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Barrier function-based adaptive sliding mode control (BFASMC) is analyzed in presence of deterministic
measurement noise. It is shown that, considering only boundedness of the measurement noise, it
is impossible to select the controller parameters to track some perturbation with unknown bound.
Nonetheless, under the assumption of continuity of the noise, the tracking of such a perturbation is
possible; however, the barrier function width depends on the bound of the noise. If Lipschitz continuity

of the noise is assumed, then it follows that the width of the barrier function can be chosen arbitrarily.
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1. Introduction

Sliding-mode control (SMC) is well known by its robustness
against coupled disturbances. To achieve exact compensation of
such disturbances, the gains of SMCs must dominate the upper
bound of the perturbations. This need for a priori knowledge of
the bound of the perturbation makes the controller gains to be
overestimated most of the time, which aggravates the problems
of chattering and energy consumption. In real systems, this upper
bound exists but it could be unknown or overestimated. Thus,
adaptive sliding mode controllers (ASMCs) are considered as a
solution to the problem of gain overestimation.

There are three classical methods for the design of ASMCs
Shtessel, Fridman, and Plestan (2016):

e Increasing gains: The gain of the controller increases un-
til the instantaneous bound on the perturbation is com-
pensated. This scheme guarantees the establishment of the
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sliding mode. However, this approach has two main disad-
vantages: overestimation of the controller gain and uncer-
tainty regarding the time at which the sliding mode will be
finally established.

e Reconstruction of equivalent control: A filter is employed
to estimate the value of the equivalent control, giving an
approximation of the disturbance, but the filter introduces
a delay in closed loop system meaning that the sliding
mode can be lost. Moreover, for the design of the filter, an
upper-bound of the derivative of the perturbation is needed;
and so, continuous sliding-mode control can be employed,
ensuring the existence of second order sliding mode with
better asymptotic precision.

e Increasing and decreasing gains: The gains of the controller
are increased and decreased to try and track the perturba-
tion. This results in ultimate boundedness of the trajectories
of the system. Nevertheless, the ultimate bound is con-
tingent upon the unknown perturbation bound, making it
impossible to ascertain the exact moment when this bound
is achieved.

In Obeid, Fridman, Laghrouche, and Harmouche (2018) a Bar-
rier function-based adaptive sliding mode control (BFASMC) was
proposed, allowing the state to be constrained to a vicinity of the
origin (barrier) with an a priori predefined size (barrier width)
of the origin. This is achieved by choosing the gains of BFASMCs
as a continuous concave function with vertical asymptotes in
the boundary of the barrier. Recently in Cruz-Ancona, Fridman,
Obeid, Laghrouche, and Pérez-Pinacho (2023), a modification of
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Fig. 1. Effects of n on the centering of the barrier function.

BFASMC is proposed, ensuring the system’s solution will reach
the prescribed barrier in a predefined time.

Some applications of BFASMCs have been presented for a
variety of systems, such as robot manipulators (Mobayen, Alattas,
& Assawinchaichote, 2021), surface vehicles (Yan, Zhao, Yu, &
Wang, 2021), ABS systems (Rodrigues, Hsu, Oliveira, & Fridman,
2022), Duffing oscillator (Mousavi, Markazi, & Ferrara, 2023),
linear motors (Shao et al., 2021), piezoelectric actuators (Ma et al.,
2022), quad-rotors (Alattas et al., 2022), to name a few.

The theory of BFASMCs and its applications do not consider
measurement noise which, in real applications, will always be
present. When the state of the system is close to the boundary of
the barrier, the gains of the controller tend to infinity and, con-
sequently, the presence of the noise could force the trajectories
of the system to leave the barrier.

This note will illustrate that:

o In the presence of general bounded deterministic noises, the
barrier width cannot be chosen arbitrarily.

e In the case of continuous and bounded deterministic mea-
surement noise, the barrier width can be chosen based only
on the bound of the noise.

e In the case of globally Lipschitz continuous noise, the barrier
width can be selected arbitrarily, in spite of an unknown
Lipschitz constant.

2. Problem statement

Consider the following dynamical system
X =u+5(t,x)
y=x+n(t)

where x, u,y € R are the state vector, control input and system

output, respectively. n : R, — R represents the deterministic

measurement noise and § : Ry x [—(e + Ay), e + 4,] — R,

for some A, > 0 to be defined in the sequel, is a Lebesgue

measurable function representing uncertainties and disturbances.
Consider the following BFASMC

(1)

u = —By(y)sign(y) (2)

where Bf(y) represents the barrier function Bs(y) = (S'_” N The
parameter ¢ > 0 will be referred to as the barrier width %VBW).

Since n(t) is not available, and y(t) = 0 implies x(t) = —n(t),
it is impossible to know the exact position of the center of the
barrier, see Fig. 1.

Remark 1. Controller (2) requires |y(tp)] < e. Without loss
of generality, we can assume that the initial condition of the
output lies within the barrier, as it is always feasible to make
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modifications to reach the barrier within a predefined time (Cruz-
Ancona et al., 2023). However, to guarantee that |y(ty)| < € in (1),
& must be bigger than the value of 7(tp). Since n(t) is unknown,
this imposes a restriction on ¢ in terms of the upper bound of the
noise, whenever such a bound exists.

Assumption 1. There exists some positive constant § > 0 such
that, for all t € [tp, o0) and x € [—(e + 4,), & + A,], for some
A, > 0 the perturbation is bounded as |5(t, x)| < 8.

The objective of this work is to analyze the restrictions on the
selection of the BW for three classes of deterministic noises:

(1) Bounded
(2) Continuous bounded
(3) Globally Lipschitz continuous

3. Case 1: Bounded deterministic noises

Assumption 2. There exists some known positive constant A, >
0 such that, [n(t)] < A,, for all t € [to, 00).

Sufficient conditions for the boundedness of (1) controlled by
(2) under Assumptions 1 and 2 are given in the following theorem

Theorem 1. Let (1) be controlled by (2) and Assumptions 1 and 2
hold for some known 8. If ¢ > 2A,(8 4+ 1) and y(ty) € (—ye, ye),
withy € (0,1 — 2% then the state will be constrained in the set
|x| < & — A,, which implies that y(t) € (—¢, ¢) for all t € [ty, 00).

Proof. The closed-loop system for (1)-(2) is given by

. X+n

X=—"—"+49§ (3)
(e —Ix+nl)

Consider the Lipschitz continuous barrier Lyapunov function can-

didate

1 |X|

V=Xt ———— . (4)
2 (8 - An - |X|)

such that limy,. 4, V(x) = oo. For any x| < & — A, (4)

can be seen as the sum of a quadratic term in x and a rational
function with positive numerator and positive denominator, thus
V is positive definite for all [x| < ¢ — A,,. Note that the proposed
selection for yo implies that |xg| < e—A,,. Its derivative, wherever
it exists, along the trajectories of (3) satisfies the inequality V <

sign(x)(x+n) 3 ; _ e+A
V <0if:
sign(x + n)sign(x) > 8 ( £ 1) . (5)
Ix + 7

Three different cases will be considered:
e Case a) sign(n) = sign(x):

In this case, (5) is written as 1 > § (m - 1), which implies

5 : 5
x| > e — A,. Then, V will be bounded for |x| > 15— A,

e Case b) sign(n) # sign(x) and |x| > || :

The conditions imply |x+n| = |x| — |n| and sign(x + n) =
sign(x); then, (5) is written as 1 > § ( 1), which implies

_&
[xI=Inl

x| > 3% + A,. Then, in this case, V will be bounded for

S
|X| > Em + A']'
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Fig. 2. Graphical behavior of the state in the three cases.

e Case c) sign(n) # sign(x) and |x| < |n]| :

The conditions imply |x + 7| In| — |x| and sign(x + n) =
—sign(x); then, (5) is written as —1 > & (ﬁ - 1). From ¢ >
2A,, this is not feasible. Hence, |x| might grow and reach case (a)
or (b).

Since n(t) is not assumed to be continuous, it is possible that
the trajectories of the system jump between different sets where
either case (a) or (b) occurs. Then, the conditions for cases (a)
and (b) must be met simultaneously. This means that ¢ — A, >
Sm + A, should hold, which implies ¢ > 2A,](5 + 1). This
selection of ¢ implies that V < 0 for e— Ay > X(t)] =e—A, N

Remark 2. If the condition ¢ > 24 (8 + 1) is not fulfilled, the set
where V < 0 might be empty. Then the system cannot remain
within the barrier (see the simulation example).

Remark 3. Theorem 1 presents some inherent limitations of
BFASMC: whenever the measurement noise is discontinuous, the
barrier function width must be chosen depending on the bound
of the noise and the perturbation. Fig. 5 shows that an improper
selection of the barrier function width could lead BFASMCs to
fail. Moreover, a linear stabilizing controller ensures at least ul-
timate boundedness of solution, even if the upper bound of the
perturbation is unknown (Khalil, 2002).

The effects of the noise on the stability of the system are
shown in Fig. 2. If the state lies in the discontinuous lines, V < 0.
The continuous line indicates the case where V > 0. Furthermore,
if the state is on the dotted line, it is impossible to avoid the
jumps to the other side of the barrier. Some examples of these
jumps is given by the vertical arrows. Nonetheless, the selection
of ¢ implies the state is restricted to the set marked as vertical
dashed lines. In this set all possible jumps will be between sets
where V < 0.

Remark 4. In the majority of applications the measurements for
system (1) can be made by:

e Adigital sensor discretizing the measured variable with very
small sampling periods. In this case any measured signal can
be assumed to be continuous.

e An analog sensor having its own dynamics. In this case the
sensor output is at least Lipschitz continuous.

This motivates the study of the effects these kinds of noises would
have on system (1).
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4. Case 2: Continuous bounded noise

Assumption 3. The function 7(t) is a continuous function which
satisfies Assumption 2.

Corollary 2. Let (1) be controlled by (2) and Assumptions 1 and 3
hold. If the BW is chosen as ¢ > 2A, and y(ty) € (—e¢, ¢), then
y € (—¢,¢) for all t > ty, which implies that the state will be
constrained in |x| < & + A,.

Proof. The proof follows directly from the proof of Theorem 1,
with V = 1x2 + HA"“ T such that llmHHA,7 = 00. Since V
cannot be negatlve for Case (c), only Cases (a) and (b) are con-
sidered. Furthermore, since 7n(t) is continuous, it is not possible
for x to jump from one set to another, meaning that now that the

conditions

— A, Casea)
Case b)

. -4, >|x|>£
VEO:} ‘1&*5
e+ A, >|X|>8 +A

do not have to be met snmultaneously. From the fact that |y| =
|x| + |n| in Case (a) and |y| = |x| — |n| in Case (b), one has:

V<0 — e > |x|+ 4, >|y|>slH Case a)
- e >yl > |x| — ,,281% Case b)

meaning that V <0 = ¢ > |y| > 81+5, which is feasible for

any value of 8. Then, ¢ > |y| implies ¢ + Ay >Ix. =

Remark 5. In the case of continuous noise, ¢ does not depend on
8. On the other hand, for any linear controller, the set where the
state is ultimately bounded cannot be predefined if § is unknown.

Remark 6. In the case of continuous noise, the value of ¢ is
restricted as ¢ > 2A,. In this case, the use of (2) ensures that
the solutions of (1) will never leave the barrier.

5. Case 3: Lipschitz continuous noise

Assumption 4. The measurement noise is globally Lipschitz
continuous, with some unknown Lipschitz constant 4,,.

The following theorem shows that under Assumption 4, the
size of the BW can be chosen arbitrarily.

Theorem 3. Let (1) be controlled by (2) and Assumptions 1 and 4
hold. If the BW is chosen as ¢ > 0 and y(ty) € (—e¢, ¢), then y(t) will
be constrained in the set y(t) € (—e¢, ¢€), for all t > t,.

Proof. From the fact that n(t) is globally Lipschitz continuous,
it follows that it is differentiable almost everywhere and its
derivative is essentially bounded. Thus, considering that y(t) =
x(t)+n(t), it is possible to rewrite (1) as y = — 2 M +681(t) almost
everywhere, with §1(t) = §(t)+n(t), and |§1(t)| < 8+A,,,which is
bounded but the bound is unknown. Then, one can directly apply
the results of Obeid et al. (2018) to show that y(t) is confined to
lyl<e m

Remark 7. The size of ¢ does not have a theoretical restriction.
Nonetheless, since the initial condition of the noise is generally
unknown, a reasonable selection for ¢ is ¢ > 2A, if A, exists
and it is known.

Remark 8. For every single case, the output variable is con-
strained within a given set which restricts the values that the
state can achieve. Then, the ultimate bound of the state depends
linearly on the bound of the noise. These facts imply that, in
practical terms, one cannot expect any filtering from the BFASMC.
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Fig. 3. Different noises to be considered.
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Fig. 4. Simulation results for Case (1). (Top) State trajectory constrained by
the BFASMC and linear controller with e1; (Bottom-left) Control signal of the
BFASMC and linear controller; (Bottom-right) zoom of the Top plot.

6. Simulations

To exemplify the practical implications of the presented re-
sults and to offer a deeper understanding of the discussed con-
cepts, we will explore three specific cases, changing the definition
of n(t) in (1):

e Case (1): n(t) = A,sign(cos(wqt))

A, (1=2T) 0<T<1
—A 1<T<2
o Case (2): n(t) = A, (2Tn—5) 2<T<3
A, 3<T<4

e Case (3) n(t) = A,(cos(wqt))

with wg = 100, 4, = 0.01 and T = (¥ mod (4)}. These
noises are depicted in Fig. 3. Every simulation is performed us-
ing backward Euler discretization with a sample time of t =
1us, considers a perturbation given by § = 20cos(10t) and
x(tp) = 0.5¢. the rest of this section will be divided in three
subsections, each of them dealing with one type of deterministic
noise. The first subsection will compare the BFASMC against a
linear controller for Case (1), since § is needed a priori for the
selection of ¢ (see Theorem 1). However, the next subsections
will only deal with the BFASMC, since the dependence of & for the
selection of ¢ is no longer needed in Case (2) and Case (3) (refer
to Corollary 2 and Theorem 3). A linear controller ensuring that
the BW is positively invariant for an unknown value of § cannot
be designed.

6.1. Case (1): BFASMC in presence of discontinuous noise
In this case ¢ > 2A,7(3+1) (from Theorem 1). Some knowledge

of & is needed to properly apply BFASMC; furthermore, if § is
known a linear controller of the form u = —Ky can be applied to
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Fig. 5. Effects of underestimation of the bound of the disturbance for Case
(1). (Left) Linear controller for an underestimation of §; (Right) BFASMC for an
underestimation of 8.

(1) to ensure that |x(t)| < ¢ as stated in Remark 3, if K > ﬁl
Thus, a comparison between both controllers is shown.

To illustrate the tightness of the inequality & > 24,(§ + 1)
for the case of discontinuous noises, two different values of ¢
are considered: &1 = 2.014,(6 + 1) = & = 0.4221 and
g2 =1.974,(6 + 1) = &, = 0.4137.

Note that e; is selected only 0.5% bigger, while &, under-
estimates the value of ¢ by 1.5%. For the linear controller two
values of K are considered, i.e. K; = ﬁ for i € {1,2} implies
K; = 48.532 and K, = 49.542. The numerical simulations of the
BFASMC against the linear controller for &; and &, are shown in
Figs. 4 and 5 respectively.

The top of the first simulation (shown in Fig. 4) shows that
both controllers are able to ensure that |x(t)| < ¢ — A, which is
made clearer by the zoom shown by the bottom-right plot. The
bottom-left plot shows the control signal; u(t) is more aggressive
for the adaptive controller due to the jumps between the barrier
functions (see Fig. 2) and the precision of both techniques is
similar. Since the knowledge of § is needed for the selection of
¢, no real advantage for the adaptive controller is achieved.

Fig. 5 shows the effect of a small underestimation of ¢ by
considering &,. The left plot shows that under this situation,
the linear controller is capable of achieving an ultimate bound,
while the underestimation of ¢ leads to the destruction of the
predefined behavior of the BFASMC; this is shown in the right
plot of Fig. 5. This shows the advantage of the linear controller
for a discontinuous 7(t) compared with the BFASMC.

6.2. Case (2): BEASMC in presence of continuous noise

Similar to the previous subsection in order to show the con-
servativeness of ¢ > 2A, mentioned in Corollary 2 two ¢ are
chosen: &1 = 2.014, = &1 = 0.0201 and &; = 1.974, —
&, = 0.0197.

The top plot of Fig. 6 shows x(t) and y(t) when &1 is employed
in the BFASMC, it should be clear by the figure that |x(t)| < e+ A4,
and |y(t)] < e. The control law is shown in the bottom-left
of Fig. 6. However, as illustrated in the bottom-right of Fig. 6,
when g, (1.5% smaller than the theoretical result) is used in the
BFASMC, the state cannot be longer constrained to the predefined
set.

6.3. Case (3): BFASMC in presence of lipschitz continuous noise

The simulations considering Lipschitz continuous noises is
shown if Fig. 7. The selection of ¢ in this case is, theoretically,
arbitrarily; nonetheless, this parameter was selected according to
the comments in Remark 7 as ¢ = 2.014, = 0.0201.

1 Consider vV = 1x?; then, V < —|x| (K|x| — KA, — &). Thus, |x| > %Z”

V < 0. To ensure ¢ > |x| one can chose K > %.
6= 4n

=
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Fig. 6. Simulation results for Case (2). (Top and bottom-left) £; employed in the
BFASMC; (Bottom-right) &, used in the BFASMC.

The simulation results of Lipschitz continuous noises using the
selected ¢ are depicted in the top and middle of Fig. 7. The top-left
and -right plots of Fig. 7 shows that both the state x(t) and output
y(t) remain within the expected sets, while the middle of the
plot shows u(t). To assess that £ can be selected independently
of A,, a different noise, given by n(t) = A, cos(wgt) + t is
considered. This noise is Lipschitz continuous, but unbounded.
Since the simulation is performed for t € [0, 10], one may
consider A, = 10.01, which is 3 orders of magnitude larger
than the rest of the simulations, while considering the same value
for €. Although, a noise with a large bound is difficult to find it
in the practice, this extreme case of n(t) helps to illustrate that
selection of ¢ can be arbitrary. The bottom plots of Fig. 7 show
both x(t) and y(t). In such plots, it is possible to see if the noise
is Lipschitz continuous, the controller is capable of restricting the
output of the system to the BW (even if x(t) grows with the noise)
for larger (or nonexistent) bounds of the noise. This is not the case
for continuous noises, where it has been shown that the value of
& cannot be arbitrary.

7. Conclusion

The behavior of BFSMCs was analyzed under measurement
noise and sufficient conditions for the selection of the BW are
provided:

e For bounded noise, the BW can no longer be chosen arbi-
trarily and depends on the upper bounds of the noise and
perturbation.

e For bounded and continuous noise, the BW does not depend
on the bound of the perturbation.

e For Lipschitz continuous noise, the BW can be selected arbi-
trarily.

Simulations illustrate the results and show that values under
1.5% of the theoretical value cannot enforce the output to the
predefined set.
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Fig. 7. (Top and middle) Simulation results for Case (3); (Bottom) Simulation
results for n(t) = A, cos(wgt) +t.
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