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Abstract— The shape of electrodes is a key design pa-
rameter in dielectrophoresis (DEP)-based devices, directly
influencing the DEP forces induced by applied voltage to the
electrodes. These forces find application in medical therapy
devices, particularly in tasks such as cell manipulation,
sorting and separation. In these applications, it is essential to
control the direction and the magnitude of the DEP forces.
To address this challenge, this paper proposes to use topology
optimization to design the shape of the electrodes. Building
upon our previous research, we investigate the influence of
the volume fraction constraint and the weighting factors of
the electric field components along X and Y axes on the
resulting electrode layouts and their corresponding DEP force
performances. To this purpose, a case study has been defined
as trapping particles inside a desired convergence zone in
a fluid stream inside a microchannel. A series of numerical
simulations were conducted to evaluate the influence of the
volume constraint and weighting factors. The results show
that for each set of parameters the methodology enables the
generation of electrode layouts that effectively direct the DEP
forces to trap the targeted particles. Beyond this, The results
show that, for this type of problem, it is not advantageous
to impose a volume constraint. The optimization process
implicitly identifies the volume that achieves the best trade-off
between material distribution and DEP forces.

Index Terms— Dielectrophoresis (DEP) forces, Electrode
design, Topology optimization

I. INTRODUCTION

Cell sorting techniques play a critical role in numerous
biological and medical applications, enabling the identi-
fication, characterization, and purification of specific cell
subpopulations. Such methods are essential for various
research and clinical protocols, from cancer therapies to
studying signaling between blood cells [1]. In this frame-
work, several sorting techniques have been described in
the literature [2]-[7]. They can be classified in two main
categories: active and passive [2]. Active ones separate
cells by using external fields such as acoustic, elec-
tric, magnetic or optic, while passive ones separate cells
through inertial forces, filters or adhesion mechanisms.
Among these techniques, dielectrophoresis (DEP) is of
particular interest because it acts on neutral but polarized
cell [5] and does not require any damaging chemical
treatment. This technique lies on a DEP phenomena that
induces unbalanced charges on the surface of living cells.
When these cells are suspended in a medium of different
dielectric characteristic, they become electrically polarized.
Due to the difference between the polarity of the cells and
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the medium, positive or negative DEP will occur. In this
case, the generated force pulls the cells in the direction
of increasing electrical field (positive DEP) or pushes the
cells in the direction of decreasing electrical field (negative
DEP) [2]. The cell sorting devices, called also lab on a
chip devices, combine this force with fluidic for accurate
separation of cells of interest from other cells.

Although, cell-sorting devices bring a significant
progress in cell separation, their development remains
challenging in particular the design of their electrodes.
The abundant papers tell us how much importance re-
searchers attached to solve this issue. Various empirical
electrode shapes are proposed including parallel [8], in-
terdigitated [9], castellated [10], quadrupole [11], annu-
lar [12], oblique [13], curved [14], etc. A brief review
of each of these designs is reported in [15]. Recently,
optimization approaches have been used to design more
efficient electrodes. The optimization methods include in-
vestigative approach on the basic shapes of the electrodes
like rectangular and trapezoidal [16], different placement
of rectangular electrodes [17], shape optimization using
genetic algorithm [18], [19] and microelectrode discretiza-
tion [20]. A major limitation of these optimization ap-
proaches lies in their high computational cost, which
requires the use of large rectangular elements to discretize
the electrode design domain. This restricts the diversity
of the obtained geometry of the electrodes. As an alter-
native, Yoon et al. [5] applied topology optimization to
design the shape of electrodes. Although this method offers
significant potential for generating complex and efficient
geometries, it remains limited by the implicit computation
of sensitivities, which affects its computational efficiency.

To overcome the above-mentioned limitation, we re-
cently proposed an explicit formulation of the sensitivities
of the dielectrophoretic force (objective function) to facil-
itate the topology optimization of electrode shapes using a
gradient-based algorithm [21]. To validate this approach,
the trapping of artificial objects within a microfluidic chan-
nel was considered. The primary objective was to identify
electrode topologies that outperform the conventional U-
shaped design. A mathematical formulation was developed,
optimized for two distinct volume constraints (0.3 and
0.4), and subsequently analyzed through numerical sim-
ulations and validated experimentally. The results clearly
demonstrated the superior performance of the optimized
topologies over the conventional U-shaped electrodes, par-
ticularly in terms of particle convergence to the trapping
region.



Building upon our previous work [21], this paper inves-
tigates the impact of the volume fraction constraint and
weighting factors of the electric field components along X
and Y axes on the resulting 2D electrode layouts and their
corresponding DEP force performances. This is essential
to further demonstrate the interest of topology optimization
of electrodes shapes and understand how these factors
influence the electric field distribution, which governs the
magnitude of the DEP forces.

II. TOPOLOGY OPTIMIZATION SIMP METHOD

This section briefly recalls the main concept behind
the topology optimization-based density approach. This
approach, especially the SIMP (Solid Isotropic Material
with Penalization) method, is a design methodology aiming
to find an optimal structure within a limited design domain
subjected to one or several constraints. Unlike classical
methods, this powerful mathematical method consists of
distributing material in areas where it is necessary and
removing it from areas where it is not needed [22]. To this
end, the method combines finite element formulation and
penalization power law to make material intermediate den-
sity unattractive and, therefore, avoid the 0-1 problem of
classical topology optimization process. For more details
readers can refer to a reference book entitled “Topology
Optimization: Theory, Methods and Applications” [22],
where the theoretical foundations and applications of this
approach have been comprehensively described and ex-
tensively discussed. Solid mechanics has historically been
the primary field of application of topology optimization,
where the main objectives are weight reduction and stiff-
ness enhancement. Over time, topology optimization has
progressively expanded to a wide variety of applications,
ranging from photonics [23], optics [24], magnetism [25],
electronics [26], electro-active polymers [27], shape mem-
ory polymers [28], piezoelectric actuators [29]-[33] to
electrostatic actuators [5], [21], [34].

III. DIELECTROPHORETIC FORCE MODELING

This section briefly reminds the dielectrophoretic force
modeling derived in [21]. Any neutral particle subjected to
a non-uniform electric field will experience an electrostatic
force due to Maxwell’s stress tensor. For a spherical par-
ticle, Maxwell’s stress tensor generates a dielectrophoretic
(DEP) force that can be expressed as [35], [36]

FDEP = 27'[8mr3R€(fCM)V|E‘2 (1)

in which r is the radius of the particle, &, is the permittivity
of the medium (fluid), V is the vector differential operator
and E is the electric field,

E=-Vd )

where @ is the potential field applied to the electrodes.
In addition, in equation (1), fcys is the Clausius Mossotti
factor that can be calculated as
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Fig. 1. Formulation of the particle trapping problem in a microfluidic
channel. a) Desired trajectories of particles within the channel (top view).
b) Representation of the design domain and its dimensions, the mesh and
the boundary conditions.

where €, and o, are the permittivity and the conductivity
of the particle. o,, is the conductivity of the fluid, w is
the frequency of the AC potential and { * } refers to the
complex form of €, and &,,.

A quick analysis of equation (1) reveals an important
observation. For a given particle radius and a constant
frequency, the DEP force magnitude is governed by the
squared gradient of the electric field (i.e., V|E|*). Based on
this observation, it is clear that, for a given application such
as particle trapping, optimizing the shape of the electrodes
is essential for enhancing the DEP force.

IV. TRAPPING PROBLEM FORMULATION

Figure 1 illustrates the formulation of the particle trap-
ping problem. For simplicity, only the region subjected
to optimization is depicted. The remaining components of
the microfluidic device namely, the fluid inlet and outlet,
as well as the entrance electrode network used to center
the particles are excluded. Ideally, any particle driven by
the fluid through the microchannel should converge and
then immobilized within a designated trapping zone, as
illustrated in Fig. l.a. Physically, this implies that the
electrodes must generate appropriate electric fields capable
of inducing dielectrophoretic (DEP) forces that redirect and
guide the particle from a random initial location toward the
convergence zone. As shown in Fig. 1.b, establishing a
stable trap requires two opposing DEP forces along the
X axis and an additional DEP force along the Y axis.
Depending on the particle’s initial position, the first two
forces will steer it either from left to right or right to left,
while the third force counteracts the fluid’s drag force.

The simultaneous application of these DEP forces cre-
ates a funnel that drives the particle naturally toward the
desired trapping zone. To achieve this funnel mechanism
through electrode design, the optimization process must
shape the electrodes to generate strong DEP forces in the
targeted regions. The objective is therefore to identify a
topology that maximizes the gradient of the electric field in
the sub regions “A”, “B”, and “C” as illustrated in Fig. 1.b.
Given this configuration, the optimization problem can be
formulated as the minimization of the following objective



function (which is equivalent to the maximization of the
DEP forces):
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where J is formulated as the weighted negative sum of
the electric field gradients corresponding to each zone. W,
et W, are the weighting factors with W, +W, =1 and Q
is the design domain. This optimization is subjected to a
volume constraint that defines the quantity of conductive
material to distribute within the design domain. In practice,
it is expressed as the ratio ”VolFrac” between the volume
of the distributed material Vj and the total volume of the
design domain V, which is by definition strictly bounded
between 0 and 1.

The minimization process of J under the volume fraction
constraint is repeated iteratively until all design variables
converge either towards a value close to ’0”, corresponding
to fluid regions, or towards a value close to 17, indicating
the presence of electrode material. The finite element
discretization of the design domain, the derivation of the
elementary dielectric matrix, the interpolation scheme of
the permittivity between fluid and material, the assembly
of the global dielectric matrix and the sensitivity analysis
are investigated in detail in [21]. Readers are referred to
this work for further information.

As part of the logical progression of our previous
research [21], we aim here to investigate the impact of the
volume fraction constraint and the weighting factors on the
electric field distribution, which governs the magnitude of
the DEP forces. It is worth to notice that these parameters
are chosen intuitively in the previous study.

V. ANALYSIS OF THE IMPACT OF VOLUME FRACTION
AND WEIGHTINGS FACTORS

To evaluate the impact of the volume fraction and
the weighting factors, the minimization of the objective
function J was carried out using several sets of values
of VolFrac, Wy and W, as shown in Tab. 1. Each cell
of the table presents a unique combination of VolFrac,
W, and Wy. In one hand, 10 combinations of VolFrac are
considered from 0.1 to 1 with an increment of 0.1. In the
other hand, 11 combinations of W, and W, are considered
from (0,1) to (1,0) with an increment of (0.1,-0.1). Due
to the symmetry of the electrodes design domain given in
Fig. 1.b, only 65 combinations were tested, as indicated
in the Tab. I by crossed boxes. It is worth noting that
the value of VolFrac starts at 0.1 in order to deposit a
minimal amount of material (electrode), and ends at 1,
which corresponds to a case where the volume constraint
is fully relaxed.

Figures 2, 3, 4 and 5 illustrate the results of
the optimization for four cases of parameter com-
bination (VolFrac=(1,1,1,1), W,=(0.2,0.4,0.5,0.8) and
W,=(0.8,0.6,0.5,0.2)). They present the obtained electrode

TABLE I
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Fig. 2. MATLAB topology optimization results for the case VolFrac=1,
W,=0.2 and W,=0.8. a) Obtained electrode topology. b) Potential field.
¢) resulted electrical field. d) Gradient of electrical field. The arrows are
showing the DEP forces direction.
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Fig. 3. MATLAB topology optimization results for the case VolFrac=1,
W,=0.4 and W,=0.6. a) Obtained electrode topology. b) Potential field. c)
resulted electrical field. d) Gradient of electrical field.
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Fig. 4. MATLAB topology optimization results for the case VolFrac=1,
W,=0.5 and W,=0.5. a) Obtained electrode topology. b) Potential field. c)
resulted electrical field. d) Gradient of electrical field.
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topology, the potential applied to each electrode, the re-
sulting electric field, and the electric field gradient, which
provides an image of the DEP forces. For each case, it
is clear that the DEP forces converge to the center and
toward the inverse direction of the fluid flow as shown
by the normalized arrows. This is in accordance with the
defined directions in the formulation given in Fig. 1.
Figures 6, 7, 8 and 9 show the evolution of the gradient
of the electrical field (along X and Y axes) for two combi-
nations of Wy, and W, (0.1,0.9 and 0.2,0.8 respectively)
with respect to VolFrac that goes from 0.1 to 1 with
an increment of 0.1. The analysis of all combinations
shows that, regardless of the weighting factors, the highest
gradient is generated when the volume constraint is set to
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Fig. 5. MATLAB topology optimization results for the case VolFrac=1,
W,=0.8 and W;=0.2. a) Obtained electrode topology. b) Potential field. c)
resulted electrical field. d) Gradient of electrical field.
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Fig. 6. Gradient of the electric field in Y direction with respect to
VolFrac that varies from 0.1 to 1 while W, and W, are set to (0.1 and
0.9). The curves are plotted as a function of the optimization iterations.
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Fig. 7. Gradient of the electric field in X direction with respect to

VolFrac that varies from 0.1 to 1 while Wy and W, are set to (0.1 and
0.9). The curves are plotted as a function of the optimization iterations.

1 (see Figs. 6 and 8). A similar behavior is also observed
for the other combinations of weighting factors, with only
minimal difference in the final volume fraction when the
volume constraint is set to 1. These results highlight
that topology optimization algorithm has a systematical
ability to converge to a solution with an optimal volume
fraction when VolFrac is set to 1. This is a remarkable
feature of the optimization algorithm which identifies the
most effective VolFrac value. For example, the optimal
volume fractions corresponding to the cases presented in
Figs. 6 and 8 are 0.423 and 0.461, respectively. These
results demonstrate that the algorithm reaches solutions
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Fig. 8. Gradient of the electric field in Y direction with respect to
VolFrac that varies from 0.1 to 1 while W, and W, are set to (0.2 and
0.8). The curves are plotted as a function of the optimization iterations.
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Fig. 9. Gradient of the electric field in X direction with respect to
VolFrac that varies from 0.1 to 1 while W, and W), are set to (0.2 and
0.8). The curves are plotted as a function of the optimization iterations.

that maximize (or minimize) the desired output.

This result is initially challenging to predict, but it can be
interpreted retrospectively by relying on the nature of the
physics of the trapping problem. Indeed, the DEP forces
induced by a non-uniform electrical field are generated by
three electrodes. These electrodes, initially interconnected
within the design domain (see red boundary conditions in
Fig. 1.b), must be automatically separated by the algorithm
to avoid a short circuit. Using a volume constraint of 1
relaxes the volume constraint, allowing the algorithm to
automatically search for the optimal volume.

Furthermore, the impact of parameters W, and W,,
regardless to volume fraction, is evident from the result
shown in Figs. 2.d, 3.d, 4.d and 5.d. These parameters serve
mainly to balance the DEP forces between the X and Y
directions. When W, < W, the DEP forces generated along
the Y axis are stronger than those along X axis, and vice
versa. Moreover, the pairs of Figs.(6,7) and (8,9) illustrate
the complementarity of the generated DEP forces along X
and Y axes respecting the primarily condition W, + W,=1.
The increase in forces along the Y direction automatically
reduces the forces along the X direction, and vice versa.

When considering the combined effects of the volume
fraction and the weighting factors, the two configura-
tions presented in Figs. 3 and 4 exhibit optimal particle
trapping performance among the other configurations. In
addition, these configurations require less than 5 volts,

Fig. 10. Numerical simulation of the optimal electrodes in COMSOL.

thus significantly minimize particle exposure to the electric
field. Their simulation in COMSOL under a fluid stream
demonstrate their ability to deviate particles along the
channel and drive them toward the desired trapping zone
as it is clearly shown in Fig. 10.

VI. CONCLUSION

In conclusion, this paper demonstrates the interest of
topology optimization as a methodological tool for design-
ing electrodes shapes in DEP-based devices. By exploring
the impact of the volume fraction and the weighting
factors, the paper shows that the optimization process
successfully generate topologies that direct DEP forces
to trap particles in a desired region within the micro-
fluidic channel. The results analysis highlights that im-
posing a volume fraction constraint is not beneficial in
dielectrophoresis applications. Indeed, the optimization
process identifies naturally the optimal volume fraction that
balances material distribution with respect to the desired
DEP force performances. The results highlight also the
impact of the weighting factors that permit to balance the
DEP forces along X and Y axes. A compromise between
these factors allows, on one hand, to counterbalance the
drag forces due to the fluid stream, and on the other hand
to form a funnel that deviates particles from right to left
and from left to right toward the desired trapping region.
Future works will focus on the experimental validation of
the optimized electrodes.
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