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Abstract

An active model-free sensor fault tolerant control approach is presented in this
paper. The proposed method is based on a model-free controller that has demon-
strated an effective ability to work without any analytical model knowledge. The
active fault tolerant control procedure has three stages: firstly, the model-free
controller is designed using an ultra-local model; secondly, this ultra-local model
is used to detect and estimate the sensor fault; thirdly, the obtained estima-
tion is used to adapt the control law according to the sensor fault. The aim of
the proposed active fault tolerant control procedure is to ensure that the reg-
ulated output, but not the measured one, tracks the desired trajectory despite
the occurrence of a sensor fault. Additive or multiplicative sensor fault are con-
sidered for systems that have a linear relationship between control input and
system output for any reached steady-state. This kind of system includes linear
ones and some specific nonlinear systems. The developed methods are validated
via numerical simulations for unstable linear and nonlinear systems, with and
without saturation of the control input.
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Model-Free Active Sensor Fault Tolerant Control

For Systems With Linear Static Characteristic

Abstract

An active model-free sensor fault tolerant control approach is presented in this
paper. The proposed method is based on a model-free controller that has demon-
strated an effective ability to work without any analytical model knowledge. The
active fault tolerant control procedure has three stages: firstly, the model-free
controller is designed using an ultra-local model; secondly, this ultra-local model
is used to detect and estimate the sensor fault; thirdly, the obtained estima-
tion is used to adapt the control law according to the sensor fault. The aim of
the proposed active fault tolerant control procedure is to ensure that the reg-
ulated output, but not the measured one, tracks the desired trajectory despite
the occurrence of a sensor fault. Additive or multiplicative sensor fault are con-
sidered for systems that have a linear relationship between control input and
system output for any reached steady-state. This kind of system includes linear
ones and some specific nonlinear systems. The developed methods are validated
via numerical simulations for unstable linear and nonlinear systems, with and
without saturation of the control input.

Keywords: Sensor fault accommodation, Sensor fault estimation, Additive sensor
fault, Multiplicative sensor fault, Model-free approach

1 Introduction

In the broadest sense of the term, a fault can be considered as an unexpected event that
occurs and has an impact on the behavior of a system, preventing it from performing
its nominal operation. This event occurs in the system itself, the actuator or the
sensor [1–4]. The literature presents a wealth of fault detection methods that are
employed to provide the user informations about the operating status of the system [5].
The presence of a fault usually leads to undesirable consequences such as system
performance degradation. The aim of a fault tolerant control (FTC) strategy is to
ensure an acceptable level of system behaviour in the presence of a fault [6].

Fault control strategies can be categorized into two main approaches: passive fault
tolerant control (PFTC) [7] and active fault tolerant control (AFTC) [8] strategies.
The PFTC strategy allows the fault to be tolerated without any information about
the type and magnitude of the fault. When designing a PFTC law, the controller can
tolerate only a few faults, although not all faults that may impact the system [9].
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However, the AFTC can tolerate all faults that are detected and isolated via the fault
detection and isolation module. The latter gives more informations about the fault
and enables to identify its nature and amplitude. These informations are used by
the controller to accommodate the fault in order to ensure a consistent behaviour of
system operation [10].

In this paper, we address an AFTC approach to accommodate the sensor fault in a
model-free framework, and the sensor fault accommodation is defined as follows: the
regulated output, but not the measured one, tracks the desired trajectory despite the
occurrence of a sensor fault. Generally, the design of AFTC for sensor fault in the
literature is based on the knowledge of the analytical model of the controlled system
and can be classified according to kind of sensor fault or accommodation objective.

The considered sensor faults are either additive like in [11–19], or additive and
multiplicative like in [20–22], or the measurement matrix changes due to the occurrence
of a sensor fault [23–25], or described by a loss of sensor information like in [26, 27].
One of the aims of AFTC procedure is to regulate the system output to the setpoint
despite the fault on the measurement as in [11,13,18–20]. In [12,22,24,25], the tracking
objective is on a combination of the state components. Other aims of AFTC strategy is
to ensure that some optimization criteria (like induced norms on signals) are satisfied
like in [14, 16, 17, 21, 23, 26]. In addition, only the closed loop stability is guaranteed
in [15,27].

In the literature, there are few methods that introduce AFTC strategy without an a
priori knowledge of the system’s analytical model. In this paper, an AFTC procedure
based on model-free control is developed to accommodate sensor fault. Model-free
control is a very efficient approach to control linear and nonlinear systems without
using the analytical model of the system [28,29]. This model-free control can be seen as
a PFTC that can tolerate actuator faults and disturbances affecting the system [30–32]
without the need to estimate the actuator fault. However, this approach is unable to
tolerate sensor faults. In [33], a model-free AFTC method is proposed to tolerate an
additive sensor fault for linear systems.

In this paper, we address an AFTC approach that considers both additive and
multiplicative sensor faults for linear and nonlinear systems exhibiting a linear static
characteristic in a model-free framework. The sensor fault accommodation is defined
as follows: the regulated output, but not the measured one, should tracks the desired
trajectory despite the occurrence of a sensor fault. The ultra-local model used in
model-free control allows generating a residual to detect and estimate the sensor fault.
This estimate is used to adapt the model-free control law in order to achieve the sensor
fault accommodation. The performances of the developed AFTC is validated for both
unstable linear and nonlinear systems with input control saturation.

This paper is structured as follows. The problem of model-free active sensor fault
tolerant control for systems with linear static characteristic is stated in Section 2.
Model-free control design is shortly presented in Section 3 and is used to residual
generation for sensor fault detection in Section 4. The sensor fault estimation in model-
free framework is treated in Section 5 where Subsections 5.1 and 5.2 are devoted
to additive and multiplicative cases, respectively. The sensor fault accommodation
is given in Section 6. The AFTC strategy is applied to an unstable linear system
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in Section 7, where the additive and multiplicative cases are treated in Subsections
7.1 and 7.2, respectively. The AFTC for unstable nonlinear systems is illustrated in
Sections 8 and 9 for additive and multiplicative cases, respectively. In Section 10, the
numerical simulation results are analysed and the model-free framework for AFTC is
discussed. The conclusions of this work are presented in Section 11.

2 Problem statement for closed loop steady state
sensor fault accommodation

The closed loop system considered in this paper is given by

ẋ(t) = g(x(t), u(t)) (1a)

y(t) = h(x(t), u(t)) (1b)

u(t) = γ(ym(t), yd(t)) (1c)

ym(t) = ρ(y + fa(t)) + (1− ρ)fm(t)y(t) (1d)

where x(t) ∈ IRn is the state, u(t) ∈ IR is the control input, y(t) ∈ IR is the regulated
output, ym(t) ∈ IR is the measured output and yd(t) ∈ IR is the desired trajectory,
while fa(t) ∈ IR and fm(t) ∈ ]0; 1] ⊂ IR are the additive and multiplicative sensor
fault, respectively, with ρ ∈ {0, 1}.
Assumption 1. The stability of the closed loop system Eq. (1) is guaranteed by the
control law u(t) and the two following properties are satisfied

∀ ε ∈ IR+, ∃T1 ∈ IR+ such that |ym(t)− yd(t)| ⩽ ε, ∀ t > T1, (2)

∀ ε ∈ IR+, ∃T2 ∈ IR+, ∃ c ∈ IR such that |u(t)− cy(t)| ⩽ ε, ∀ t > T2. (3)

In the property given by Eq. (2), the measured output ym follows the desired
trajectory yd when steady-state is reached regardless of the occurrence of the sensor
fault fa or fm, while the regulated output y converges to yd only if either fa = 0 and
ρ = 1 or fm = 1 and ρ = 0. In the property given by Eq. (3), the constant c means
that there exists a linear relationship between control u and output y for any reached
steady-state. Note that the constant c exists for all linear systems, but only for special
kinds of nonlinear systems (see the examples in Sections 8 and 9).

So it follows that the regulated output y does not converge to the desired trajectory
yd in presence of sensor fault since y ̸= ym and the closed loop works under faulty
situation.
Problem 1. The AFTC procedure consists on replacing the measurement signal ym
by an accommodation signal yacc to vanish the effect of sensor fault on the regulated
output y, i.e. to guarantee that y converges to yd. So the control input in Eq. (1c) is
replaced by

u(t) = γ(yacc(t), yd(t)). (4)

The accommodation signal yacc is obtained through three steps named sensor fault
detection (see Section 4), sensor fault estimation (see Section 5) and sensor fault

3
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accommodation (see Section 6). These three steps are based on the model-free control
design described in the following section.

Since the model-free control has been proposed in the literature, only a short recall
is given in Sections 3.

3 Model-free control

In [28,29], the model-free control is supported by an ultra-local model which replaces
the global mathematical model of the system to be controlled. This ultra-local model
is represented as follows

y(ν)m (t) = F (t) + αu(t) (5)

where ν refers to the derivative order of the measured output ym, α is parameter
chosen by the user and F is a function that includes all the unknown part of the
system. In this paper, ν is equal to 1. When ν = 1, the model-free control is called iP
controller and the control law is given by

u(t) =
1

α

(
−F̂ (t) + ẏd(t) + kpe(t)

)
(6)

where

� e = yd − ym is the tracking error,
� kp is a tuning proportional gain,

� F̂ is the estimation of F given by [34]

F̂ (t) =
−3!

T 3

∫ t

t−T

((T − 2τ)ym(τ) + ατ(T − τ)u(τ)) dτ (7)

where T > 0 might be small and [t − T ; t] denotes the sliding windows of the
integration interval.

In [28, 29] the determination of the parameter T results in trade-off between the
sampling period of the numerical integration and the intensity of noise that may affect
the measurement (see remark 13 in [28]). As explained in [35], the unmodeled dynamics
are estimated by F from the measurements ym and the control input u, and this
estimate is updated for each integration time interval [t−T ; t] with a backward horizon
strategy. The above trade-off leads to choosing a small integration window in order to
have an acceptable short time to estimate F , but a window large enough to guarantee
low-order filter properties to attenuate noise that may affect the measurement ym.

In [29, 36], it is shown that the iP controller, i.e. when ν = 1, ensures that the
measurement ym tracks the desired trajectory yd, as required by property in Eq. (2).

The reader is referred to [28–30, 35–52] for further explanations of the model-free
control approach and its applications to various processes.
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4 Model-free residual generation for sensor fault
detection in steady-state

4.1 Determination of steady-state behavior

Since the AFTC procedure described below is based on the constant c given in Eq.
(3) characterizing the steady-state behaviour of the closed loop system, the start and
final instants of steady-state behaviour should be determined:

� the start instant tsi of steady-state behaviour corresponds to the instant when |ẏd|
and |e| are “sufficiently” small during a given duration,

� the final instant tfi of steady-state behaviour is the instant when |ẏd| becomes not
“sufficiently” small during a given duration.

So to apply the approach, the user should determine where the process is transient
or steady state behaviour. In view of the two previous items some parameters are
chosen in order to decide when the process is in steady-state. These parameters are
as follows:

� Let κyd > 0 and κe > 0 be the parameters that define the tolerated variations of yd
and e to consider that we are in steady state, i.e. |ẏd| < κyd and |e| < κe.

� The conditions |ẏd| < κyd and |e| < κe must be of sufficiently long duration to be
considered steady-state. The parameters characterizing these two durations are dyd

for |yd| and de for |e|.

The determination of de and κe is strongly related to the closed loop specifications,
such as the standard deviation of the noise affecting the measurement, the closed loop
time constants, . . .

The choice of dyd and κyd depends of the construction of the desired trajectory to
be tracked.

All the steps in the AFTC procedure described in the next sections are applied
between instants tsi and tfi , bearing in mind that several steady-state behaviours may
succeed one another during closed-loop operation.

4.2 Residual generation

Model-free fault detection is introduced for actuator fault detection in [31, 32], while
for process and sensor faults in [51]. The main idea is to generate a residual signal that
is used as a fault indicator. This signal is designed via an estimation of the output ym
of the controlled system. To this end, we use the ultra-local model given by Eq. (5),
the estimation of F in Eq. (7) and the control law u in Eq. (6).

The ultra-local model Eq. (5) leads to

ym(t) =

∫ t

0

(F (τ) + αu(τ)) dτ + ym(0) (8)

5
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where ym(0) is the initial condition. By replacing F by F̂ , the measured estimated
output ŷm is estimated as follows

ŷm(t) =

∫ t

0

(
F̂ (τ) + αu(τ)

)
dτ + ŷm(0) (9)

Assuming that F̂ (t) = F (t) and ŷm(0) ≃ ym(0) implies ŷm ≃ ym for any operating

system state. However, in practical case, the estimation F̂ is never equal to F , which
implies ŷm ̸= ym in the presence or absence of a sensor fault fa or fm.

It is now a matter of correcting the estimated output ŷm so that it is equal to the
measured output ym in the absence of a sensor fault. The sensor fault detection is
based on the residual signal given by

r(t) = ym(t)− βŷm(t) (10)

where β is a parameter to be determined. In order to obtain a residual equal to 0 in
absence of sensor fault, this parameter β is defined by

β(t) =
ym(t)

ŷm(t)
=

ym(t)∫ t

0

(
F̂ (τ) + αu(τ)

)
dτ + ŷm(0)

(11)

where steady-state values of the signals ym and ŷm are used in the absence of the fault.
Theorem 1. β is constant for systems having linear static characteristic described by
Eq. (3).

To prove this theorem, we need to introduce a continuous integral discretization
method for the calculation in Eqs. (9) and (11). This is made in the following remark.
Remark 1. The approximation I(q(k)) of the temporal integral of the function q by
the rectangle method is defined as

∫ t

0

q(τ)d(τ) ≃ I(q(k)) =
k∑

i=1

q(i)Te

and

q̇(t) ≃ δq(i) =
q(i)− q(i− 1)

Te
where Te is the sampling time. □

Proof. Applying the approximation defined in Remark 1 to Eq. (9) leads to

ŷm(kTe) = I
(
F̂ (kTe) + αu(kTe)

)
+ ŷm(0) (12)

where the estimation of F in Eq. (5) is expressed by

F̂ (kTe) = δym
(kTe)− αu((k − 1)Te) (13)

6



277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

instead of by relation Eq. (7). It should be noted that u(kTe) cannot be used in Eq.
(13) due to causality.

Using the definition of δym(kTe) given in Remark 1 and inserting Eq. (13) in Eq.
(12) give

ŷm(kTe) = I (δym
(kTe)− αu((k − 1)Te) + αu(kTe)) + ŷm(0) (14)

where

I(δym(kTe)) = I
(
ym(kTe)− ym((k − 1)Te)

Te

)
=
ym(Te)− y(0)

Te
×Te+

ym(2Te)− ym(Te)

Te
×Te+ . . .+

ym(kTe)− ym((k − 1)Te)

Te
×Te

= ym(kTe)− ym(0)

and

I(αu(kTe)− αu((k − 1)Te)) = αTe(u(kTe)− u(0))

Choosing the initial condition u(0) = 0 gives

ŷm(kTe) = ym(kTe) + αTeu(kTe)− ym(0) + ŷm(0) (15)

Since model-free control guarantees the stability of the controlled system, a steady-
state is still achieved and the control input u(k) in steady-state can be expressed as
follows

u(kTe) = cy(kTe) = cym(kTe) (16)

where c is defined in Eq. (3). Substituting Eq. (16) in Eq. (15), the estimated measured
output ŷm becomes

ŷm(kTe) = ym(kTe) (1 + Teαc(kTe))− ym(0) + ŷm(0) (17)

Since the initial condition is assumed to be approximately known, i.e. ŷm(0) ≃
ym(0), inserting Eq. (17) in Eq. (11) yields

β(kTe) =
ym(kTe)

ym(kTe) (1 + Teαc)
=

1

1 + Teαc
= β (18)

This proves that, for any change in desired trajectory, the parameter β(kTe) con-
verges to the same value β. So in the absence of sensor fault, the residual signal r(t)
in Eq. (10) is null in steady-state with β given by Eq. (18).

5 Model-free sensor fault estimation

Unlike the second step of sensor AFTC corresponding to the sensor fault detection
described in Section 4 works both for additive and multiplicative sensor faults, the

7
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third step corresponding to sensor fault estimation should be treated separately for
additive and multiplicative cases.

5.1 Additive sensor fault estimation

Consider that the measured output is affected by an additive sensor fault, that means
that ρ = 1 in Eq. (1d). Then the regulated output is expressed as follows

y = ym − fa, fa ̸= 0 (19)

where fa is an additive sensor fault. It is important to remember that β was determined
before the fault occurred as in Eq. (11), i.e. when the measured output ym was equal
to the regulated output y. So Eq. (16) becomes

u(kTe) = cy(kTe) = c(ym(kTe)− fa(kTe)) (20)

and Eq. (15) is expressed as

ŷm(kTe) = ym(kTe) + αTec(ym(kTe)− f̂a(kTe)) (21)

where the initial condition is chosen by ŷm(0) ≃ ym(0), and f̂a is the estimation of
the sensor fault fa.

To determine the estimation f̂a, we proceed as follows. Inserting β given by Eq.
(18) and ŷm given by Eq. (21) in Eq. (10) where f̂a is replaced by fa, we obtain

r(kTe) = ym(kTe)−
1

1 + Teαc

(
ym(kTe)(1 + αTec)− αTecf̂a(kTe)

)
=
αTecf̂a(kTe)

1 + αTec

= f̂a(kTe)

(
1− 1

1 + αTec

)
= f̂a(kTe)(1− β) (22)

Using Eq. (22), the best estimation of sensor fault fa is then given by

f̂a(kTe) =
r(kTe)

1− β
(23)

where β ̸= 1 due to Eq. (18).
The determination of the threshold of r(kTe) is made with respect to the chosen

minimal absolute value f̃a of the sensor fault fa to be detected and estimated. So
using Eq. (23), this threshold th is computed as

th(kTe) = f̃a |1− β| (24)

Remark 2. For additive sensor fault fa, the calculated th is constant for any reached
steady-states. In the sequel, the following notations are used th+ = th and th− = −th.

8
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5.2 Multiplicative sensor fault estimation

Consider now that ρ = 0 in Eq. (1d). Then the regulated output is expressed by

y =
ym
fm

(25)

and Eq. (16) becomes

u(kTe) =
cym(kTe)

fm(kTe)
(26)

When the initial condition is chosen by ŷm(0) ≃ ym(0), the estimated output ŷm
in Eq. (15) can be rewritten as

ŷm(kTe) = ym(kTe) + αTe
cym(kTe)

f̂m(kTe)
(27)

Inserting Eqs. (18) and (27) in Eq. (10), the residual r is expressed by

r(kTe) = ym(kTe)− β

(
ym(kTe) + αTe

cym(kTe)

f̂m(kTe)

)

= ym(kTe)

(
1− β − (1− β)

f̂m(kTe)

)
(28)

Using Eq. (28), the best estimation of sensor fault fm is then given by

f̂m(kTe) =
ym(kTe)(β − 1)

ym(kTe)(β − 1) + r(kTe)
(29)

The determination of the threshold of r(kTe) is made with respect to the chosen

maximal value 0 < f̃m < 1 of the sensor fault fm to be detected and estimated. So
using Eq. (29), this threshold th is computed as

th(kTe) =
|(β − 1)ym(kTe)| (1− f̃m)

f̃m
if kTe /∈ [tsi ; tfi ]

th(kTe) =
|(β − 1)ym(tsi)| (1− f̃m)

f̃m
if kTe ∈ [tsi ; tfi ]

(30)

where ym(tsi) is the output measurement at the beginning of each reached steady-state
(see Section 4.1).
Remark 3. For multiplicative sensor fault fm, the calculated th varies with respect
to ym(tsi). In the sequel, the following notations are used th+(kTe) = th(kTe) and
th−(kTe) = −th(kTe). If kTe ∈ [tsi ; tfi ], we should check that th(kTe) is superior to ψ
times the standard deviation of the noise affecting the residual r(kTe), where ψ > 1.

If it is not the case the value of f̃m should be reduced.

9
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Remark 4. Outside the context of this work, the choice of f̂a in Eq. (24) and f̂m
Eq. (30) or threshold is not trivial. Indeed, it plays an important role in the trade-off
between non-detection and false alarm or, more generally, fault sensitivity [53].

6 Sensor fault accommodation

The proposed AFTC strategy is based on the estimation of the sensor fault given by
Eq. (23) for additive sensor fault and by Eq. (29) for multiplicative sensor fault.

Once the residual signal r(t) in Eq. (10) exceeds a given threshold, the sensor fault
is detected and the control law given by Eq. (6) is adapted to tolerate the sensor fault.

The tracking error used in the control input in Eq. (6) is replaced by

e(t) = yd(t)− yacc(t) (31)

where yacc(t) is the accommodation signal given by

yacc(t) = ym(t)− f̂a(t) (32)

in the case of additive sensor fault (see Section 5.1) and by

yacc(t) =
ym(t)

f̂m(t)
(33)

in the case of multiplicative sensor fault (see Section 5.2).
The following diagram Figure 1 provides a complete summary of the proposed

FDIA procedure, described in Sections 4 to 6.

7 First example: unstable linear system

Consider an unstable linear system described by

ẋ(t) = Ax(t) +Bu(t) (34a)

y(t) = Cx(t) +Du(t) (34b)

ym(t) = ρ(y + fa(t)) + (1− ρ)fm(t)y(t) + w(t) (34c)

where

A =

−17.5 −91 50
1 0 0
0 1 0

, B =

10
0

, C =
[
0 0 100

]
, D = 0

and w(t) is a zero-mean white Gaussian noise with standard deviation σw = 0.01416.
The parameters of the iP controller are kp = 0.145 and α = 2 with the sampling

time Te = 0.001 s.
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Fig. 1 Timeline of the proposed model-free FDIA method

To determine the steady-state behaviour in which the AFTC works, the following
parameters have been chosen: dyd = 60Te, d

e = 300Te, κ
yd = 9×10−4 and κe = 3.5σw.

After the first change of the desired trajectory yd either in Figure 2 or in Figure
12, the signals ym and ŷm are used to determine the parameter β as in Eq. (11). The
obtained value of β is 1.111.

To attenuate the effects of the noise w, the signals r, f̂a and f̂m are filtered with

a filter having the following transfer function
4× 104

s2 + 400s+ 4× 104
and the obtained

filtered noise has a standard deviation σwf
= 0.0031418.

In Subsections 7.1.2, 7.1.3, 7.2.2 and 7.2.3, the control input u(t) is saturated as
follows: if u(t) ⩽ −2.2 than u(t) = −2.2, else u(t) is not saturated.
Remark 5. In the sequel of Section 7 and in Sections 8 and 9, the following convention
is made: in the figures associated with the residual r(t), either the fault fa or fm,
areas colored green do not correspond to steady-state behaviors in which AFTC is not
applied, while areas colored white correspond to steady-state behaviors in which the
AFTC procedure is performed.

7.1 Additive fault case

The additive sensor fault fa in Eq. (34c) with ρ = 1 is introduced as follows

fa(t) =

{
0, t < tf
µ(t), t ⩾ tf

11
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where µ(t) is the unitary step response of transfer function
−1.3

(s+ 1)2
at time instant

tf = 33 s.

We chose f̃a = 0.27, using Eq. (24) the obtained th = 0.02997. This value is
compatible with the filtered noise since th ≈ 9.54σwf

.

7.1.1 Sensor fault detection and estimation without
accommodation and without control input saturation

Figures 2, 3, 4 and 5 deal with the situation where there is no sensor fault
accommodation and no saturation on the control input.
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Fig. 2 Trajectory tracking: ym, βŷm, y and yd Fig. 3 Residual r(t)

Fig. 4 Fault fa and its estimate f̂a
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Fig. 5 Control input u(t)

7.1.2 Sensor fault detection and estimation without
accommodation and with control input saturation

Figures 6 and 7 deal with the situation where there is no sensor fault accommodation,
but where the control input is saturated.
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Fig. 6 Saturated control input u(t)
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Fig. 7 Trajectory tracking: ym, βŷm, y and yd
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7.1.3 Sensor fault detection and estimation with accommodation
and control input saturation

Figures 8, 9, 10 and 11 deal with the situation where there is sensor fault accommo-
dation and the control input is saturated.

Fig. 8 Residual r(t)
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Fig. 9 Saturated control input u(t)
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Fig. 10 Trajectory tracking: ym, βŷm, y and yd Fig. 11 Fault fa and its estimate f̂a

7.2 Multiplicative fault case

The multiplicative sensor fault fm in Eq. (34c) with ρ = 0 is introduced as follows

fm(t) =

{
0, t < tf
µ(t), t ⩾ tf

where µ(t) is the unitary step response of transfer function
0.7

(s+ 1)2
at time instant

tf = 33 s.

We chose f̃m = 0.92, using Eq. (30) the obtained th ⩾ ψσwf
where ψ > 4.

7.2.1 Sensor fault detection and estimation without
accommodation and without control input saturation

Figures 12, 13, 14 and 15 deal with the situation where there is no sensor fault
accommodation and no saturation on the control input.

7.2.2 Sensor fault detection and estimation without
accommodation and with control input saturation

Figures 16 and 17 deal with the situation where there is no sensor fault accommoda-
tion, but where the control input is saturated.
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Fig. 12 Trajectory tracking: ym, βŷm, y and yd Fig. 13 Residual r(t)

Fig. 14 Fault fm and its estimate f̂m
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Fig. 16 Saturated control input u(t)
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Fig. 17 Trajectory tracking: ym, βŷm, y and yd

7.2.3 Sensor fault detection and estimation with accommodation
and control input saturation

Figures 18, 19, 20 and 21 deal with the situation where there is sensor fault
accommodation and the control input is saturated.

Fig. 18 Residual r(t)
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Fig. 19 Saturated control input u(t)
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Fig. 20 Trajectory tracking: ym, βŷm, y and yd Fig. 21 Fault fm and its estimate f̂m
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8 Second example: unstable nonlinear system with
additive sensor fault

Consider an unstable nonlinear system described by

ẋ3(t) = 2x(t) + 5u(t) (35a)

y(t) = x(t) (35b)

ym(t) = y + fa(t) + w(t) (35c)

where ρ = 1 in Eq. (1d) and w(t) is a zero-mean with standard deviation σw = 0.01416.
The additive sensor fault fa in Eq. (35c) is introduced as follows

fa(t) =

{
0, t < tf
µ(t), t ⩾ tf

where µ(t) is the unitary step response of transfer function
−2

(s+ 1)2
at time instant

tf = 33 s.
The parameters of the iP controller are kp = 3 and α = 1 with the sampling time

Te = 0.001 s.
To determine the steady-state behaviour in which the AFTC works, the following

parameters have been chosen: dyd = 60Te, d
e = 300Te, κ

yd = 9×10−4 and κe = 3.5σw.
After the first change of the desired trajectory yd in Figure 22, the signals ym and

ŷm are used to determine the parameter β as in Eq. (11). The obtained value of β is
1.2308.

To attenuate the effects of the noise w, the signals r and f̂a are filtered with a filter

having the following transfer function
104

s2 + 200s+ 104
and the obtained filtered noise

has a standard deviation σwf
= 0.0022345.

In Subsections 8.2 and 8.3 the control input u(t) is saturated as follows: if u(t) ⩽
−9.5 than u(t) = −9.5, else u(t) is not saturated.

We chose f̃a = 0.3, using Eq. (24) the obtained th = 0, 06924. This value is
compatible with the filtered noise since th ≈ 30.98σwf

.

8.1 Sensor fault detection and estimation without
accommodation and without control input saturation

Figures 22, 23, 24 and 25 deal with the situation where there is no sensor fault
accommodation and no saturation on the control input.

8.2 Sensor fault detection and estimation without
accommodation and with control input saturation

Figures 26 and 27 deal with the situation where there is no sensor fault accommoda-
tion, but where the control input is saturated.
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Fig. 22 Trajectory tracking: ym, βŷm, y and yd Fig. 23 Residual r(t)

Fig. 24 Fault fa and its estimate f̂a
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Fig. 26 Saturated control input u(t)
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Fig. 27 Trajectory tracking: ym, βŷm, y and yd

8.3 Sensor fault detection and estimation with accommodation
and control input saturation

Figures 28, 29, 30 and 31 deal with the situation where there is sensor fault
accommodation and the control input is saturated.

Fig. 28 Residual r(t)
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Fig. 29 Saturated control input u(t)
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Fig. 30 Trajectory tracking: ym, βŷm, y and yd Fig. 31 Fault fa and its estimate f̂a
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9 Third example: unstable nonlinear system with
multiplicative sensor fault

Consider an unstable nonlinear system described by

ẋ(t) = 1.53x3(t) + 1.5u3(t) (36a)

y(t) = x(t) (36b)

ym(t) = fm(t)y(t) + w(t) (36c)

where ρ = 0 in Eq. (1d) and w(t) is a zero-mean white Gaussian noise with standard
deviation σw = 0.01416.

The additive sensor fault fm in Eq. (36c) is introduced as follows

fm(t) =

{
0, t < tf
µ(t), t ⩾ tf

where µ(t) is the unitary step response of transfer function
0.55

(s+ 1)2
at time instant

tf = 33 s.
The parameters of the iP controller are kp = 10 and α = 2.5 with the sampling

time Te = 0.001 s.
To determine the steady-state behaviour in which the AFTC works, the following

parameters have been chosen: dyd = 60Te, d
e = 300Te, κ

yd = 9×10−4 and κe = 3.5σw.
After the first change of the desired trajectory yd in Figure 22, the signals ym and

ŷm are used to determine the parameter β as in Eq. (11). The obtained value of β is
1.97.

To attenuate the effects of the noise w, the signals r and f̂m are filtered with a

filter having the following transfer function
104

s2 + 200s+ 104
and the obtained filtered

noise has a standard deviation σwf
= 0.0022345.

In Subsections 9.2 and 9.3 the control input u(t) is saturated as follows: if u(t) ⩽ −5
than u(t) = −5, else u(t) is not saturated.

We chose f̃m = 0.92, using Eq. (30) the obtained th ⩾ ψσwf
where ψ > 4.

9.1 Sensor fault detection and estimation without sensor fault
accommodation and without control input saturation

Figures 32, 33, 34 and 35 deal with the situation where there is no sensor fault
accommodation and no saturation on the control input.

9.2 Sensor fault detection and estimation without
accommodation and with control input saturation

Figures 36, 37 and 38 deals with the situation where there is no sensor fault
accommodation, but where the control input is saturated.
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Fig. 32 Trajectory tracking: ym, βŷm, y and yd Fig. 33 Residual r(t)

Fig. 34 Fault fm and its estimate f̂m
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Fig. 35 Control input u(t)
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Fig. 36 Saturated control input u(t)
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Fig. 38 Trajectory tracking: ym, βŷm, y and yd

9.3 Sensor fault detection and estimation with accommodation
and control input saturation

Figures 39, 40, 41 and 42 deal with the situation where there is sensor fault
accommodation and the control input is saturated.

10 Discussion

For systems considered in Sections 7, 8 and 9, which are unstable, the simula-
tion scenario is divided into three parts where the sensor fault is either additive or
multiplicative:

� in the 1st part, the effects of the sensor fault on the closed loop tracking objectives
are illustrated when the fault accommodation procedure is not used and where the
control input is not saturated (see Subsection 10.1);
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Fig. 39 Residual r(t)
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Fig. 40 Saturated control input u(t)
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Fig. 41 Trajectory tracking: ym, βŷm, y and yd Fig. 42 Fault fm and its estimate f̂m

� in the 2nd part, the effects of the sensor fault with control input saturation on the
closed loop behaviour are shown when the fault accommodation technique is not
applied (see Subsection 10.2);

� in the 3rd part, the proposed fault accommodation procedure is applied where the
control input is saturated (see Subsection 10.3).

In the three parts of the scenario, the 1st and 2nd steps of the AFTC procedure,
i.e. the sensor faut detection and estimation (see Sections 4 and 5), respectively, are
applied, while the 3rd step of the AFTC procedure given by the accommodation of
the control law (see Sections 6) is used in association with the 1st and 2nd steps of the
AFTC approach.

In the figures associated with the residual r(t), either the fault fa or fm, areas
colored green do not correspond to steady-state behaviors in which AFTC is not
applied, while areas colored white correspond to steady-state behaviors in which the
AFTC procedure is performed. These areas are obtained using parameters dyd , de,
κyd and κe determined from the closed loop response generated by the model-free
controller.

10.1 1st part: sensor fault detection and estimation without
accommodation and without control input saturation

This part of this discussion concerns Subsubsections 7.1.1 and 7.2.1 for linear cases
and Subsections 8.1 and 9.1 for nonlinear cases.

� Figures 2, 12, 22 and 32: Before the sensor fault occurrence (t < tf ) the iP con-
troller works well: the regulated output y tracks the desired trajectory yd with very
slight overshoot. Once the sensor fault occurred at time instant tf , the iP controller
only ensures correct control of the measured output ym which tracks the desired
trajectory yd, but the regulated output y is not maintained at the desired trajectory
yd, i.e. the control objective is not satisfied in this situation and the accommodation
step of the AFTC is mandatory.
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� Figures 3, 13, 23 and 33: Before sensor fault occurrence (t < tf ) the residual r
returns to 0 after the transient due to the change of the desired trajectory yd. The
residual r exceeds the threshold at t = tf + δtf which means that the sensor fault
is detected at this instant: βŷm ̸= ym at t = tf + δtf in Figures 2, 12, 22 and 32,
where δtf ⩽ 1 s.

� Figures 4, 14, 24 and 34: The proposed method of sensor fault estimation works
well: the sensor fault estimation converges to the actual sensor fault value.

� Figures 5, 15, 25 and 35: The effects of the sensor fault on the control input u at
instant tf can be viewed.

10.2 2nd part: sensor fault detection and estimation without
accommodation and with control input saturation

This part of this discussion concerns Subsubsections 7.1.2 and 7.2.2 for linear cases
and Subsections 8.2 and 9.2 for nonlinear cases.

� Figures 6, 16, 26, 36 and 37: Note that the control input u crosses saturation thresh-
old after the occurrence of the sensor fault (see Figures 5, 15, 25 and 35), so the
control input u becomes saturated. To see the saturation on the control input in
Figure 36, a zoom is performed in Figure 37 since the measured output ym and
the regulated output y go so fast towards infinity in Figure 38 that the simulation
stopped at t = 34.55 s.

� Figures 7, 17, 27 and 38: Since the systems to be controlled are unstable, the regu-
lated output y diverges after the saturation of the control input u. So, it is mandatory
to stabilize the closed loop and to ensure the tracking objective.

10.3 3rd part: sensor fault detection and estimation with
accommodation and with control input saturation

This part of this discussion concerns Subsubsections 7.1.3 and 7.2.3 for linear cases
and Subsections 8.3 and 9.3 for nonlinear cases.

� Figures 8, 18, 28 and 39: For the residual signal r(t), the same comments as in
Figures 3, 13, 23 and 33 can be made (see Subsection 10.1).

� Figures 9, 19, 29 and 40: The accommodation step of the AFTC acts as soon as the
sensor fault is detected, but this generates saturation of the control input u(t) (i.e.
u(t) falls below the saturation threshold). However, the proposed AFTC strategy is
able to overcome this saturation at time instant t > tf + 1 s and the control input
u(t) is approximately the same before saturation after a short transient behaviour.

� Figures 10, 20, 30 and 41: The whole AFTC procedure (i.e with the accommoda-
tion step) works well since the closed loop is stabilized and the regulated output y
converges to the desired trajectory yd with a short stabilization time as soon as the
control input u returns to the unsaturated zone.

� Figures 11, 21, 31 and 42: The convergence of the estimate of the sensor fault to
the actual value confirms the efficiency of the proposed model-free sensor fault
estimation procedure.
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10.4 On the model-free framework for AFTC

In papers [11] to [27] cited in the introduction section, the AFTC strategies are based
on the knowledge of the process model (use of an observer bank, an unknown input
observer bank, a parity space, an analytical redundancy, . . . ), by considering two
cases either with or without unstructured uncertainties. The efficiency of these AFTC
procedures are therefore linked to the accuracy of the model parameters and the
determination of uncertainty limits. In our model-free sensor AFTC approach, only
the knowledge of the static characteristic is needed and this one can be easily obtained
by the available closed-loop signals (i.e. u and ym before the occurrence of the fault).
This makes the proposed approach well suitable for industrial applications, where
the process model is often unknown or almost unknown, and where the bounds of
uncertainty are difficult to assess.

11 Conclusion

In this paper, Problem 1 stated in Section 2 has been solved where all the steps of the
sensor fault AFTC procedure are designed in a model-free framework. This approach
allows avoiding the use of the analytical system model, knowing that the latter is
unknown or subjected to uncertainties in almost practical industrial situations. Only
the static characteristic obtained from the control input and measurement signals is
used. The proposed AFTC method works for both additive and multiplicative sensor
fault and ensures that the regulated output, but not the measured one, tracks the
desired trajectory despite the occurrence of a sensor fault.

The results of the numerical simulations illustrate the ability of the proposed model-
free AFTC technique to accommodate the additive or multiplicative sensor fault for
both unstable linear and nonlinear systems with control input saturation.

In future work, the proposed AFTC method will be extended to simultaneous
actuator and sensor faults for multi-input multi-output systems.
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[25] Seron, M. & De Doná, J. Robust fault estimation and compensation for LPV
systems under actuator and sensor faults. Automatica 52, 294–301 (2015).

[26] Wu, H. & Zhang, H. Reliable mixed L2/H∞ fuzzy static output feedback control
for nonlinear systems with sensor faults. Automatica 41, 1925–1932 (2005).
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