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Abstract—With the advent of the Multimedia Internet of
Things (MIoT), many image compression techniques have been
proposed to address the network’s considerable challenges related
to performance and security. However, many MIoT devices,
such as the nRF52832 SoC with 64Kb RAM or even less, have
significant memory constraints, making conventional methods
unsuitable. MIoT networks face considerable challenges related
to performance and security due to limitations in the power,
computation, and memory of MIoT devices. These limitations
result in difficulties in handling high image volumes. Multimedia
compression is a potential solution to reduce data size. As
MIoT devices often rely on wireless connections, they are also
vulnerable to diverse security attacks (passive and active). This
work introduces a secure and efficient image crypto-compression
technique dedicated to devices having limited memory. It also
proposes using denoising and a super-resolution deep learning
model to reduce the overhead of the compression process and a
lightweight cipher scheme that requires a single round of simple
operations to reduce the overhead of the encryption process. The
proposed approach effectively addresses the mentioned challenges
with minimal overhead on the MIoT device, especially in terms
of computational and communication delays, and extensive ex-
perimentation underscores its suitability in both effectiveness and
robustness.

Keywords— Multimedia Internet of Things (MIoT), Crypto-
compression scheme, DWT, Selective encryption, Denoising super-
resolution model.

I. INTRODUCTION

The increasing number of multimedia apps has led to an increased
demand for data reduction and security measures. Numerous research
studies have been undertaken to explore energy-efficient compression
techniques for multimedia Internet of Things (IoT) systems to reduce
power consumption[11]. These techniques aim to minimize process-
ing operations and memory accesses inside the compression system,
hence increasing battery life and reducing power consumption in
the system as a whole. In terms of security, conventional encryption
techniques frequently function on the entirety of the dataset, thereby
incurring significant time and resource costs. Consequently, there is
a need for partial encryption methodologies that selectively encrypt
solely the most crucial components of the data, thus diminishing
computational requirements and mitigating the effects on transmis-
sion time and bandwidth. Various studies have put forth techniques
for implementing selective encryption, including zigzag permutation
and encrypting a specific set of AC coefficients. These methods
aim to improve security while ensuring compatibility with the JPEG
standard [6]], [[16], [L7].

MIoT faces two main challenges. The first challenge is due to
the inherent characteristics of multimedia content, such as images,
which have a significant size compared to scalar data. The second
challenge is due to platform limitations in terms of CPU speed,

memory size, and power, as most MIoT devices are battery-operated.
These challenges necessitate the implementation of an effective
multimedia data reduction and error correction scheme in MIoT
systems, as these devices are often constrained, particularly in terms
of power consumption and resource overhead. Consequently, reducing
the size of transmitted/protected data, minimizing computation costs,
and mitigating the impact of channel errors represent a significant
research challenge in the context of MIoT, which is the main focus
of this paper.

Fig. 1: The nRF52832 SoC utilized in this paper features a
32-bit ARM Cortex-M4F CPU and equipped with 512kB of
flash memory and 64kB of RAM.

The work of this paper targets resource-constrained microcon-
trollers with limited memory (< 64kB) and processing power, such
as the device shown in Figurdl] This paper proposes a solution
that enables application servers to recover missing or corrupted
grayscale images using appropriate deep-learning denoising and
super-resolution techniques. This solution addresses the intrinsic
limitations of MIoT end devices. In this approach, data reduction
is integrated into the MIoT devices by applying a lightweight
implementation of the Discrete Wavelet Transform (DWT), namely
the row-column Haar transform. The low-frequency coefficients are
ciphered using a lightweight cipher scheme based on the dynamic
key approach, and the high-frequency coefficients are completely
discarded. With both super-resolution and visual content enhancement
at the application server(s), the highly distorted images can be
restored, thus resulting in a high compression ratio and enhanced
image quality.

The remaining sections of this paper are organized as follows:
Section[Il] presents the related research work to this paper. SectiorI|
discusses the crypto-compression scheme at MIoT devices and ap-
plication server(s)/cloud. Section describes the proposed crypto-
compression solution. Section [V] details the performance and security
tests that are applied to demonstrate the efficiency and robustness of
the proposed solution. After this, in Section [VI] the experimental
setup and results are presented and discussed. Finally, Section
concludes this work.

II. RELATED WORK

Kouadria et al.[§] proposed a low complexity Discrete Cosine
Transform (DCT) that can be used for image compression in wireless



visual sensor networks that combines the block discrete cosine
transform (BDCT) with a pruning approach to reduce the number
of arithmetic operations required. Their approach resulted in 60%
time and energy savings while maintaining acceptable image qual-
ity. Campobello et al. [3] proposed an efficient encoding scheme
called RAKE, which encodes positions of non-zero bits in a binary
sequence. The proposed lossless technique provides highly memory-
efficient compression for grayscale images with about 5% perfor-
mance penalty compared to JPEG-LS[15] and about 10% compared
to CALIC[18]]. Lee et al.[l1l] propose a line-based compression
system using a four-level, two-line discrete wavelet transform and
adaptive line prediction. The authors also introduce a new bit rate
control algorithm to improve image quality consistency in one frame.
The proposed system claims to achieve visually lossless compression
criteria and lower power consumption better than existing techniques.
Deep learning techniques for IoT image compression have been
getting more attention recently. Krishnaraj et al. [9] proposed a
model based on the discrete wavelet transform (DWT) and con-
volutional neural network (CNN) to achieve effective compression
with better-reconstructed image quality. Experimental results show
that the author’s approach outperforms existing methods such as
super-resolution convolutional neural networks, JPEG, and JPEG2000
regarding compression performance and reconstructed image quality.
However, such techniques require acceptable computing power, which
is different from the case of this work. Hu et al.[7] introduced
Starfish, a new design for compressing images in IoT applications.
Interestingly, the authors proposed a solution that is resistant to packet
loss compared to traditional techniques, and their experiments showed
that their solution outperforms JPEG in terms of bandwidth efficiency
and energy consumption and maintains good image quality even in
the presence of packet loss. However, Starfish integrates a deep neural
network to generate a loss-resilient compressed representation of
images. This solution can work on microcontrollers and IoT devices
but not on the minimal devices as the one targeted in this paper.

Different works in the literature tackled the crypto-compression re-
search area. Cidjeu et al.[5]] proposed two lossless crypto-compression
schemes to secure medical images based on the Elliptic Curve (EC).
The schemes involve grouping pixel values as finite field elements and
transforming them into points on an elliptic curve for compression.
They apply EC-based encryption schemes utilizing the difficulty of
solving the Discrete Logarithm Problem. These schemes demonstrate
better performance in terms of compression rate, image quality, and
execution time compared to existing systems. However, the authors
do not mention any specific details or implications regarding IoT.
Puech et al.[14] applied the DCT and Advanced Encryption Standard
(AES) methods and proposed using DC and some AC coefficients of
the lowest or highest frequencies to construct a stream for encryption.
The rationale is that encrypting more elements at the low frequency
of each block in a JPEG image results in better encryption. The
authors mention that the approach aims to reduce computational
resources for low-power networks but does not explicitly address
the limitations of limited RAM in IoT devices. Inspired by the
demonstrated efficiency of Artificial Neural Networks (ANNs) in
image compression compared to traditional methods, especially for
noisy or incomplete images, Benlcouiri et al.[2] apply encryption
based on the AES algorithm on the parameters of compression by a
network of multi-layer neurons. While the experiments have shown
the efficiency of the proposed hybrid approach, neural networks-based
compression can only work on some kinds of microcontrollers and
requires a training process.

III. BACKGROUND

The MIoT systems consist of numerous edge devices that process
captured multimedia data (such as images) and transmit it via
multi-hop or star wireless communications (as shown in Fig. 2)
to the application server(s) or data center. After acquiring the
image, each MIoT device must be capable of reducing the size
of the multimedia data before forwarding it to the application
server, which will subsequently decompress it to retrieve the visual

content. However, due to resource and computation constraints,
some MIoT devices are unable to perform conventional lossy image
compression techniques. Thus, to minimize the required resource
overhead, an effective compression strategy with minimal memory
and computation requirements should be implemented on MIoT
devices to minimize the overhead of compressing and transmitting
collected compressed images. As a result, this can regulate both
bandwidth and energy consumption on the MIoT side.
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Fig. 2: The proposed crypto-compression scheme at MIoT
devices and application server(s)/cloud.

As depicted in Fig. |ZL the proposed compression solution in-
volves performing one or two levels of the 2D-DWT (Discrete
Wavelet Transformation) by using the Haar transformation at the
MIoT devices. To accommodate the constraints of resource-limited
microcontrollers, we implemented this solution using the row-column
integer Haar wavelet transform. The reason for adopting the integer
version is to eliminate the computational overhead and potential
inaccuracies associated with floating point operations, which are
often not well supported or are performance-intensive on limited
microcontrollers. DWT is a signal processing technique used to
extract information and is prevalently applied in multimedia com-
pression standards like JPEG2000 or MPEG-4. By design, it is a
one-dimensional transform. However, it can be extended as a two-
dimensional transform in both horizontal and vertical directions. In its
two-dimensional implementation, DWT produces four sub-matrices,
with each sub-matrix being a quarter of the original matrix. The
results for a single level of 2D-DWT are a low-resolution sub-matrix
(LL) denoting the low frequencies; high vertical and low horizontal
resolution (H L); low vertical and high horizontal resolution (LH);
and a high-resolution sub-matrix (H H). Here, H L and L H represent
the mid frequencies and H H indicates the high frequencies. Further,
the second level transform is specifically applied to the LI part,
termed as dyadic decomposition, as depicted in Fig. [3]
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Fig. 3: Two-level DWT generates two-dimensional coarse and
detailed values [4].

The proposed lossy compression approach helps reduce the size
of protected transmitted multimedia data (i.e. raw data) by selecting
only the last LL band, which will be encrypted using the proposed
lightweight cipher scheme. Subsequently, these visual contents can
be decrypted first at the application server(s) and potentially be
further improved by using a trained super-resolution denoising model.




Increasing the level of 2D-DWT will decrease the communicated/pro-
tected data size but it can ensure additional visual degradation.

1) Mathematical Description of Row-Column Integer Haar
Wavelet Transform: The Haar wavelet transform is based on a pair
of functions, a scaling function ¢(¢) and a wavelet function 1 (¢). In
the Haar wavelet case, these functions are defined as follows:

1, 0<t<1
t) = -
¢(t) {0, otherwise

1, 0<t<0.5
05<t<1
0, otherwise

The row-column integer Haar wavelet transform is applied in two

steps:

1) Column-wise transform: Starting with the original 2D image
of size m x mn, compute the average of each pair of adjacent
elements in each column. This results in a new image of size
m X 5. Let I; ; represent the pixel intensity in the row 4 and
the column j in the input image. Then, the transformed image
I ; can be described as:

) Lioj + Ii2j11

J T 2

2) Row-wise transform: Apply the same operation to the rows of
the resulting image from the previous step. This will result in
the final compressed image of size % x Z. Let I;’; represent
the pixel intensity at row ¢ and column j in the intermediate
image I'. The final compressed image I7; can be described

as:

I

I = L+ I
»J 2

2) Complexity Analysis: The row-column integer Haar wavelet
transform is an in-place technique, meaning that it does not require
any additional memory beyond the original input image. The trans-
form is applied directly to the input image array, and the compressed
image occupies the first 5+ x 3 elements of the captured 1D array.
The computational complexity is O(mn). For each of the m rows, the
algorithm computes the averages for 5 pairs of columns, resulting
in O(m - §) complexity for the column-wise transform. Similarly,
for each of the n columns, the algorithm computes the averages for
the % pairs of rows, resulting in O(n - ) complexity for the row
transformation. Thus, the overall complexity is O(mn), which is a
linear complexity concerning the number of elements in the input

image.

IV. PROPOSED CRYPTO-COMPRESSION SOLUTION

A. Image Compression Approach

The proposed image compression method described in Algorithm/T]
utilizes a row-column integer Haar wavelet transform. This technique
involves performing a Haar wavelet transform on an input image
first column-wise and then row-wise, effectively reducing the image
size and memory requirements. The last LL will only be selected
as compressed data and will be transmitted after encryption to the
application server. To recover the original image on the other side,
decryption should be applied first. Then, we will use the trained
super-resolution Deep Learning (DL) to reconstruct the original
image. This model is built to reduce the effect of losing high and
middle frequencies, in addition, it can help to reduce the effects of
wireless channels. On the other hand, the proposed crypto scheme
is designed to have minimum error propagation. These steps are
illustrated in Fig. f] The image denoising and recovery model
used is an SRGAN model[lOﬂ This model comprises a series of

Uhttps://github.com/idearibosome/tf-perceptual-eusr

residual blocks with two convolutional layers each to aid in deep
network gradient flow. The generator utilizes these blocks, post-
residual layers, and upsampling to produce super-resolved images. In
parallel, a discriminator with convolutional layers and leaky ReLUs
classifies between real and super-resolved images. We employ a pre-
trained VGG network to guide the super-resolution process to extract
salient image features. Finally, an adversarial model combines the
functionality of the generator and the discriminator, optimizing image
quality and recovery.

The proposed solution’s innovation is by using a super-resolution
denoising model that can be applied at the application server or
cloud to enhance the low resolution of the collected image. This
model allows discarding all the high-frequency components of the
DWT and some of the low frequencies, thus achieving a higher
compression ratio. In addition, this model can also enhance packet
loss, erroneous packets, or encryption error propagation without
introducing additional overhead on the side of MIoT devices, which
represents our main contribution.

Algorithm 1: One level row-column Haar transform.
Input: img (1D uint8 vector)

1 Set m to the number of rows in img

2 Set n to the number of columns in img
// Lightweight Haar starts

3 for i + 0 to m xn with step n do

4 for j < 0 to n with step 2 do

5 Update img with the average of the adjacent

L elements in the column

6 for i < 0 to (m xn)/2 with step n do
7 for j < 0 to n/2 do
8 L Update img with the average of the adjacent

elements in the row
// Lightweight Haar ends
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Fig. 4: Illustration of the steps: compression, encryption,
transmission, decryption, and recovery in the IoT device and
gateway.

B. Proposed Cipher scheme

The proposed cipher scheme is based on the dynamic key ap-
proach, where a dynamic key is generated for each new input image
(or for a set of images; depending on configuration). Based on the
generated dynamic key, the permutation table 7 in addition to two
initial vectors will be generated (IV'1,/V2). The encryption scheme
is based on a single round consisting of a row permutation layer
and a mixing layer, as illustrated in Figure [5] After this, the mixing
process will be realized by mixing rows (chaining operation mode)



forward (from the first rows to the last ones) with the first initial
vector /V'1 and then backward mixing with the second initial vector
IV?2 (from the last rows to the first one). The decryption scheme
is similar to the encryption one; the same dynamic key should be
generated, and consequently the required cryptographic primitives.
Furthermore, the first decryption step will be the inverse mixing
process using the same initial vectors (/V'1, IV2). This can be
done by applying the inverse of the backward row mixing using
1V2 followed by the inverse of the forward row mixing using /V'1.
Finally, an inverse permutation process is performed using the inverse
permutation table. This cipher follows one of the recent cryptographic
approaches that proposes to use the dynamic key approach to reduce
the round number and by designing lightweight round function for
the encryption algorithms towards reducing the required computation
and resources of the encryption process.
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Fig. 5: The proposed cipher scheme: encryption and decryption
algorithm.

V. SECURITY & PERFORMANCE ANALYSIS

In this section, several performance and security tests are applied
to demonstrate the efficiency and robustness of the proposed solution.

A. Security Analysis

Several security tests were presented to show that encrypted images
achieve the desired randomness, uniformity, independence, and key
avalanche effect, as discussed in the following.

1) Statistical Analysis: For a cipher scheme to be robust against
statistical attacks, it must achieve some random properties [13], [12].
To this end, we conducted a statistical analysis involving the follow-
ing statistical tests: (a) Histogram analysis, (b) Entropy analysis, and
(c) correlation between plain and encrypted images. Original images
and their corresponding cipher images and probability distribution
are shown in Fig. []

2) Uniformity: In security, uniformity implies that every symbol
has an equal probability of occurrence. Typically, this probability is
equal to % where N is the total number of existing symbols. One
way to assess uniformity is by plotting the Probability Density Func-
tion (PDF) of the encrypted data and evaluating it visually. Unlike
plaintext, which has a bell-shaped normal distribution (some symbols
are more likely to occur than others) (Fig. [6¢), the ciphertext resulting
from the proposed scheme is uniformly distributed (Fig. [6f). This
proves that the proposed scheme can produce randomized ciphertext,
hence, it is immune to statistical attacks. Furthermore, Figures @]
and [6d] show that the proposed cipher scheme generates encrypted
images that have all the values of the symbols in comparison to the
original symbols.

3) Recurrence: Another important security test that evaluates
the uniformity property is the recurrence test. In particular, each
encrypted symbol is compared with a delayed version of it. To attain
the desired uniformity and randomness levels, the recurrence plot

should be highly scattered and should cover all available regions.
On the other hand, the recurrence plot of the original LL band
(normally distributed data) contains values that are concentrated in
one specific region, as depicted in Fig. [6b] (not randomized). From
Fig. [6e] it is evident that the desired recurrence plots are obtained,
which validates the high level of randomness and uniformity obtained
with the proposed scheme.

B. Resistance Against Key-Related and Brute Force Attacks

Two important parameters that should be taken into consideration
when discussing a security scheme in the context of brute force
attacks and key-related attacks are the key size and key sensitivity.

1) Key Size: The generated dynamic key consists of 512 bits,
which is sufficient to resist brute-force attacks. In particular, the
combination of the working key and the channel-derived nonce is
hashed using the SHA-512 scheme to obtain a 512-bit key. This key
is divided into several sub-keys to generate several cipher primitives.

2) Key Sensitivity: Key sensitivity mandates that at least half
of the output bits are changed upon a slight change in the utilized
key. In other words, a one-bit change in the key should result in at
least 50% different ciphertext (bit level). As shown in Fig. a), it is
clear that key sensitivity is successfully achieved using the proposed
scheme, where most of the sensitivity values are close to 50%. It
should be noted that the cryptographic primitives that are used in the
encryption/decryption process are frequently updated after a specific
number of communicated image(s). Consequently, this complicates
the adversary’s task in acquiring the dynamic key, and thus deriving
the required cryptographic primitives. By constantly shuffling the
ciphering primitive, one can guard against brute force attacks and
key-related attacks.

C. Resistance Against Linear and Differential Attacks

Linear and differential attacks are directly related to the indepen-
dence property.

1) Independence: When the independence property is achieved,
the original data should be different compared to encrypted data at
the bit level (the percentage of difference should be close to 50%).
To prove this property, the difference test is carried out. The results
presented in Fig. [7}b) reveal that the difference values are always
equal to 50% using the proposed scheme, and hence the independence
property and the avalanche effect are both achieved.

VI. PERFORMANCE ANALYSIS

The proposed approach is implemented on a Redbear Nano V2
microcontroller and compared to the publicly available JPEG imple-
mentation for Arduino on GitHub [1].

JPEG offers various compression quality settings. As we employ a
super-resolution model for quality enhancement, we opted for JPEG’s
low-quality setting, which provides the highest compression ratio.
Figure [8}(a) shows the time required (in milliseconds) to compress
grayscale images of varying sizes using JPEG, Haar L1 (single-level
transformation), and Haar L2 (two-level transformation). The inherent
complexity of JPEG, compared to the Row-Column Haar transform,
makes the differences in compression times evident. Notably, we
encountered buffer overflow errors for images larger than 200 x 200,
attributed to the memory constraints of the Redbear Nano V2 (64 kB)
and JPEG’s memory demands relative to our approach. In terms of
compressed size, as presented in Figure [§| -b, JPEG outperformed
the compression of Haar L1 and closely matched the compression of
Haar L2. However, Figure [0 reveals that the image quality of Haar
L2 compression is inferior to that of Haar L1 and JPEG. While JPEG
allows a higher compression ratio than our Haar L1-based method,
our technique allows capturing larger images due to its lower memory
requirement.

Fig.[I0]presents the Redbear Nano V2’s power consumption during
image transmission via Bluetooth Low Energy (BLE) for a 200 x
180 image and its Haar L1 compressed counterpart. The BLE settings
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were: advertising interval at 1800 ms, transmit power at +4 dBm, and
15-byte data packets. Power consumption measurements employed an
Arduino UNO coupled with an INA219 breakout board. In the initial
signal phase, representing device advertising, there is a consistent low
consumption interspersed with brief spikes every 2 seconds due to
packet transmission. A notable increase to around seven mA signifies
the main image transmission phase. During periods preceding and
succeeding this phase, increased data exchange with the gateway is
observed, as the connection interval is shorter than the advertisement
interval. With our compression method that reduces the image to
a quarter of its original size, the time required to exit sleep mode
decreases, resulting in reduced energy consumption and transmission
time.

Figure [TT] displays the restoration of multiple images compressed
with Haar L1. As part of our future work, we plan to train the
SRGAN to restore images compressed using Haar L2. While Haar
L2-compressed images exhibit lower quality than those using Haar
L1 or JPEG, they offer superior size reduction, potentially leading to
significant energy savings.

VII. CONCLUSION

In this paper, a novel lossy crypto-compression scheme tailored for
resource-constrained MIoT devices is introduced, aiming for optimal
performance with minimal overhead. Central to our proposal is using
the lossy row-column integer Haar transform, a memory-efficient
compression method particularly suited for microcontrollers with
limited memory and computational capabilities. This compression is
performed before encryption, to ensure data compactness. Further,
our scheme exploits the super-resolution denoising model and the pre-
shared working key to generate a dynamic key (a new key is generated
after a specific period). The produced dynamic key is used to derive
simple cryptographic primitives that change frequently depending on
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the configuration; they can be updated for each new input image
or set of images. In particular, the cryptographic primitives consist
of one/two initial vector(s), a permutation table, and two update
permutation tables, each used to update one cryptographic primitive.
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x 180 grayscale image using Bluetooth Low Energy, compared
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Fig. 11: Restoration and noise removal of various images
compressed using Haar L1, utilizing the SRGAN.

The proposed updating process, which is based on the permutation
process, significantly increases the robustness and security level of

the scheme (linear computational overhead). The existing security
mechanisms in MIoT are based on the multi-round scheme such
as AES. In contrast, the proposed scheme is implemented and
requires only one round and uses simple operations. The security
and performance tests demonstrate the robustness and efficiency of
the proposed scheme.
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