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ABSTRACT

The current Field-Programmable Gate Array (FPGA)
implementation of cryptographic algorithms faces per-
formance and security challenges because these al-
gorithms were not originally designed to take FPGA
features into account. One significant performance
limitation arises from the iteration of a round func-
tion for a high round number, given the fixed struc-
tures like static substitution and diffusion primitives
throughout the process. This paper introduces a new
framework for a key-dependent, flexible one-round
stream cipher scheme specifically designed to benefit
from FPGA features. It is called RFCA. Security and
performance analyses validate the effectiveness and
robustness of the proposed solution, ensuring the de-
sired cryptographic properties. In comparison with an
AES implementation, RFCA is 34 times faster.

INTRODUCTION

Field-Programmable Gate Array (FPGA) is pro-
grammable hardware that can be configured to
implement digital circuits. FPGAs provide an adapt-
able hardware platform for designing, implementing
and testing digital circuits. The FPGA’s flexibility
allows designers to balance high-level abstraction with
fine-grained control over low-level details. This result-
ing in novel, efficient hardware solutions optimized
for cryptographic algorithms. FPGA can be used to
design and implement cryptographic algorithms, such
as encryption/hashing, deterministic pseudo-random
generator and key generation. These algorithms
are often computationally intensive. Improved
performance and consequently reduced execution
delay and power consumption are two advantages of
using FPGAs for cryptographic purposes. These are
important considerations for real-time applications
and/or devices with limited battery power. Another
reason why FPGAs are a preferred option is because
of their wide use and the well-established standards in
the semiconductor industry, which offer a community
of designers and engineers enabling the continuous

development and optimization of cryptographic
implementations.

However, several difficulties and restrictions appear
when using FPGA to implement established crypto-
graphic algorithms Wang et al. (2011) such as AES yaa
(2021), including high resource overhead and lim-
ited flexibility due to the structure of these algorithms
(higher number of rounds) and the fixed input block
length such as 128 bits in the case of Advanced Encryp-
tion Standard (AES). These algorithms were designed
as general solutions and independent of hardware char-
acteristics, which makes them unable to reach the best
performance. Therefore, in this work, we design a
stream cipher algorithm according to the FPGA char-
acteristics such as parallelism, and flexible precision
to optimize performance and resource utilization in
the FPGA.

The proposed stream cipher reaches a high level of
efficiency, robustness, and flexibility. Efficiency is
achieved as the proposed cipher scheme is realized
according to FPGA characteristics and by avoiding the
limitations of current cryptographic algorithms that
require a higher number of rounds as the employed
cryptographic primitives are static. This was achieved
by employing the dynamic cryptographic approach,
where cryptographic primitives are variable and this
can prevent cryptanalysis techniques, which are based
on the concept of the static key approach. Therefore,
the proposed stream cipher requires only one round
instead of a higher number of rounds to minimize
the computation complexity Noura et al. (2019).
Additionally, the proposed stream cipher ensures
flexibility as the size of the block stream is variable
and depends on the number of words h and the word
precision Wp to meet application and/or device needs.

To the best of our knowledge, this research presents
a novel dynamic cipher designed for FPGAs, offer-
ing both high speed and strong security, making it a
valuable advancement in the field.

Organization

The structure of the paper is as follows: In the next sec-
tion, a description of the proposed stream cipher and
its principal components are provided. After this, a
comprehensive security analysis is conducted, evaluat-



ing the proposed cipher against essential cryptographic
properties and the security level of the proposed cipher
against diverse attack techniques. Then, the efficiency
of the proposed cipher solution is analyzed compared
to AES.

Proposed Stream Cipher Scheme: RFCA

The input message M is divided into nb blocks,
denoted as M = m1, m2, . . . , mnb, with each block
comprising h words. Fortunately, the overhead of the
conversion operation delay is eliminated with FPGA
since there is no need to perform any conversion
operations to word or byte representation. This
indicates that a block of input, either plaintext or
ciphertext, can be processed at the byte/bit level or
with word precision Wp, for instance, a size of 32
or 64 bits. There will be h words in each block,
which represents a shared value between the source
and destination. This means that the size of each
block is h×Wp bits. In this work, we set h to 4 and
the word precision Wp to 64 bits. Hence, the plain
or ciphertext blocks have the same representation.
Furthermore, XorShift64 is selected as a PRNG due
to its low computational complexity. Note that any
other secure and efficient PRNG can be used instead
of XorShift64.

On the other hand, as depicted in Figure 1, the
jth ciphertext block (cj) is generated by combining
the jth plaintext block (mj) with the jth produced
key-stream block Vj . The detailed process is outlined
in the listing code 1 and expressed in Eq. 1:

cj = EK(mj) = mj ⊕ Vj ; j = 1, 2, . . . , nb (1)

The generated key-stream (Vector V ) is updated it-
eratively: the (j + 1)

th vector is updated as a func-
tion of the jth key-stream vector. The proposed
stream cipher comprises one function, which is the
Round Function (RF). It consists of iterating two
functions in parallel (f and g), as illustrated in Fig-
ure 1-a). The output of the f and g functions will be
combined for every round function iteration to create
a block of keystream V . Furthermore, these functions
are recursive, meaning that the j + 1 iteration’s in-
put will be the result of iteration j. The (j + 1)th

encrypted block cj+1 is obtained by combining (XOR)
the (j + 1)th plaintext block with the (j + 1)th key-
stream V .

The Round Function (RF )

Then, as previously said, the Round Function (RF )
is iterated by iterating the recursive functions f and
g and mixing their output to generate a keystream
block, which yields the jth key-stream block Vj . We
suggest two potential functions for f and g in Fig-
ure 1-b, respectively, as a proof of concept. For addi-
tional information, note that the function f only uses
an efficient PRNG (XorShift64), with the current it-
eration’s result serving as the subsequent iteration’s

input. On the other hand, apart from using PRNG, the
function g consists of multiple operations, including
substitution, permutation, and non-invertible binary
diffusion. Based on randomness analysis, the optimal
order of operations in the function g was determined.
The function g was constructed using diffusion as its
first operation, which involved iterating a PRNG after
utilizing a non-invertible binary matrix. Substitution
and byte permutation operations, which are based on
permutation and substitution tables, come next in the
output of the PRNG. These procedures are explained
in full below.

1. Iterate PRNGs: Iterate an efficient PRNG once
using the elements as seeds for each element of
vector X . Store each output at the corresponding
index in vector X , updating X in the process.

2. Binary Mixing Diffusion Operation: Combines
the word elements of X with the seeds vector V
in a non-invertible binary matrix D.

Y ′ = D ⊙ Y (2)

In fact, this step is added to prohibit recover-
ing the states from any keystream by combin-
ing the input seeds of PRNGs in a non-invertible
way. Because the binary diffusion matrix is non-
invertible, this is made possible.

3. Permutation Operation: Using the generated dy-
namic permutation table, a byte permutation pro-
cess is applied for the PRNG’s output, which has
a length of h×Wp

8 bytes.

4. Substitution Operation: For the permuted dif-
fused block with length h×Wp

8 bytes, a byte sub-
stitution process is applied utilizing one or more
generated dynamic substitution table(s). This is
determined by the configuration. To guarantee
that the generated keystream block has a high de-
gree of non-linearity, only one replacement table
is needed. The function g, whose result will com-
bine with the function f ’s output to produce the
keystream block, is represented by the output of
the substitution process.

The ciphertext C = c1||c2|| . . . ||cnb is created by
encrypting each plaintext block with its matching
key-stream block. The jth plaintext block mj is
xored with its matching key-stream word Vj , which is
equal to Yj ⊕Xj .

The key-stream blocks generation Vj and dynamic
key production are handled by the decryption algo-
rithm using the same procedures. These are then
”xored” with the ciphertext blocks cj to produce the
plaintext message block mj . That is, as stated in Eq. 3:
in order to retrieve the jth plain block m′

j , the jth

ciphertext block cj is mixed (XOR) with the jth gen-
erated key-stream word Vj .



(a) (b)

Figure 1: General structure of the proposed round function (RF ) of the proposed stream cipher for the jth block
(iteration) (a) and an example of possible implementation (b)

m′
j = EK(cj) = cj ⊕ Vj , j = 1, 2, . . . , nb (3)

Next, we provide an example of the use of “Xor-
Shift64” as a PRNG for the proof of concept.

Xorshift64 PRNG

“XorShift64” is employed in the proposed stream
cipher as it is an efficient pseudo-random gen-
erator, which yields an output block of 64 bits,
for a word precision of Wp = 64. The PRNG
is iterated h times, with the result being saved
at index w of X and an input seed value X[w]
utilized in each iteration of the function f . It
is applied recursively, with the current iteration’s
output serving as the input for the subsequent iteration.

Algorithm 1 provides an explanation of the Linear-
Feedback Shift Registers (LFSR) family, of which
XorShift is the successor. The latest implementation
of XorShift makes it extremely fast since it does
not require non-linear operations or too sparse
polynomials Panneton and L’ecuyer (2005). Although
it is very effective, it does not pass several statistical
tests Panneton and L’ecuyer (2005). This problem is
addressed in the suggested strategy by using dynamic
bit rotation to attain the required level of non-linearity.
It should be noted that XorShift can be substituted
with any PRNG or a combination of several PRNGs.

The following section presents the FPGA implemen-
tation of the proposed stream cipher.

FPGA implementation of RFCA

The suggested approach was created specifically to
be used with FPGAs. The Silice framework has been
used to develop this method as efficiently as possi-
ble sil (2024). The explanation of the implementation
follows. The idea behind the implementation can
be understood without having to know the Silice

Algorithm 1 xorshift64 PRNG
Input: 64-bit word of state t
Output: A produced random number word x with
64-bits length

1: procedure XORSHIFT64(t)
2: x← t;
3: x← x⊕ (x >> 12);
4: x← x⊕ (x << 25);
5: x← x⊕ (x >> 27);
6: return x;
7: end procedure

language. In our system, 256-bit numbers are changed
at every stage. In this work, 4 parts based on 64 bits
are used, as the majority of popular algorithms use
64 bits. Thus, the RFCA cipher generates 256 bits at
each step.

The first step consists of using the non-invertible
with 4 variables (from line 1 to 4). Then the xorshift
function is called 4 times (from line 7 to 10). The result
of the function is set in temporary variables (this is due
to a Silice feature). Then the result of the temporary
variables is copied into the rm variables (from line 12
to 15). Next, a 256-bit variable is used. Silice allows
one to use a parallel loop. So the next step consists
of calling the second xorshift with the nstate variable
(using temporary variables like previously). It should
be noticed that the syntax with $$ comes from the
Lua language (line 18 to 21). In the next step, the
permutation and the Sbox are used with a parallel for
(line 22 to 25). Then a very important step consists
of waiting for the next clock (with the ++: symbol
line 26). In fact, the need for the next clock is explicit.
That means that all the previous instructions are called
in only one clock. Because the Sbox is called with a
RAM, the read and the write of a RAM require 1 cycle.
This is why a new clock is needed. So the next step
consists of obtaining the result of the Sbox (line 27
to 29). The Sbox is used with 8 bits, that is why 32



parallel calls are used. The next step is used to update
the state variable of the Xorshift (line 31 to 34). The
last instructions are used to put the result inside the
stream variable by xoring the number and rm variables
(line 36 to 38).

At the end of the while loop, a new clock is started.
That means only 2 clocks are necessary to execute this
algorithm with an FPGA (that is powerful enough).

Figure 2: A screenshot of the ULX3S dev board.

Listing 1: Implementation of the RFCA in Silice (only
the stream cipher part)

1 whi le ( 1 ) {
2 n s t a t e 0 = s t a t e 0 ˆ s t a t e 1 ;
3 n s t a t e 1 = s t a t e 0 ˆ s t a t e 2 ;
4 n s t a t e 2 = s t a t e 0 ˆ s t a t e 3 ;
5 n s t a t e 3 = s t a t e 2 ˆ s t a t e 3 ;
6
7 ( temp0 ) = X o r S h i f t ( rm0 ) ;
8 ( temp1 ) = X o r S h i f t ( rm1 ) ;
9 ( temp2 ) = X o r S h i f t ( rm2 ) ;

10 ( temp3 ) = X o r S h i f t ( rm3 ) ;
11
12 rm0 = temp0 ;
13 rm1 = temp1 ;
14 rm2 = temp2 ;
15 rm3 = temp3 ;
16
17 / / x o r s h i f t c a l l
18 $ $ f o r i =0 ,3 do
19 ( temp$i$ ) = X o r S h i f t ( n s t a t e $ i $ ) ;
20 number [ $ i *64$ , 6 4 ] = temp$i$ ;
21 $$end
22 / / p e r m u t a t i o n + sbox
23 $ $ f o r i =0 ,31 do
24 s b o x $ i $ . add r =number [ perm [ $ i $ ] , 8 ] ;
25 $$end
26 ++:
27 $ $ f o r i =0 ,31 do
28 number [ $ i *8$ , 8 ] = s b o x $ i $ . r d a t a ;
29 $$end
30
31 / / up da t e o f X o r S h i f t
32 $ $ f o r i =0 ,3 do
33 s t a t e $ i $ = number [ $ i *64$ , 6 4 ] ;
34 $$end
35
36 $ $ f o r i =0 ,3 do
37 s t r e a m [ $ i *64$ , 6 4 ] = number [ $ i *64$

, 6 4 ] ˆ rm$i$ ;
38 $$end
39 }

The following sections discuss the security and per-
formance analysis needed to evaluate the robustness
and efficiency of the proposed stream cipher.

Security Analysis

A cryptography solution is designed to withstand
many types of analytical attacks, such as differential,
statistical, linear, and brute-force attacks Paar and
Pelzl (2009); Stallings (2017). This section assesses
the suggested stream cipher’s resilience to these types
of attacks in the worst-case situation.

If the generated keystream exhibits high levels
of randomness, unpredictability, and periodicity,
statistical attacks can be avoided Stallings (2017). To
validate this, the generated keystream is assessed using
two benchmark statistical tests: TestU01 L’Ecuyer
and Simard (2007) and PractRand Doty-Humphrey
(2014). These tests are known for being challenging,
but they guarantee that the produced key-streams
satisfy the necessary standards of uniformity and
randomization, as well as the lack of periodic patterns
in the keystream(s) that are produced. These tests’
outcomes show that, for every seed tested, the
suggested stream cipher reliably passes both the
TestU01 and PractRand randomization tests. The
histogram of the key-stream with a random session
key SK and its associated recurrence in Figure 3-b)
are displayed in Figure 3-a), which displays the visual
results of the key stream for a size of 10,240 bytes.
These findings show that the generated key-stream has
a uniform distribution with all symbols having the
same probability of occurrence and displays a random
recurrence distributed over the entire space. In Noura
et al. (2023, 2022a), more implementation details for
these tests are given.

The dynamic key-dependent approach Noura et al.
(2022b), in which all cryptographic primitives are
changed for each new message (or for a series of
messages; depends of configuration), is used by
the proposed stream cipher to reach high level of
security. By generating unique key-streams, this
updating approach extends periodicity and improves
non-linearity.

Additionally, for 1,000 random dynamic keys with
a key-stream length of 10,240 bytes, the percentage
difference between created key-streams for a single bit
change in the secret session key is evaluated to assess
the key sensitivity. Figure 3-c) shows how sensitive the
suggested stream cipher is to keys. The key avalanche
effect is confirmed by the extremely near difference of
the generated ciphertexts (key-streams) to 50%.

Lastly, since the proposed scheme is dynamic and
uses a unique key for every new message (or set of mes-
sages), the cryptographic primitives will be updated
and as a result, different keystream will be produced
and lead to obtain different results when encrypting
or decrypting the same plaintext/ciphertext within the
same session as well as between sessions. Because of
its intrinsic variability, the system is protected from
analytic attacks that rely on the idea of a static key
approach.



(a) (b) (c) KS

Figure 3: The corresponding (a) histogram, and (b) recurrence, of the produced key-stream for a random dynamic
key (h = 16), and Key sensitivity results (c) for the proposed stream cipher considering 1,000 random keys.

Performance Analysis

The RFCA algorithm has been implemented in
several languages: C to verify that the outcomes
are the same, Silice for the FPGA, and Practrand
and TestU01 test Doty-Humphrey (2014) to verify
the key-stream that is successful. The implemented
code has been used with the ULX3S development
board. This board can be seen in a screenshot in
Figure 2. This implementation has been compared
to an AES implementation yaa (2021) using that board.

The suggested 256-bit cipher only needs two cycles
for its implementation and the frequency is around
85Mhz, so we consider it to be at least 80Mhz. So each
clock cycle 128 bits are produced at a frequency of
80Mhz. So the throughput is equal to 128×85×106 =
1.024× 1010 bits per second.

In contrast to AES yaa (2021), which produces 128
bits in 42 cycles at 100Mhz, 3 bits are produced per
cycle. So the throughput is equal to 3× 100× 106 =
3× 108 bits per second.

Consequently, compared to this AES version, the
proposed approach is 34 times faster.

Concerning the consumption of resources on the
FPGA, our implementation uses 6312 LUTs (Look Up
Table) whereas the implementation of yaa (2021) uses
4006 LUTs.

Conclusion & Future Work

In this paper, we present RFCA, a lightweight stream
cipher designed to align with FPGA characteristics,
making it suitable for real-time applications and/or
constrained devices. The approach involves a round
function that is lightweight, iterated for only one itera-
tion, and comprises simple operations such as byte sub-
stitution, permutation, a lightweight PRNG, and basic
logical operations (exclusive or). Furthermore, the pro-
posed cipher incorporates a dynamic key-dependent
structure to achieve an optimal balance between secu-
rity and performance. In comparison to conventional
ciphers like AES, the suggested stream cipher signif-
icantly reduces both execution time and resource re-
quirements. The effectiveness and resilience of the pro-

posed stream cipher, compared to modern lightweight
ciphers and optimized AES implementations, are con-
firmed through security testing and performance as-
sessments. This work aims to achieve an optimal
trade-off between security and performance, aligning
with the recent trend of developing lightweight cryp-
tographic algorithms. In future work, we intend to
explore possible optimizations for keyed hash func-
tions utilizing FPGA characteristics.
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