique sliding behavior where the dynamics

become much simpler, and easier to manage. One of the key advantages of SMC

is its robustness against uncertainties and disturbances [15, 16, 17]. Therefore,

the SMC is devoted to study uncertain Markov switching systems [18, 19]. For30
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example, Niu et al. have achieved significant results for SMC of Markov jump

systems [20, 21, 22]. Besides, SMC is also employed in stochastic Markovian

switching systems [23, 24, 25]. It is worth noting that Y. Orlov and others have

contributed to the research on SMC of PDEs and promoted the development of

SMC of PDEs [26, 27]. Since boundary control has the advantages of cost-saving35

and easy engineering implementation compared to distributed control, sliding

mode boundary control (SMBC), which combines boundary control with SMC,

has attracted widespread attention from experts and scholars [28, 29]. The

SMBC of one-dimensional PDEs is studied, such as the control of heat equa-

tions, wave equations, and Euler-Bernoulli beam equations [30, 31, 32, 33, 34].40

However, up to now, the literature on the SMBC of UMSRDS is still limited,

which cannot meet the needs of actual engineering application. The SMBC of

UMSRDS remains an open challenge to be solved.

In practical applications, not all system states are directly accessible through

sensors or measurements, making it difficult to construct the state feedback45

controller. To overcome this difficulty, it is necessary to design an observer

to estimate the unmeasured system states based on available measurements

and system dynamics. Therefore, a growing interest is arising in the observer-

based SMC [35, 36, 37]. For example, [38] studies the robust observer-based

SMC for stochastic Markov jump systems affected by packet loss. An observer-50

based adaptive sliding mode control strategy was proposed to address nonlinear

stochastic Markov jump systems with uncertain time-varying delays in [39].

The aforementioned literature primarily focuses on the research of sliding mode

control for stochastic ODE systems. However, to the best of our knowledge,

observer-based SMBC for UMSRDS has been rarely addressed. This paper con-55

tributes to the field by expanding the system of SMBC and filling a theoretical

gap in the existing literature.

Motivated by the above discussions, this paper investigates the mean square

robust stabilization for UMSRDS via observer-based SMBC. First, an observer,

based on boundary output information, is designed to estimate the unmeasured60

states of the system. Next, to address the influence of Markov switching, a
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novel mode-dependent SMS is established in the estimation space. Then, a

sliding mode boundary controller (SMBCr) based on the observed states is pro-

posed to ensure the almost sure finite time reachability of the pre-designed SMS.

By using the Lyapunov functional method, stochastic analysis and inequalities65

techniques, a condition to ensure that UMSRDS achieves mean square stabi-

lization is provided. Finally, an example of a CPU thermal model is provided

to illustrate the effectiveness of the theoretical results.

The main contributions of this work are summarized as follows

• A novel observer-based mode-dependent SMS and SMBCr are proposed70

to mitigate the impact of Markovian switching on SMBC and ensure the

sliding mode stabilization of the UMSRDS under mode switching. Com-

pared with designing a common SMS for all modes, the mode-dependent

SMS we designed is easier to design and has higher application flexibility.

• Since the observer states are influenced by stochastic disturbances, the75

time at which the observer states first reach the SMS is a stopping time.

To ensure that the observer-based SMBC functions properly, we have ad-

dressed the key issue of almost sure finite-time reachability. However,

many existing references fail to fully explain this problem. For instance,

reference [40] overlooks this issue and continues to employ the reachabil-80

ity proof method used for deterministic systems, which is not sufficiently

rigorous.

• For UMSRDS, the SMBC based on the boundary output observer is pre-

sented, providing a framework for observer-based SMBC studies of partial

differential equations (PDEs) with Markovian switching.85

Notations: (Ω,F ,P) is a probability space, in which Ω is the sample space,

F is σ-algebra of subsets of the sample space, and P is the probability mea-

sure. For a matrix/vector A, AT represents the transposition of A. I and

0 denote the identity matrix and null vector(matrix) with the appropriate di-

mensions, respectively. Notation ∗ is represented as an ellipsis for the terms90
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of symmetric block matrices. A < 0 (≤ 0) means A is a real symmetric

negative definite (negative semi-definite) matrix and A > 0 means −A < 0.

B < B̂ (≤ B̂) means B − B̂ < 0 (≤ 0). λmin(A) and λmax(A) denote the min-

imum and maximum eigenvalue of matrix A, respectively. sym(B) = B + BT.

C2(Rn×H×R+;R+) denotes the family of all nonnegative functions V (η(τ), i, τ)95

on Rn × H × R+ such that they are continuously twice differentiable in η; κ

denotes the set of all functions: R+ → R+, which are continuous, strictly in-

creasing and vanish at zero; κ∞ denotes the set of all functions which are of

class κ and unbounded. We take Wm,2([0, l];Rn) be a Sobolev space that con-

tains absolutely continuous n-dimensional vector functions ω(θ) : [0, l] → Rn
100

with square integrable derivatives dkω(θ)
dθk of the order 0 ≤ k ≤ m. Denote

∥w(·, τ)∥ = (
∫ l

0

∑n
i=1 w

T
i (θ, τ)wi(θ, τ)dθ)

1
2 , where w(θ, τ) ∈ Rn. ∥ς(τ)∥1 =∑n

i=1 ςi(τ)sgn(ςi(τ)) and
−→sgn(ς(τ)) = (sgn(ς1(τ)), ..., sgn(ςn(τ)))

T, where ς(τ) =

(ς1(τ), ..., ςn(τ))
T ∈ Rn and

sgn(ςi(τ)) ∈


ςi(τ)

|ςi(τ)|
, |ςi(τ)| ≠ 0

[−1, 1], |ςi(τ)| = 0.

2. Preliminaries105

In this paper, {γ(τ), τ ≥ 0} is a continuous time Markov chain with discrete

states H = {1, 2, ...,N} and W(τ) is a 1-dimensional Brownian motion defined

on the probability space (Ω,F ,P). And γ(τ) is independent of W(τ). The

transfer probability of the Markov chain γ(τ) is defined by

P{γ(τ +∆) = j|γ(τ) = i} =

 δij∆+ o(∆) i ̸= j,

1 + δii∆+ o(∆) i = j,
(1)

where ∆ > 0, lim
∆→0

(o(∆)/∆) = 0. Here δij ≥ 0 (i ̸= j) is the transition rate110

from mode i to mode j, while δii = −
∑

j=1,i̸=j δij < 0.
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The defined form of the transition rate matrix Ψ = (δij)N×N (i, j ∈ H) is

Ψ =


δ11 δ12 · · · δ1N

δ21 δ22 · · · δ2N
...

...
. . .

...

δN1 δN2 · · · δNN

 . (2)

We consider the following uncertain Markovian stochastic reaction-diffusion

system (UMSRDS)

dw(θ, τ) =
[
B(γ(τ))

∂2w(θ, τ)

∂θ2
+ [A(γ(τ)) + ∆A(θ, τ, γ(τ))]w(θ, τ)

]
dτ

+ [C(γ(τ)) + ∆C(θ, τ, γ(τ))]w(θ, τ)dW(τ),

(3)

where θ ∈ (0, 1) is the spatial variable, τ > 0 is the time variable. w(θ, τ) ∈ Rn
115

is the state of the system. The positive definite matrix B(γ(τ)) ∈ Rn×n rep-

resents the diffusion coefficient. A(γ(τ)), C(γ(τ)) ∈ Rn×n are known constant

matrixes. ∆A(θ, τ, γ(τ)),∆C(θ, τ, γ(τ)) ∈ Rn×n denote the uncertain parame-

ters and satisfy

∆A(θ, τ, γ(τ)) = D1(γ(τ))T1(θ, τ)W1(γ(τ))

∆C(θ, τ, γ(τ)) = D2(γ(τ))T2(θ, τ)W2(γ(τ))

where TT
i (θ, τ)Ti(θ, τ) ≤ I(i = 1, 2), andD1(γ(τ)),D2(γ(τ)),W1(γ(τ)),W2(γ(τ))120

are known constant matrixes.

For the sake of simplicity, when γ(τ) = i, i ∈ H, we denote A(γ(τ)) = Ai,

B(γ(τ)) = Bi, C(γ(τ)) = Ci, ∆A(θ, τ, γ(τ)) = ∆Ai, ∆C(θ, τ, γ(τ)) = ∆Ci,

D1(γ(τ)) = D1i, D2(γ(τ)) = D2i, W1(γ(τ)) = W1i, W2(γ(τ)) = W2i.

Therefore, UMSRDS (3) can be rewritten as125

dw(θ, τ) =
[
Bi

∂2w(θ, τ)

∂θ2
+ (Ai +∆Ai)w(θ, τ)

]
dτ + (Ci +∆Ci)w(θ, τ)dW(τ),

(4)

where γ(τ) = i, i ∈ H.

We take

w(θ, 0) = ϕ(θ), γ(0) = γ0, (5)
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where ϕ ∈ L2([0, 1];Rn) is the initial value, γ0 is the initial mode.

The following Neumann boundary conditions are adopted

∂w(θ, τ)

∂θ

∣∣∣
θ=0

= 0,
∂w(θ, τ)

∂θ

∣∣∣
θ=1

= u(τ), (6)

where u(τ) ∈ Rn is the boundary control input.130

Definition 1. ([41]) UMSRDS (3) is said to be mean square robustly exponen-

tially stable if for all admissible ∆A(θ, τ, γ(τ)), ∆C(θ, τ, γ(τ)), the following

inequality holds

E∥w(·, τ)∥2 ≤ βE∥ϕ(·)∥2e−ζt, t ≥ 0,

where scalars ζ > 0, β ≥ 1.

Definition 2 ([42]). The solution of stochastic system is said to be globally135

finite-time stable in probability, if for any initial data η(0), system we consid-

ered has a solution denoted by η(τ), moreover, the following statements hold:

(i) Finite-time attractiveness in probability: for every initial value η(0) ∈ Rn/0, γ0 ∈

H, the first hitting time

140

t∗ = inf{τ ≥ 0 : η(τ) = 0}, (7)

which is called the the stochastic settling time, is finite almost surely, that is

P{t∗ < ∞} = 1;

(ii) Global stability in probability: ∀ξ ∈ (0, 1), there exists a κ function φ(·),

such that for any η(0) ∈ Rn/0, γ0 ∈ H every η(τ) satisfies

P{∥η(τ)∥ ≤ φ(∥η(0)∥)} ≥ 1− ξ. (8)

145

Remark 1. From (i) of Definition 2, we can clearly see that finite-time attrac-

tiveness in probability implies that the state trajectories will almost surely (with

probability 1) reach the origin in finite time.
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Definition 3. The sliding mode surface (SMS) (15) is said to achieve almost150

sure reachability if the probability that the system state reaches SMS (15) within

finite time is 1. This can be mathematically expressed as P (t∗ < ∞) = 1, where

t∗ = inf{τ ≥ 0 : ς(τ) = 0} is the stopping time.

Lemma 1 ([42]). If exists a Lyapunov functional V ∈ C2(Rn × H × R+;R+)

and κ∞ functionals κ1, κ2, such that for all (η(τ), i, τ) ∈ Rn × H × R+, the155

following inequalities hold

κ1(η(τ), τ) ≤ V (η(τ), i, τ) ≤ κ2(η(τ), τ),

LV (η(τ), i, τ) ≤ −ϑV ϱ(η(τ), i, τ),

then the solution η(τ) is finite-time stable in probability, where ϑ > 0 and 0 <

ϱ < 1.

Lemma 2 (Wirtinger’s inequality [43]). Let a vector function w ∈ W 1,2([0, 1];Rn)

with w(0) = 0 or w(1) = 0. Then, for any positive matrix P , the following in-160

tegral inequality holds∫ 1

0

wT(ξ)Pw(ξ)dξ ≤ 4

π2

∫ 1

0

(
dw(ξ)

dξ
)TP (

dw(ξ)

dξ
)dξ.

Lemma 3 ([44]). If real matrices X,Q, S, U and T satisfy W > 0 and TTT ≤

I. Then, we have

(a) 2xTQTSy ≤ ν−1xTQQTx + νyTSTSy, where the scalar ν > 0 and vectors

x, y ∈ Rn.165

(b) For any scalar ϵ > 0 such that U−ϵQQT > 0, (X+QTS)TU−1(X+QTS) ≤

XT(U − ϵQQT)−1X + ϵ−1STS.

Lemma 4 ([45]). Let V (w(·, τ), γ(τ), τ) =
∫ 1

0
W (w(θ, τ), γ(τ), τ)dθ be an integral-

type Lyapunov functional, W ∈ C1,1(Rn × H × R+;R+), then the definition of170
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the weak infinitesimal operator is given as follow

LV (w(·, τ), i, τ) =
∫ 1

0

{
∂W (w(θ, τ), i, τ)

∂τ
+

(
∂W (w(θ, τ), i, τ)

∂w(θ, τ)

)T
∂w(θ, τ)

∂τ

+

N∑
j=1

δijW (w(θ, τ), j, τ)

}
dθ.

3. Design of observer-based SMBC

Due to the uncertainties of parameters and stochastic disturbance in system

(3), the states information cannot be accurately measured. Therefore, it is

necessary to design an effective observer to estimate the state information of175

system (3), and then we use SMBC in the observation space to prove the robust

mean square exponential stability of system (3).

We take the boundary value w(1, τ) as the output and design the following

boundary-output-based observer for UMSRDS (3) when γ(τ) = i, i ∈ H

dŵ(θ, τ) =
[
Bi

∂2ŵ(θ, τ)

∂θ2
+Aiŵ(θ, τ) + Li(w(1, τ)− ŵ(1, τ))

]
dτ, (9)

where τ > 0, θ ∈ (0, 1), and ŵ(θ, τ) ∈ Rn is the estimation of w(θ, τ) and180

Li ∈ Rn×n is the observer gain to be designed.

We take the following initial value for observer (9),

ŵ(θ, 0) = ϕ̂(θ), γ(0) = γ0, (10)

where ϕ̂ ∈ L2([0, 1];Rn) is the initial value, γ0 is the initial mode.

The Neumann boundary conditions are

∂ŵ(θ, τ)

∂θ

∣∣∣
θ=0

= 0,
∂ŵ(θ, τ)

∂θ

∣∣∣
θ=1

= u(τ), (11)

where u(τ) ∈ Rn is the boundary control input.185

We define the error variable e(θ, τ) = w(θ, τ)−ŵ(θ, τ), then the error system
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is

de(θ, τ) =
[
Bi

∂2e(θ, τ)

∂θ2
+Aie(θ, τ) + ∆Aiw(θ, τ)− Li(w(1, τ)− ŵ(1, τ))

]
dτ

+ (Ci +∆Ci)w(θ, τ)dW(τ)

=
[
Bi

∂2e(θ, τ)

∂θ2
+Aie(θ, τ) + ∆Aiw(θ, τ)− Lie(1, τ)

]
dτ

+ (Ci +∆Ci)w(θ, τ)dW(τ).

(12)

The initial value for error (12) is

e(θ, 0) = ϕ̃(θ), γ(0) = γ0, (13)

where ϕ̃T(θ) = ϕT(θ)− ϕ̂T(θ).

The boundary conditions are190

∂e(θ, τ)

∂θ

∣∣∣
θ=0

= 0,
∂e(θ, τ)

∂θ

∣∣∣
θ=1

= 0. (14)

Based on the designed boundary-output-based observer, we design the fol-

lowing SMS

ς(τ) =

∫ 1

0

ŵ(θ, τ)dθ −Ki

∫ τ

0

ŵ(1, s)ds = 0, (15)

where Ki ∈ Rn×n(i ∈ H) is control gain, and will be designed in Theorem 2.

Remark 2. In order to resist the influence of mode switching, we design mode-

dependent SMS (15). Compared with the common SMS designed in references195

[46, 47, 48], mode-dependent SMS (15) is easier to design and offers a higher

degree of freedom in its implementation. Especially, the differences between the

SMS for different modes are captured in the matrix Ki, i ∈ H.

3.1. Reachability

In this subsection, we first design an observer-based SMBCr u(τ), which200

drives the states of observer (9) onto the observer-based SMS (15) in finite time

almost surely.
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Theorem 1. For any i ∈ H, if we adopt the following observer-based SMBCr

u(τ) = B−1
i [−µi(τ)

−→sgn(ς(τ)) +Kiŵ(1, τ)− Lie(1, τ)−
∫ 1

0

Aiŵ(θ, τ)dθ],

(16)

the almost sure reachability of SMS (15) be ensured in finite time, where µi(τ) =

qi
pi

+ 1
2pi

∑H
j=1 δijpj∥ς(τ)∥1 and qi > 0 is a given constant.205

Proof. To ensure the reachability, let

V1(ς(τ), i, τ) =
1

2
piς

T(τ)ς(τ), (17)

where pi > 0, i ∈ H. To avoid redundancy, V1(ς(τ), i, τ) is simplified to V1(τ, i)

in the following.

We calculate LV1 as following

LV1(ς(τ), τ, i) = piς
T(τ)

∂ς(τ)

∂τ
+

1

2

H∑
j=1

δijpjς
T(τ)ς(τ)

= piς
T(τ)

∫ 1

0

(Bi
∂2ŵ

∂θ2
+Aiŵ + Lie1)dθ − piς

T(τ)Kiŵ1

+
1

2

H∑
j=1

δijpjς
T(τ)ς(τ)

= piς
T(τ)[−µi(τ)

−→sgn(ς(τ)) +Kiŵ1 − Lie1 −
∫ 1

0

Aiŵdθ]

+ piς
T(τ)

∫ 1

0

Aiŵdθ + piς
T(τ)Lie1 − piς

T(τ)Kiŵ1

+
1

2

H∑
j=1

δijpjς
T(τ)ς(τ)

≤ −piµi(τ)∥ς(τ)∥1 +
1

2

H∑
j=1

δijpj∥ς(τ)∥21

≤ −qi∥ς(τ)∥1 ≤ −qi(2V1(τ, i))
1
2 ,

(18)

where ŵ = ŵ(θ, τ), ŵ1 = ŵ(1, τ), and e1 = e(1, τ) = w(1, τ)− ŵ(1, τ).210

By Lemma 1 and (18), the system states reached SMS (15) in finite time

almost surely, and the proof is complete.
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Remark 3. SMBCr (16) depends on modes, which allows our design to have a

wider degree of freedom. For any mode i, i ∈ H, SMBCr (16) guides the state

trajectories to the i-th SMS. When the mode switches from i to j(i ̸= j, j ∈ H)215

in the reach phase, SMBCr (16) will also switch to the corresponding mode

j, and the system states will be driven to the j-th SMS. Besides, if the mode

switches from i to j during the sliding phase, the mode-dependent controller

(16) drives the state trajectories from the i-th SMS to the j-th SMS and then

slides on the corresponding j-th SMS. As time goes by, despite Markov switching220

and stochastic disturbances, SMBCr (16) always ensures that the system states

almost sure reach the SMS (15) in finite time.

Remark 4. Since ŵ(θ, τ) is related to the stochastic process w(1, τ), ŵ(θ, τ) is

also a stochastic process. Then for each mode i, i ∈ H, the time when ŵ(θ, τ)225

reaches SMS (15) is a stopping time. Therefore, in order to ensure that the

stochastic system states reach SMS (15) in finite time, we need to prove the

almost sure reachability. We apply Lemma 1 to prove ς(τ) is finite-time stable

in probability. Then, by Definition 2 and Remark 1, the almost sure finite time

reachability of SMS (15) is obtained.230

In this subsection, the almost sure finite-time reachability of SMS (15) was

established. This result is not only a prerequisite for initiating the sliding motion

but also forms the foundation for analyzing the system’s stability. The next step

is to analyze the mean square robust stability of system (3) during the sliding

motion.235

3.2. Observer-based mean square robust stabilization

In this subsection, the observer-based mean square robust stabilization is

investigated for UMSRDS (3). By analyzing the stability of the composite

system Y (θ, τ) = (wT(θ, τ), eT(θ, τ))T, the mean square robust stabilization of240
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closed-loop system (3) is obtained, and the mode-dependent stability condition

is given.

Obviously, the equivalent controller ueq(τ) is

ueq(τ) = B−1
i (Kiŵ1 −

∫ 1

0

Aiŵdθ − Lie1). (19)

Then we have

dY (θ, τ) =
[
B̄i

∂2Y (θ, τ)

∂θ2
+ ĀiY (θ, τ) + L̄iY (1, τ)

]
dτ + C̄iY (θ, τ)dW(τ),

(20)

where B̄i = diag{Bi, Bi}, L̄i = [0 0; 0 −Li], Āi = [Ai+∆Ai 0; ∆Ai Ai], C̄i =245

[Ci +∆Ci 0; Ci +∆Ci 0].

The initial value of system (20) is

Y (θ, 0) = Φ(θ), (21)

where Φ(θ) = (ϕT(θ), ϕ̃T(θ))T, and the boundary conditions are

∂Y (θ, τ)

∂θ

∣∣∣
θ=0

= 0,
∂Y (θ, τ)

∂θ

∣∣∣
θ=1

= Ueq(τ), (22)

where Ueq(τ) = [uT
eq(τ) 0]T2n×1.

Theorem 2. If there exist Ki, Li ∈ Rn×n and constant αi > 0, such that250

Ξ1i =

Θ1i αi[sym(−K̃i − L̃i)− Ãi − L̄i]

∗ −π2

2 αiB̄i + αisym(K̃i + L̃i)

 < 0, (23)

then system (3) is observer-based mean square robust exponentially stable, where

Θ1i = αi[sym(K̃i + L̃i + Ãi + L̄i) +G1i +G2i] +
∑

j∈H δijαjI2n, K̃i = [Ki −

Ki;0 0], Ãi = [−Ai Ai;0 0], L̃i = [0 − Li; 0 0], G2i = [Πi 0;0 0],Πi =

sym[CT
i Ci + CT

i D2iD
T
2iCi + (1 + λmax(D

T
2iD2i))W

T
2iW2i], and

G1i =

sym(Ai +WT
1iW1i) +D1iD

T
1i 0

0 sym(Ai) +D1iD
T
1i

 .255

Proof. Let

V2(τ, i) = αi

∫ 1

0

Y T(θ, τ)Y (θ, τ)dθ. (24)
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To avoid redundancy, in the following, we denote Y = Y (θ, τ), Y (1, τ) = Y1,

Ȳ = Y − Y (1, τ) = Y − Y1. Calculating LV2 along system (20) and using

integration by parts, we get

LV2(τ, i) = 2αi

∫ 1

0

Y T(B̄i
∂2Y

∂θ2
+ ĀiY + L̄iY1)dθ + αi

∫ 1

0

tr(Y TC̄i
T
C̄iY )dθ

+
∑
j∈H

δijαj

∫ 1

0

Y TY dθ

= 2αiY
T
1 B̄iUeq(τ)− 2αi

∫ 1

0

∂Y T

∂θ
B̄i

∂Y

∂θ
dθ +

∑
j∈H

δijαj

∫ 1

0

Y TY dθ

+ αi

∫ 1

0

Y TC̄i
T
C̄iY dθ + 2αi

∫ 1

0

Y T(ĀiY + L̄iY1)dθ,

(25)

From lemma 2, we obtain260

−2αi

∫ 1

0

∂Y T

∂θ
B̄i

∂Y

∂θ
dθ = −2αi

∫ 1

0

∂Ȳ T

∂θ
B̄i

∂Ȳ

∂θ
dθ ≤ −π2

2
αi

∫ 1

0

Ȳ TB̄iȲ dθ.

(26)

Making use of Lemma 3, we get

2αi

∫ 1

0

Y TĀiY dθ = 2αi

∫ 1

0

[
wT(Ai +∆Ai)w + eT∆Aiw + eTAie

]
dθ

≤ 2αi

∫ 1

0

[
wT(Ai +D1iT1W1i)w + eTD1iT1W1iw + eTAie

]
dθ

≤ αi

∫ 1

0

[
wT2Aiw + wTD1iD

T
1iw + wTWT

1iT
T
1 T1W1iw

+ eTD1iD
T
1ie+ wTWT

1iT
T
1 T1W1iw + eT2Aie

]
dθ

≤ αi

∫ 1

0

[
wT(2Ai +D1iD

T
1i + 2WT

1iW1i)w

+ eT(D1iD
T
1i + 2Ai)e

]
dθ

= αi

∫ 1

0

Y TG1iY dθ,

(27)

and

αi

∫ 1

0

Y TC̄i
T
C̄iY dθ

= 2αi

∫ 1

0

wT(Ci +∆Ci)
T(Ci +∆Ci)wdθ

14



≤ 2αi

∫ 1

0

(
wTCT

i Ciw + 2wTCT
i ∆Ciw + wT∆CT

i ∆Ciw
)
dθ

≤ 2αi

∫ 1

0

wT
(
CT

i Ci + 2CT
i D2iT2W2i +WT

2iT
T
2 DT

2iD2iT2W2i

)
wdθ

≤ 2αi

∫ 1

0

wT
(
CT

i Ci + CT
i D2iT

T
2 T2D

T
2iCi +WT

2iW2i +WT
2iT

T
2 DT

2iD2iT2W2i

)
wdθ

≤ 2αi

∫ 1

0

wT
[
CT

i Ci + CT
i D2iD

T
2iCi + (1 + λmax(D

T
2iD2i))W

T
2iW2i

]
wdθ

= αi

∫ 1

0

Y TG2iY dθ.

(28)

Bringing (26)-(28) into (25), we get265

LV2(τ, i) ≤ 2αi

∫ 1

0

Y T
1 (K̃i + L̃i)Y1dθ + 2αi

∫ 1

0

Y T
1 ÃiY dθ − π2

2
αi

∫ 1

0

Ȳ TB̄iȲ dθ

+ 2αi

∫ 1

0

Y TL̄iY1dθ + αi

∫ 1

0

Y TG1Y dθ + αi

∫ 1

0

Y TG2Y dθ

+
∑
j∈H

δijαj

∫ 1

0

Y TY dθ

≤ 2αi

∫ 1

0

(Y − Ȳ )T(K̃i + L̃i)(Y − Ȳ )dθ + 2αi

∫ 1

0

(Y − Ȳ )TÃiY dθ

− π2

2
αi

∫ 1

0

Ȳ TB̄iȲ dθ + 2αi

∫ 1

0

Y TL̄i(Y − Ȳ )dθ

+ αi

∫ 1

0

Y T(G1i +G2i +
∑
j∈H

δijαjI2n)Y dθ

=

∫ 1

0

ΥT(θ, τ)Ξ1iΥ(θ, τ)dθ,

(29)

where Υ(θ, τ) = (Y T(θ, τ), Ȳ T(θ, τ))T.

Then, combining (29) with inequality (23) Ξ1 < 0 and letting λ0 = −mini∈H λmin(Ξ1i),

we have

ELV2(τ, i) < −λ0E
∫ 1

0

ΥT(θ, τ)Υ(θ, τ)dθ < −λ0E
∫ 1

0

Y T(θ, τ)Y (θ, τ)dθ.

(30)

Letting c1 = mini∈H αi and c2 = maxi∈H αi, we have

c1

∫ 1

0

Y TY dθ ≤ V2(τ, i) ≤ c2

∫ 1

0

Y TY dθ. (31)
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Letting h1 > 0 be sufficiently small satisfying h1c2 ≤ λ0 and using Dynkin’s270

formula, we get

Eeh1τV2(τ, i)− EV2(0, γ0) = E
∫ τ

0

L(eh1sV2(s, i))ds

≤ E
∫ τ

0

[h1e
h1sc2

∫ 1

0

Y TY dθ − eh1sλ0

∫ 1

0

Y TY dθ]ds

= E
∫ τ

0

eh1s[(h1c2 − λ0)

∫ 1

0

Y TY dθ]ds

≤ 0.

(32)

Then, we obtain

E∥Y (·, τ)∥2 ≤ e−h1τE∥Φ(·)∥2, (33)

which explains that system (20) is robust exponentially mean square stable.

Then it is easy to get that UMSRDS (3) is observer-based mean square robust

exponentially stable. The proof is complete.275

Obviously, there are coupling terms of unknown terms in inequality (23),

which makes it difficult to solve Ki, Li. The following LMI condition is given

for easily finding solutions of Ki, Li.

Theorem 3. If there exist Ei > 0, Pi, Qi ∈ Rn×n, such that

Ξ3i =



Γ1i Ω1i Ω2i Ω3i Γ2i 0

∗ Ω4i ΩT
3i Qi 0 Γ2i

∗ ∗ Ω5i −Pi −Qi 0 0

∗ ∗ ∗ −π2

2 BiEi 0 0

∗ ∗ ∗ ∗ −Γ3i 0

∗ ∗ ∗ ∗ 0 −Γ3i


< 0, (34)

then system (3) is observer-based mean square robust exponentially stable, where280

E−1
i = αiIn, Γ1i = sym[Pi + WT

1iW1iEi + CT
i CiEi + CT

i D
T
1iD1iCiEi + (1 +

λmax(D
T
2iD2i))W

T
2iW2iEi] + δiiEi, Ω1i = −Pi −Qi +AiEi, Ω2i = −Pi +

1
2AiEi,

Ω3i =
1
2 (Pi + Qi) − 1

4AiEi, Ω4i = sym(AiEi − Qi) +D1iD
T
1iEi + δiiEi, Ω5i =

−π2

2 BiEi+sym(Pi), Γ2i = [
√
δi1Ei, ...,

√
δi,i−1Ei,

√
δi,i+1Ei, ...

√
δiNEi], Γ3i =

16



diag{E1, ..., Ei−1, Ei+1, ...EN }. In this case, suitable control gain and observer285

gain are given by Ki = PiE
−1
i and Li = QiE

−1
i , respectively.

Proof. Using Ki = PiE
−1
i , Li = QiE

−1
i , P̃i = [PiE

−1
i − PiE

−1
i ;0 0], Q̃i =

[0 −QiE
−1
i ;0 0], Q̄i = [0 0; 0 −QiE

−1
i ], Ēi = [Ei 0; 0 Ei] and performing

the congruence transformation by Ēi to (23), we get

Ξ2i =

Θ2i +
∑

j∈H δijĒiĒj
−1

Ēi Θ3i

∗ Θ4i

 < 0, (35)

where Θ2i = sym(P̃iĒi+Q̃iĒi+ÃiĒi+Q̄iĒi)+G1iĒi+G2iĒi, Θ3i = sym(−P̃iĒi−290

Q̃iĒi)− ÃiĒi − Q̄iĒi, Θ4i = −π2

2 B̄iĒi + sym(P̃iĒi + Q̃iĒi).

In order to simplify the coupling terms Ēi

∑
j∈H δijĒj

−1
Ēi, using Schur’s

complement lemma we have

Ξ3i =


Θ2i + δiiĒi Θ3i Θ5i

∗ Θ4i 0

∗ ∗ −Θ6i

 < 0, (36)

where Θ5i = diag{Γ2i,Γ2i}, Θ6i = diag{Γ3i,Γ3i}. In order to facilitate cal-

culation, we expand the matrix block in (36), and then we can get LMI (34).295

4. Simulation Studies

In order to illustrate the effectiveness of the proposed theoretical results, we

apply them to the CPU heat dissipation model with a surface package. Fig. 1(a)

details a schematic diagram of a surface-mounted package semiconductor within300

an electronic device. For simplicity, we consider a package that seals the CPU

with a uniform thermal conductor of consistent thickness, as shown in Fig. 1(b).

In fact, the heat is mainly dissipated through the top of the package seal and the

heat sink. To consider the maximum heat dissipation design of the controller, it

is assumed that there is a thermal insulation condition at θ = 0 at the bottom of305

the package seal. For detailed instructions please refer to references [49, 50, 51].
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(a) CPU heat dissipation model with surface

package

(b) A simplified CPU heat dissipation model

Figure 1: CPU heat dissipation model.

Here, we use the forward Euler method for time τ and use the central difference

scheme for space θ to construct the following numerical examples.

Example 1. During the operation of the CPU, due to sudden disturbance of

the environment, the structure or parameters of the CPU thermal dissipation310

modeling system will have stochastic mutations, therefore, system (37) is used

to accurately depict the above CPU thermal dissipation model.

dw(θ, τ) =
[
Bi

∂2w(θ, τ)

∂θ2
+ (Ai +∆Ai)w(θ, τ)

]
dτ + (Ci +∆Ci)w(θ, τ)dW(τ),

(37)

where θ ∈ (0, 1) and w(θ, τ) represents the temperature of the CPU. W(τ) rep-

resents the disturbance of external white noise during the CPU operation. l = 1

is the thickness of the homogeneous thermal conductor. Bi =
ki

ρCpi
is the ther-315

mal diffusion coefficient determined by the heat conductivity coefficient ki and

the volumetric heat capacity coefficient ρCpi, Ai is the internal temperature

effect, and Ci is the stochastic coefficients. ∆Ai and ∆Ci denote uncertain-

ties of coefficient. We consider temperature system (37) with two modes, i.e.

γ(τ) = i, i ∈ {1, 2} and the transition rate matrix is320

Ψ =

−3.5 3.5

2.4 −2.4

 .

System parameters are as follows: B1 = 0.9, B2 = 0.85, A1 = 0.3, A2 =

18



0.25, C1 = 0.4, C2 = 0.3,

∆A1 = 0.06 exp(−1

3
θ) cos(1.9τ),

∆A2 = 0.16 exp(−1

3
θ) cos(1.9τ),

∆C1 = 0.02 exp(−1

2
θ) cos(0.9τ),

∆C2 = 0.18 exp(−1

2
θ) cos(0.9τ),

where a set of uncertain matrices satisfying the specified conditions is used when

plotting the graph to intuitively verify the validity of the results.

The initial temperature of system (37) and the initial mode are325

w(θ, 0) = 1 + 2θ2, γ0 = 2,

and the boundary conditions are (6).

We adopt boundary-output-based observer (9) with boundary conditions (11)

for system (37). The initial value of observer (9) is

ŵ(θ, 0) = 1 + cos 5θ.

(a) Ew(θ, τ) (b) Ee(θ, τ)

Figure 2: Temperatures of system (37) and error system (12) with boundary controller.

By solving inequality (34) we obtain the control gains and observer gains are

K1 = −9.3173,K2 = −10.0677, L1 = 1.9926, L2 = 1.8938. Then the temper-330

atures of system (37) and error system (12) with the boundary controller are
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(a) Ew(θ, τ) (b) Ee(θ, τ)

Figure 3: Temperatures of system (37) and error system (12) without boundary controller.
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Figure 4: Norms with and without boundary controller.
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obtained, shown as Fig. 2, in which it is seen that temperatures of system (37)

and the error system (12) are mean square stable under the SMBCr. This shows

that our designed observer (9) can estimate system (37) well. When system (37)

is without the SMBCr, we get Fig. 3, in which the temperatures of system (37)335

are unstable. Furthermore, comparing Fig. 4(a) and Fig. 4(b), the norms of

system (37) tend to zero under the SMBCr, but not when without the SMBCr.

To sum up, the SMBC strategy we proposed is effective.

5. Conclusion

In this paper, the mean square robust stability is studied for uncertain340

Markovian switching stochastic reaction-diffusion systems (UMSRDS). Firstly,

considering that states of UMSRDS can not be completely accessible in practical

applications, an observer based on boundary output is designed to estimate the

states of the system. A mode-dependent integral sliding mode surface (SMS) is

established based on the observer. Moreover, the observer-based sliding mode345

boundary controller (SMBCr) is presented, which guarantees the almost sure

reachability of the predefined SMS. Then, a mode-dependent criterion is ob-

tained that ensures the mean square robust stability of the resultant system.

Finally, theoretical results are applied to a CPU thermal model to further prove

its validity. In the future, we will consider the SMBC for semi-Markovian switch-350

ing reaction-diffusion systems because of the wide existence of semi-Markov

switching in applications.
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