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Abstract. Machine learning (ML) models are victims of the oracle prob-
lem, i.e. it is not possible to know with absolute confidence an output
for a given input. This prevents them from being evaluated using con-
ventional software engineering techniques. However, there is an approach
called “metamorphic relation” that reduces the oracle problem and helps
to evaluate ML models. Unlike conventional tests, a metamorphic rela-
tion does not check if an input produces a specific output, but checks if
a relationship between inputs and outputs is respected. Naturally, meta-
morphic relations have already been proposed in the literature, either to
evaluate the behavior of a specific ML model, or to evaluate the general
behavior of any ML model. The purpose of this paper is to propose new
metamorphic relations to complement those of the literature, in order to
propose a more complete methodology for evaluating ML models. So, in
order to challenge this methodology, all these metamorphic relations are
used to evaluate 21 different machine learning algorithms.

Keywords: Metamorphic relations · Outliers · Machine learning · Con-
vexes · Software engineering.

1 Introduction

This paper is in the field of software engineering, with a particular focus on
quality assurance, i.e. the set of actions required to provide satisfactory confi-
dence in the quality of a software product in accordance with pre-established
requirements and expectations. [1]. It can be divided into four cyclical phases
known as the Deming or the PDCA cycle:

– Plan: plan and establish process-related objectives necessary for software
quality.

– Do: develop and test processes.
– Check: monitor and check that processes meet planned objectives.
– Act: implement actions to improve processes.

This implies the implementation of tests and the necessity to be able knowing the
output for every input provide, which is not easy for machine learning algorithms.
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Martin D. Davis and Elaine J. Weyuker [2], define the mechanism that verifies
the correctness of the results obtained according to those expected as an oracle.
And the belief that a tester is systematically able to determine if a test output
is correct, like the oracle’s hypothesis. But, this assumption is wrong and there
are circumstances where this is not possible:

(1) there is no oracle ;
(2) it’s theoretically possible to determine an oracle, but in practice it’s too

difficult to implement with current tools and knowledge.

Machine learning algorithms correspond to the scenario (2). However, the use
of ”metamorphic relations” helps to reduce the oracle problem [3]. Unlike con-
ventional tests, metamorphic relations do not check the correctness of outputs
produced by a program according to given inputs. They verify that necessary
relations among inputs and outputs of multiple executions of the target function.

Machine learning models are capable of interpolating unknown data based
on training with an already known dataset. For this purpose, an algorithm called
the training algorithm handles the training phase, which ultimately produces
a model. Thus, there are two distinct aspects worth evaluating, each of which
highlights different types of error:

(1) if a training algorithm is defective, then this translates into the presence
of bugs in its algorithm and all future trainings will likely be poor quality;

(2) if a model is defective, then this translates into its inability to behave cor-
rectly according to previously defined expectations.

The literature already proposes metamorphic relations for evaluating in spe-
cific contexts AI/ML models, and metamorphic relations for evaluating the
overall effectiveness of training algorithms. Xie et al. propose various meta-
morphic relations that can be used to evaluate the behavior of different super-
vised classifiers [4]. And Saha and Kanewala are using and implementing some
of these relations to conduct a larger-scale study of their effectiveness in mutant
detection of kNN classifier [5]. The metamorphic relations highlighted in these
works are designed to evaluate the behavior of training algorithms. While,
Zhou and Sun propose metamorphic relations designed to evaluate predictive
capacity of an obstacle perception subsystem of an autonomous car [6]. In other
words, it evaluates the model in a specific context.

This paper introduces 8 new metamorphic relations in order to evaluate the
prediction capacities of any machine learning model (see section 4). Part of
these relations will be based on the use of convexes of which certain concepts
are presented in section 3. However, these relations will be useful only for the
evaluation of the model part. In order to have a complete evaluation schedule
and evaluate the correctness of a training algorithm, 5 other metamorphic
relations from the state-of-art will be chosen (see section 2). Thus, these 13
relations will be used to evaluate a large amount of model produces by 21
training algorithms from the scikit-learn1 libraries (see section 5).

1 https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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2 Context & State-of-the-art

2.1 Dataset concepts

A dataset can be visualized like a table with rows and columns. Each row repre-
sents an individual, often unique, while the columns represent the characteristics
of that individual. Several terms exist to designate them, but here, the rows will
be called points and the columns will be called attributes. In general, there
are two types of attributes [7, Chap 11]:

– The behavioral attributes, AB , are attributes of interest. They are de-
fined for all points, many of which have only one. Since they characterise a
certain quality of the point, these attributes have categorical or discrete
numerical values. For example: the type of glass, the presence of a cardiac
irregularity, or the description of an image. The values of a behavioral at-
tribute often refer to as a class, but here we’ll call them behavioral values,
VB , to avoid confusion.

– The contextual attributes, AC , is an attribute expressing the character-
istics of a point, defined over a discrete or continuous domain of values, also
known as spatial attributes. One point often has several. For example: the
composition of a pane of glass, the number of heartbeats per minute or the
RGB code of a pixel.

Several behavioral attributes may be present, but they can be reduced to a
single attribute by merging all the behavioral values.

There are several kinds of datasets, depending on the type of data and the
number of attributes they contain. But in this paper used, only datasets multi-
variate (i.e. more than 2 contextual attributes) with mixed values, numeric
and categorical. Thus, it is possible to define a domain specific to a dataset.

Definition 1 (Dataset domain). The smallest real value interval that con-
tains all the contextual values of all the contextual attributes of the dataset.

All datasets used in this paper will be created synthetically by an algorithm
from literature [8]. This algorithm builds datasets using several clusters and a
hypercube (or a random polytope) of nAC

dimensions, where nAC
is the number

of contextual attributes. Each cluster is composed of points of the same
behavioral value, and its centroid of the hypercube’s vertices. So, depending on
the number of clusters per behavioral value and the size of the hypercube, quite
different datasets can be obtained. A Python version has been implemented and
integrated into the library scikit-learn: make classification2.

2 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.

make_classification.html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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2.2 State-of-the-art metamorphic relations

As mentioned in the introduction, we have selected 5 relation metamorphic from
the state-of-art in order to complete evaluation schedule. Their goal is to evalu-
ate the correctness of training algorithms before the evaluation of the model
part. They evaluate the ability of a training algorithm to tolerate minor mod-
ifications in the training set and produce models equivalent to those produced
without these modifications. Note that these relations do not evaluate a model’s
ability to make good predictions, which means that training algorithms that
validate these relations may produce models with poor-quality predictions.

MR 1 (Identity). If no changes have been applied to the training set and the
meta-parameters of the training algorithm are the same, then the predictions
on the test set should remain unchanged [5].

MR 2 (Points shuffle). If points are swapped and the meta-parameters of the
training algorithm are the same, then the predictions on the test set should
remain unchanged [9].

MR 3 (Attributes shuffle). If contextual attributes are swapped and the meta-
parameters of the training algorithm are the same, then the predictions on the
test set should remain unchanged [4,5].

MR 4 (Transformation). If an affine transformation function f(x) = kx +
b, (k ̸= 0) is applied to every value x in a subset of contextual attribute of the
training set and the meta-parameters of the training algorithm are the same,
then the predictions on the test set should remain unchanged [4,5].

MR 5 (Behavioral value permutation). If the behavioral values of all points are
interchanged and the meta-parameters of the training algorithm are the same,
then the predictions on the test set must apply this permutation [4,5].

Note that some training algorithms have random aspects that can be
controlled using a random seed. In order to avoid influencing the evaluation
process, it is crucial that this seed, like the other meta-parameters, stay constant
throughout.

3 Convexes concept presentation

Some proposed metamorphic relation uses the convexes as a way to separate the
influence area of each behavioral value. Thus, it is necessary to introduce the
notion of convex, and point creation in a convex algorithms.

3.1 What is a convex? How do you create them?

Definition 2 (Convex). A part H of Rn said to be convex if, for all pairs
(x, y) of elements of H, the segment [x, y] is entirely contained within H. In
other words, H is convex when ∀x, y ∈ H and ∀λ ∈ [0; 1], λx+(1−λ)y ∈ H [10].
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This definition is adapted to be applied to any datasets in order to separate
points by behavioral value such that all points with the same value are contained
in a single convex.

Definition 3 (Convex per behavioral value). Thus, for a dataset D com-
posed of nC contextual attributes and 1 behavioral attribute containing n behav-
ioral values such as {b0, . . . , bn}. Then D is separated into convexes containing
all the points of a behavioral value such that Hbo ∪ . . . ∪Hbn = D.

Several algorithms to build convexes exists in the state-of-art. For the rest,
we will use the Python implementation3 of the algorithm QuickHull in order to
build convexes in any dimensions [11]. Thus, according to the definition 3, the
separation of a dataset in different convexes for each of its behavioral values
gives something like the figure 1.

−2 0 2 4 6

−2

0

2

Fig. 1: A dataset divides in 4 convexes, 1 per behavioral value

3.2 How to create a point in only one convex?

Some convex-based metamorphic relations need to create points inside exactly
one convex or inside several convexes simultaneously. These points could be
randomly created until they are in the desired convex(es), but this approach is
too time-consuming, especially when convex dimensions are large. That’s why
we’re proposing two algorithms for creating a point directly in a convex based
on its properties.

▼ Algorithm 3.1 : Create a point p in a single convex H

Step 1 → Randomly select 2 facets of H: f0 and f1;
Step 2 → Randomly place a point p0 on f0 and a point p1 on f1;

3 http://www.qhull.org/

http://www.qhull.org/
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Step 3 → Randomly place a point p on the segment [p0; p1];
Step 4 → Repeats the steps 1 to 3 until p isn’t inside an another convex.

The algorithm 3.1 works because the definition 2 guarantees that all segments
drawn from two points on the facets of a convex are fully included in the same
convex. Thus, all points on this segment are also in the convex.

3.3 How to create a point in several convexes?

There’s already a method in the literature for creating points in an intersection
of several convexes, but it only works for 3D polyhedral convexes. So, on the
basis of the Sutherland-Hodgman algorithm [12] and algorithm 3.1, we have
implemented an algorithm that allows this creation for any convex shape.

▼ Algorithm 3.2 : Create a point p in the convexes Hi and Hj,
where Hi ̸= Hj

Step 1 → Let Vi,j = ∅ be the set of points;
Step 2 → Check for all vertices sj of Hj if they are in Hi, if yes then:
(2.1) → add it to Vi,j ;
(2.2) → if one of these adjacent neighbors s′j is not in Hj , then add the

intersection between the segment [sj , s
′
j ] and a facet of Hj to Vi,j .

Step 3 → If Vi,j is not empty, then the intersection between Hi and Hj is
the convex Hi,j whose vertices are Vi,j .

Step 4 → Use the algorithm 3.1 on Hi,j to create p.

Algorithm 3.2 can be used to create points in an intersection of more than
2 convexes. In this case, the convex Hi must be replaced by a set of several
convexes. Plus, it should be noted that several convexes can superpose with-
out any of their respective vertices being included in an another convex. Thus,
algorithm 3.2 won’t create any points.

4 Metamorphic relations for model validation

This section introduces new metamorphic relations that aim to evaluate the
capacity of any ML model to make consistent predictions regarding the training
corpus used.

4.1 Convex-based metamorphic relations

The datasets are consistent in the distribution of their behavioral values, and
this consistency is induced by the models based on contextual attributes. After
training, these models create “zones of influence” specific to each behavioral
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value, which make it possible to predict which behavioral value the points to
be predicted belong to. Thus, being able to know this zone of influence before
training would make it possible to generate test cases and evaluate the relevance
of these predictions.

However, it is impossible to know it exactly without training the models first.
But it is possible to obtain an approximate and simplified version that will be
different from the one used by the model, but they are likely to share common
properties. This is even more true for the most trivial parts of this distribution
consistency, e.g., an area in which only points with the same behavioral value are
present. The reason is that they will come from the same dataset and there is no
reason for the models to interpret these parts differently. This is why convexes
are used here to construct these approximate areas of influence.

Convex-based metamorphic relations can be separated into two categories
according to point placement: (1) when they are inside one or several convexes;
(2) when they are outside all convex. This separation serves as the basis for the
creation of our various metamorphic relations.

By category (1), we can infer 2 relations according to the location of the point
to be evaluated. The RM 6 relation when the point is inside a single convex, and
the RM 7 relation when it is inside several convexes (i.e. at least 2). However, in
both cases, the models must predict the point as having one of the behavioral
values represented by the convexes they contain it.

MR 6 (Membership). Verifies that all points in exactly one convex Hc, where
c is the represented behavioral value, must be predominantly predicted by the
models as c.

MR 7 (Superposition). Verifies that all points present in m convex {Hc0 , . . . ,Hcm},
where c0, . . . , cm are the m behavioral values represented, must be predominantly
predicted by the models as one of the m behavioral values.

In the same way as category (1), category (2) deduces 4 metamorphic re-
lations according to the location of the point to be evaluated relative to the
domain of the training corpus. The MR 8 relation when the point is inside the
domain, the MR 9 when the point is outside the domain and the MR 10 and
MR 11 relations when the point is on the domain boundaries.

MR 8 (Attachment). Verifies that all points present in zero convexes must be
predominantly predicted by the models as having a behavioral value equal to the
closest convex(es).

MR 9 (Robustness). Verifies that all points outside the domain of the training
corpus must not cause error when a model tries to predict its behavioral value.

MR 10 (Boundary Robustness). Verifies that all points at the boundaries of the
training corpus domain must not cause error when a model tries to predict its
behavioral value.

MR 11 (Boundary Attachment). Verifies that all points at the boundaries of
the training corpus domain must be predominantly predicted by the models as
having a behavioral value equal to the closest convex(es).
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4.2 How to attach a point to a specific convex?

Relations MR 8 and MR 11 expect the models to predict the point evaluated
as having the behavioral value of the nearest convex. However, this notion of
proximity is unclear and needs to be defined in concrete terms. For that, it is
necessary to determine the reference element of the convex on which the calcu-
lations will be based, e.g. vertices or edges. Plus, convexes contain irregularly
distributed points, so the reference element can be more or less isolated from
the points. Thus, we decided to take this isolation into consideration during the
proximity calculation.

Definition 4 (Isolation score of a vertex). Let d be a function of distance
between two points, PH the set of points on the convex H and u a vertex of the
convex such that u ∈ PH . Then the isolation score ω ∈ [0; 1] of u is:

ωH(u) =
1

card(PH)− 1
∗

p∈PH∑
p ̸=u

d(p, u)

max({d(q, u) | ∀q ∈ PH}) (1)

Definition 5 (Isolation of an edge). Let d be a distance function between a
point and a segment, [u, v] an edge of the convex H and PH the set of points of
this same convex. Then the isolation score ω ∈ [0; 1] of [u, v], where u and v
are the two points of the edge, is:

ωH([u, v]) =
1

card(PH)− 2
∗

p∈PH∑
p ̸=u,p̸=v

d(p, [u, v])

max({d(q, [u, v]) | ∀q ∈ PH}) (2)

Definition 6 (Attachment score). This score, τ , is equal to the minimum
product of an isolation score ω and the distance between the reference element
of a convex H and a point po outside H. So, when the reference element is a
vertex, then:

τH(po) = min({ωH(u) ∗ d(po, u) |u ∈ SH}) (3)

where SH is the set of vertices of H.
And, when the reference element is an edge, then:

τH(po) = min({ωH([u, v]) ∗ d(po, [u, v]) | [u, v] ∈ AH}) (4)

where AH is the set of edges of H.

Thus, according to these definitions, the closer the points in the convex H
are to the reference element chosen (a vertex or an edge), the more ω tends
to 0. Inversely, it tends to 1 the further away they are. However, several con-
vexes may have relatively close attachment scores to po, to the degree that there
may be some doubt as to which one should be attached. This means that po is
close to several different behavioral value influence zones, we then say that po is
ambiguous.

If a point is ambiguous here, then there’s a high chance that it will also be
ambiguous for the models when they try to predict it. In this case, the mod-
els will have good reason to be wrong, without this necessarily reflecting poor
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training quality. Thus, ambiguous points will be attached to several convexes
simultaneously and the models will be able to predict one of the behavioral val-
ues represented by these convexes without causing a failure of the metamorphic
relations.

Definition 7 (Set of convexes attached). Let EH be the set of convexes and
ϵ ∈ [0; 1] be the percentage of interval of attachment desired. Then the relation
REH

(po) which associates with po the set of convexes in EH for which their
connection scores are included in the nearest convex’s connection interval, as
follows:

REH (po) = {H ∈ EH | (1− ϵ)τH(po) ≤ (1 + ϵ)τmin(po)} (5)

where τmin(po) = min({τH(po) | ∀H ∈ EH}).

Equation 5 adds to the set of convexes attached to po all those with at-
tachment scores equal, ±ϵ, to the smallest attachment score obtained. In
this paper, the ϵ will be fixed at 0.01 and the reference elements used will be
the vertices. Because, the results obtained using the vertex-based approach were
significantly better than those obtained using edges.

4.3 Non-convex metamorphic relations

Models have other behaviors that can be evaluated, but which are not trans-
latable into convex-based metamorphic relations. Indeed, the latter makes it
possible to evaluate the predictive capacity of a model, but they do not make
it possible to evaluate: (1) the accuracy of their predictions; (2) and their aber-
ration management.

The aspect (1) focuses on the ability of models to be accurate in their
predictions and their ability to correctly manage the switch from one behavioral
value to another when the precision levels of the contextual values are very low.
This means measuring the accuracy of predictions made at points that lie on the
boundary between several different behavioral value influence zones to within a
few hundredths. Indeed, it’s difficult to have confidence in a model that lacks
precision.

MR 12 (Precision). Let’s consider a dataset of nc contextual attributes, whose
values are defined in the D domain, and 1 behavioral attributes with minimum 2
behavioral value. Placed symmetrically to the axes, a maximum of 2nc influence
zones each representing a single behavioral value. Verifies that all predictions
made in D result in the behavioral value of the nearest behavioral value influence
zones.

Figure 2 illustrates this metamorphic relation. Let’s consider a dataset with 2
contextual attributes in the domains [−7, 7] in x and [−4, 4] in y and 1 behavioral
attributes with 4 behavioral values. Figure 2a is obtained after symmetrically
placing 4 clusters, 1 per value. Thus, all predictions made on this domain must
take the form of Figure 2b.
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x

y

(a) A well-formed dataset

x

y

(b) Expected predictions

Fig. 2: Example of MR 12

The aspect (2) concerns the ability of models to correctly interpret outliers
during the prediction process. Indeed, it is difficult to have confidence in mod-
els that are unable to handle mistakes correctly. The aim is to voluntarily ask
a model to predict outliers in order to determine whether it is able to inter-
pret them correctly by always giving predictions different from their associated
behavioral values.

MR 13 (Outlier). Verifies that outliers are predicted differently than their as-
sociated behavioral values by the models [9].

An outlier can be detected when it was already present in the dataset [13–17],
or it can be created. In this paper, those used have no pre-existing outliers, so
they will be created by an algorithm.

5 Models and training algorithms evaluation

The metamorphic relations presented will be used in order to evaluate several
machine learning training algorithms from the scikit-learn library in Python
and models produced.

5.1 Training algorithms evaluated & datasets used

In order to evaluate different algorithms and observe how the metamorphic rela-
tions defined, five different kinds of training algorithms that can be encoun-
tered have been identified according their paradigm that defines them:

(1) decision trees [18–25];
(2) support vector machines [15,26];
(3) overall distribution of behavioural values;
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(4) neural networks [27,28];

(5) neighborhoods [29–31].

However, this separation is not strict, and a training algorithm can belong
to several paradigms. Thus, the algorithms evaluated and their paradigms are
those shown in Table 1.

Paradigm
(1) (2) (3) (4) (5)

Bernoulli NB

Categorical NB

Complement NB

Decision Tree Classifier

Extra Tree Classifier

Dummy Classifier

Gaussian Process Classifier

Gradient Boosting Classifier

K Neighbors Classifier

Linear Discriminant Analysis

MLP Classifier

Multinomial NB

Nearest Centroid

Passive Aggressive Classifier

Perceptron

Quadratic Distriminant Analysis

Radius Neighbors Classifier

Random Forest Classifier

Ridge Classifier

SGD Classifier

SVC

Table 1: Training algorithms evaluated and their paradigms

Training algorithms use training sets to build a trained model. Thus,
datasets from table 2 have different shapes (according to 6 key characteristics)
to evaluate differentmodels without being biased by a particular dataset choice.
Thus, MR 1 to 5, MR 9, 10 and MR 13 will evaluate models trained with all
these datasets. While other relations will evaluate models trained with the first
dataset of table 2. However, MR 7 and 12 will be evaluated with other datasets
that follow a very specific forms: 5 with different kind of convexes intersection
for MR 7 and the one from figure 2a for MR 12.

In addition, several combinations of meta-parameters will be used for each
training algorithm, always with the goal to build different models without being
biased by a particular choice of meta-parameter. These meta-parameters are
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Points AC VB Noise Distribution
np∗nAC

nVB

250 10 2 no homogeneous ≥ 2
250 1 000 2 yes - 10% homogeneous < 2
25 000 10 2 yes - 60% heterogeneous ≥ 2
25 000 1 000 2 no heterogeneous ≥ 2
125 000 100 2 yes - 60% homogeneous ≥ 2
125 000 100 2 no homogeneous ≥ 2
250 100 5 yes - 60% heterogeneous < 2
25 000 100 5 yes - 10% homogeneous ≥ 2
125 000 10 5 yes - 10% heterogeneous ≥ 2

Table 2: Training sets where np, nAC
and nVB

are the numbers of points, con-
textual attributes and behavioral values

presented in a GitHub directory of one of the authors4 with the complete results
obtained.

5.2 Results obtained

To summarize, for each training algorithm, several models are trained from
different datasets and different meta-parameter combinations. However, among
these models, we observed that some of them gave identical predictions regard-
less of the point. This was due to an incorrect choice of meta-parameter for a
specific dataset. These models were considered to be ”poorly trained” and were
removed from the study. Thus, each model remains is evaluated with the 13
metamorphic relations presented.

Metamorphic relations are evaluated with various points in order to reinforce
the results obtained: MR 1 to 5, MR 9 and 10 will use 10, 000 random points;
MR 6, 7, 8 and 11 will use 1 000 random points according the restrictions of
each relations; MR 13 will use 50 outliers; and MR 12 all points every 0.01 in
the intervals x ∈]− 7,−0.07[∪]0.07, 7[ and y ∈]− 4,−0.04[∪]0.04, 4[5.

In addition, each relation has a success rate that must be reached in order to
validate it. Indeed, even the high-quality models cannot have perfect predictive
capacity. It therefore seems appropriate to allow models a degree of error when
they are evaluated. Thus, MR 1 to 5, MR 9 and 10 need 100% success; MR 13
need 96% success; MR 12 and 7 need 95% success; MR 6 need 90% success; MR 8
and 11 need 75% success. All these success rates have been decided according to
the importance of and confidence placed in these relations.

In the end, Table 3 shows the results obtained after evaluating a total of
70, 276 models, all training algorithms included. Each of its cells contains
the average percent of models per dataset, produced by a specific training al-
gorithm, that validate one of the metamorphic relations according to the success

4 https://github.com/JessyColonval
5 Note that the intervals are slightly different from those given in section 4.3. Points
close to the axes are ignored to tolerate model errors when the distance between two
clusters is too close.

https://github.com/JessyColonval
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rate, defined earlier. A standard deviation score is shown when all datasets have
been used.

Overall, these results are promising. Even if none of the algorithms evaluated
fully validates all the metamorphic relations, most of them succeed to produce for
each relation at least one model able to validate it. Thus, with the appropriate
choice of meta-parameters for a specific training set, it seems possible to obtain
a model that validates all these relations. However, few relations that evaluate
training algorithms in particular seem to show the presence of bugs in some
of them when particular meta-parameters are used:

– 2 of 21 training algorithms produce models that fail MR 1. This means
that even with the same conditions, these algorithms can provide two differ-

Training algorithm Model

1 2 3 4 5 6 8 11 9 10 7 12 13

98.89% 1.34% 54.54% 45.86%

±2.90 ±0.59 ±4.39 ±10.57

99.01% 1.42% 54.13% 49.80

±1.02 ±0.96 ±5.52 ±10.01

44.33% 0.26% 90.05% 25.33% 72.42

±13.45 ±0.36 ±14.07 ±7.69 ±6.36

51.18% 41.41% 0.10% 51.18% 26.24% 75.02

±6.19 ±20.00 ±0.14 ±6.19 ±10.03 ±11.81

61.11%

±9.62

66.67% 94.44%

±0.00 ±9.62

61.1%

±9.62

66.67%

±0.00

96.77% 96.77% 66.11% 90.32%

±5.77 ±5.77 ±0.96 ±9.53

1.08% 71.51% 40.19% 90.50%

±1.47 ±22.35 ±28.09 ±11.05

80.30% 80.30% 93.94% 35.10%

±34.12 ±34.12 ±10.50 ±33.47

72.77% 55.51% 98.76 48.03% 90.01

±0.70 ±1.15 ±0.01 ±0.55 ±16.57%

1.15% 47.87% 37.57% 65.26%

±1.63 ±8.70 ±22.18 ±6.14

6.85% 98.24% 6.86% 78.76%

±11.41 ±3.05 ±9.68 ±16.95

14.29% 31.32%

24.74 ±9.91

23.33% 0.75% 64.59% 0.22% 84.58%

±10.36 ±0.96 ±15.80 ±0.38 ±6.72

60.53% 22.34% 90.17%

±5.21 ±0.78 ±8.84

97.27% 61.82% 95.91%

±0.00 ±0.00 ±0.00

60.71% 90.27%

±2.91 ±4.64

53.85% 89.74%

±0.00 ±0.00

(1)

Decision Tree Classifier 21.00% 0.30% 1.35% 98.10% 44.80%

Extra Tree Classifier 20.44% 0.20% 1.24% 98.38% 45.05%

Gradient Boosting Classifier 20.44% 0.20% 1.24% 84.64% 43.08%

Random Forest Classifier 34.15% 8.54% 10.98% 71.88% 90.40%

(1) (4)

Bernoulli NB 84.44% 50.00%

Categorical NB

Complement NB 50.00% 50.00% 50.00%

Multinomial NB 20.00%

(2)

Gaussian Process Classifier 95.00%

Linear Discriminant Analysis 28.57% 28.57%

Passive Aggressive Classifier 88.31% 47.40% 19.27% 55.18% 63.40%

Quadratic Discriminant Analysis 66.67%

Ridge Classifier 36.70% 23.60% 33.02%

SGD Classifier 59.50% 36.70% 23.60% 54.09% 18.69%

SVC 78.00% 3.60% 94.57% 82.53%

(3) Dummy Classifier 66.67%

(4)

MLP Classifier 63.44% 38.39% 34.26% 79.40% 52.15%

Perceptron 43.07% 53.81% 39.87% 35.04% 1.10%

(5)

K Neighbors Classifier 97.30% 77.50% 80.20%

Nearest Centroid 59.38% 28.12% 46.88% 60.00% 62.50%

Radius Neighbors Classifier 81.82% 81.82% 81.82% 77.30% 32.19%

Legend: 100% [75%; 100%[ [50%; 75%[ [25%; 50%[ ]0%; 25%[ 0% no result

Table 3: Results of the evaluation of training algorithms and their models
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ent models. An explanation could be the presence of a random aspect that
is not properly managed with a seed.

– These algorithms produce models that regularly fail the MR 2 and 3. Some
of these errors can be explained by the existence of an order or selection
of rows and/or columns. However, according to the documentation and the
meta-parameters used, some models fail even when they use all the rows
and/or columns without changing their order. One explanation might be
that there is a specific selection process, contrary to what is planned.

A possible follow-up to this work could be to propose a correction of these few
algorithms so that they can validate these relations.

6 Conclusion

This paper presented 8 new metamorphic relations, 6 of them based on the use
of convexes which approximate the zones of influence of each behavioral value, in
order to approach as closely as possible the zones built by the models after their
training. This particular construction allows a model’s predictive capacity to be
evaluated. While the 2 others are used to evaluate their accuracy and behavior in
the presence of outliers. With the help of 5 other relations of the state of the art
and that focus on the evaluation of a training algorithm, 21 machine learning
algorithms based on different paradigms and from the scikit-learn Python library
were evaluated. By using several training sets and several combinations of meta-
parameters, a total of 70, 276 models have been trained and evaluated. Finally,
the metamorphic relations that evaluate training algorithms have revealed
the probable existence of implementation bugs in some of them. While the new
relations have shown their relevance in the evaluation of trained models.

This work demonstrates the relevance of using convexes inmodel evaluation.
However, onlymodels trained on synthetic datasets, in the form of clusters, were
evaluated. Future works should extend this type of evaluation to models trained
on real-world clustered datasets, but also to datasets of any shape.
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