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Abstract. We recently classified baryonic matter in the ground and
first excited states thanks to the discrete group of braids inherent to
SU(2)2 Ising anyons. Remarkably, the braids of SU(2)4 anyons allow
to generate the neutrino mixing matrix with an accuracy close to mea-
surements. This is an improvement over the model based on tribimaxi-
mal neutrino mixing which predicts a vanishing solar neutrino angle θ13
which is now ruled out. The discrete group of braids for SU(2)4 anyons
is isomorphic to the small group (162, 14) generated by a diagonal matrix
σ1 = R and a symmetric complex matrix σ2 = FRF−1, where the (3×3)
matrices F and R correspond to the fusion and exchange of anyons, re-
spectively. We make use of the Takagi decomposition σ2 = UDUT of
σ2, where U is the expected PMNS unitary matrix and D is real and
diagonal. We get agreement with the experimental results in about the
3σ range for the complex entries of the PMNS matrix with the angles
θ13 ∼ 10o, θ12 ∼ 30o, θ23 ∼ 38o and δCP ∼ 240o. Potential physical
consequences of our model are discussed.

Keywords: Neutrino mixing matrix; SU(2)4 anyons; Takagi decomposi-
tion.

1. Introduction

The discovery of neutrino oscillations at the turn of the 21st century
marked a major breakthrough in particle physics, definitively establishing
that neutrinos are massive. As a result, a neutrino of one flavour converts
into a different flavour, causing the number of each type of neutrino not to
be conserved. Thus the notion of lepton flavour conservation does not hold
in the neutral lepton sector. This phenomenon is conventionally described
by a unitary matrix, now known as the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [1,2]. Analogous to the CKMmatrix in the quark sector, the
PMNS matrix encodes the mismatch between the mass and flavor eigenstates
of neutrinos.

The PMNS matrix is crucial for understanding the structure of the Stan-
dard Model and potential physics beyond it. It provides three mixing angles
(θ12, θ23, θ13) and a CP-violating phase δCP , which are constrained by var-
ious neutrino oscillation experiments. While θ12 and θ23 were measured to
be relatively large early on, the angle θ13 was long believed to be very small
or zero, a belief embedded in the so-called tribimaximal (TBM) model of
the PMNS matrix [3]
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which predicts the mixing angles

θ12 = arcsin
(

1√
3

)

≈ 35.3◦, θ23 = 45◦, θ13 = 0◦.

The TBM matrix was consistent with early oscillation data and is sym-
metric and aesthetically pleasing. As such, it motivated a variety of flavor
symmetry models based on finite groups such as A4 [4], S4 [5], and T ′ [6],
where discrete non-Abelian symmetries were imposed on the lepton sector
to enforce TBM mixing.

However, the discovery of a nonzero reactor angle θ13 ≈ 8.6◦ by the Daya
Bay [7], RENO [8], and Double Chooz [9] experiments ruled out the TBM
ansatz. This forced the community to either:

• introduce perturbations to the TBM form (e.g., charged lepton cor-
rections), or

• search for alternative structures and underlying symmetries beyond
traditional flavor groups.

Despite intense theoretical efforts, a compelling derivation of the PMNS
matrix from first principles remains elusive. Models based on continuous
and discrete flavor symmetries [10–13], extra dimensions [14,15], grand uni-
fication [16, 17], and string theory [18, 19] have been proposed, each aiming
to explain the observed pattern of neutrino mixing. Yet none have achieved
a universally accepted explanation that naturally accommodates the exper-
imental data, especially the large mixing angles and CP violation.

In this work, we propose a novel topological model where the PMNS ma-
trix arises from the representation theory of the braid group associated to
the modular tensor category (MTC) of type SU(2)4, as explored by Freed-
man, Bauer, and Levaillant in the context of topological quantum computa-
tion [20,21]. We show that the non-diagonal braid generator σ2 of the group
D(9; 1; 1; 2; 1; 1)—which is isomorphic to the small finite group (162, 14)—
encodes the structure of the PMNS matrix through a Takagi factorization
σ2 = FRF−1, where F and R correspond to the fusion and exchange of
anyons, respectively. This approach naturally generates a non-zero θ13 and
a CP phase δCP close to the current experimental central values, without
invoking flavor symmetries ad hoc.

Our result opens a new direction in the quest to understand neutrino mix-
ing, connecting deep mathematical structures such as modular tensor cate-
gories, braid group representations, and finite group theory to phenomeno-
logical observables in particle physics.

2. Standard Parametrization of the PMNS Matrix

The PMNS matrix UPMNS is a unitary 3 × 3 matrix that describes the
mixing between neutrino flavor eigenstates (νe, νµ, ντ ) (of electron neutrino,
muon neutrino and tau neutrino, respectively) and mass eigenstates (ν1, ν2, ν3).
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Its entries Uαi are the amplitudes of mass eigenstates i = 1, 2, 3 in terms of
flavors α = e, µ, τ . It can be parametrized in terms of three Euler mixing
angles (θ12, θ23, θ13) and a CP-violating phase δCP as follows:

(2) UPMNS = R23(θ23; 0)R13(θ13; δCP )R23(θ12; 0)P,

Rij(θ;φ) being a rotation around the ij-axis and P containing Majorana
phases, if any. As a result:

(3)

UPMNS =





1 0 0
0 c23 s23
0 −s23 c23









c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13









c12 s12 0
−s12 c12 0
0 0 1



 ,

where sij = sin θij and cij = cos θij for ij = 12, 13, 23.
Multiplying the matrices yields the explicit form:

(4)

UPMNS =





c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13



 .

This matrix governs neutrino oscillation probabilities and is constrained
by experimental data from solar, atmospheric, reactor, and accelerator neu-
trino experiments. The current best-fit values and the values in the ranges
3σ ans 1σ(from NuFIT.org [22]) are given in Table 1.

But the position of the Dirac phase in (2) is pure convention. Rewriting
(2) in a more symmetrical form, PMNS matrix read [23, Equ. 5]

(5) UPMNS = R23(θ23;φ23)R13(θ13;φ13)R23(θ12;φ12),

UPMNS =




c12c13 s12c13e
−iφ12 s13e

−iφ13

−s12c23e
iφ12 − c12s23s13e

−i(φ23−φ13) c12c23 − s12s23s13e
−i(φ12+φ23−φ13) s23c13e

−iφ23

s12s23e
i(φ12+φ23) − c12c23s13e

iφ13 −c12s23e
iφ23 − s12c23s13e

−i(φ12−φ13) c23c13



 .

(6)

In this form the CP phase reads

(7) δCP = φ13 − φ12 − φ23.

3. Modular Tensor Categories and Anyon Models

Modular tensor categories (MTCs) are rich algebraic structures that arise
naturally in the mathematical formulation of topological quantum field the-
ory (TQFT) and rational conformal field theory (RCFT). An MTC consists
of a braided, balanced, and semisimple ribbon category with finitely many
simple objects, endowed with fusion and braiding rules that satisfy the pen-
tagon and hexagon identities. These structures provide a consistent frame-
work for modeling non-Abelian anyons, which are quasiparticles exhibiting
exotic exchange statistics in two spatial dimensions.
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In the context of topological quantum computation (TQC), MTCs play
a central role. They describe the topological degrees of freedom that can
be manipulated by braiding anyons to implement quantum gates [24]. Each
MTC defines a unitary representation of the braid group, with generators
acting on the fusion spaces of anyons. The matrices associated with these
representations—the F -symbols (for associativity of fusion) and R-symbols
(for braiding)—encode the fundamental algebraic data of the theory.

Among the simplest yet physically relevant MTCs are those associated
with the quantum group SU(2)k, where k is a positive integer known as the
level. Recent work claimed the possible use of such MTCs in the context of
explainable large language models [25]. The case k = 2 corresponds to the
Ising anyon theory, which supports Majorana fermions and has been exten-
sively studied both theoretically and experimentally. The author recently
found that braids of Ising anyons may be seen as corresponding to baryon
families in their ground and first excited states [26]. In contrast, the case
k = 4 gives rise to a richer set of non-Abelian anyons with more intricate
fusion and braiding properties [27–29].

Freedman, Bauer, and Levaillant investigated the computational power
of the SU(2)4 MTC and classified its finite image braid representations [20,
21]. The representation of the braid group on three anyons in the SU(2)4
theory yields a finite group of type D(9; 1; 1; 2; 1; 1) in the Conway–Atlas
notation, which is isomorphic to the small group (162, 14). This group is
a valid candidate for understanding CKM matrix for the mixing of quarks
as well as PMNS matrix [30, Tables 3 & A1]. Group (162, 14) may also
be generated by two braid matrices σ1 = R and σ2 = FRF−1, where F

and R are the aforementioned fusion and braiding matrices [25, Sect. 3.6].
Interestingly, while σ1 is diagonal, σ2 is complex and symmetric, making it
an ideal candidate for a physical observable such as the PMNS matrix.

In this work, we focus on the Takagi decomposition of σ2 as a route
to extracting the PMNS matrix. This approach connects the representa-
tion theory of braid groups, modular tensor categories, and particle physics
through the language of topological phases and quantum symmetries. The
accurate prediction of mixing angles and the CP phase from a topological
origin suggests a deep relationship between neutrino phenomenology and
low-dimensional quantum topology.

4. Braiding in the SU(2)4 Modular Tensor Category

The modular tensor category SU(2)k for integer level k encodes the
fusion and braiding properties of anyonic particles with spin labels j =
0, 12 , 1, . . . ,

k
2 . For k = 4, the simple objects of the category are labeled

by j = 0, 12 , 1,
3
2 , 2, with fusion rules subject to the truncation j1 ⊗ j2 =

|j1− j2| ⊕ · · ·⊕min(j1+ j2, k− j1− j2). The fusion rules are associative but
nontrivial due to the presence of a nontrivial F -symbol associator.

In Reference [20], an irreducible braid group representation B4 → U3 of
the 4-strand braid group B4 on the 3-dimensional unitary group U(3) is
derived. It is obtained by braiding the four SU(2)4 anyons of topological
charge 2 on a fusion tree of total topological charge 0 following the Jones-
Kauffman approach of Chern-Simons theory [31, 32].
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Braiding matrices for the SU(2)4 anyons are obtained as

σ
(4)
1 =





exp (7iπ9 ) 0 0
0 − exp (4iπ9 ) 0
0 0 − exp (7iπ9 )



 ,
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.

The matrix σ2 turns out to be symmetric but non-diagonal and com-
plex. This makes it a candidate observable for unitary diagonalization. Our
central claim is that the Takagi factorization of σ2,

σ2 = UDUT ,

with D real diagonal and U unitary, yields a unitary matrix U that is close
to the PMNS mixing matrix. Importantly, the phases and moduli of the
entries of U obtained from this decomposition are numerically close to the
experimentally measured values of neutrino mixing parameters, including a
nonzero θ13 ∼ 10◦ and a sizable CP phase δCP ∼ 240◦.

This perspective is novel in that it does not require a postulated flavor
symmetry group acting on the lepton families. Instead, the structure of
mixing arises naturally from the braiding of anyons in a topologically ordered
phase described by SU(2)4 MTC, where the fusion channel corresponds to
lepton generation entanglement.

In the next section, we provide the Takagi decomposition of σ2, analyze
the resulting mixing matrix U , and compare the resulting mixing angles and
CP phase with current experimental constraints.

5. Takagi Factorization and the PMNS Matrix

The Takagi factorization is a canonical decomposition of complex sym-
metric matrices. Given a complex symmetric matrix A = AT , the Takagi
factorization expresses A as

(8) A = UDUT ,

where U is a unitary matrix andD is a real, non-negative diagonal matrix.
This is analogous to diagonalizing a Hermitian matrix using a unitary trans-
formation, but it applies to symmetric (not necessarily Hermitian) complex
matrices.

In contrast to the standard eigenvalue decomposition, where a matrix A is
written as A = V ΛV −1 with Λ diagonal, the Takagi decomposition is unique
up to diagonal phase ambiguities in U and is always possible for complex
symmetric matrices. It plays a key role in quantum information theory and
the theory of complex normal modes.

In our context, the Takagi factorization is applied to the braid generator
σ2 = FRF−1 of the SU(2)4 modular tensor category. This matrix is complex
and symmetric, and therefore admits a Takagi decomposition.
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Under high-precision Takagi-Autonne decomposition [33], followed by the
exchange of the first two columns (corresponding to the exchange of flavour
states νe and νµ), we obtain

(9) σ2 = UDUT , D ∼ I,

where I is the identity matrix and U approximates the PMNS mixing matrix.
For the modulus we obtain

|U |braid ∼





0.852 0.491 0.176
0.359 0.706 0.609
0.278 0.509 0.773



 ,

leading to the values of angles θ13 ∼ 10o, θ12 ∼ 30o, θ23 ∼ 38o that match
the global-fit PMNS values within about 3σ [22].

To get a value of the CP phase we need to output the argument of the
unitary matrix

|Arg(U)|braid ∼





−44 60 28
171 77 166
117 65 −37



 ,

where the entries are given in degrees.
To approach the matrix (6) an extra shift angle ∼ 400 may be introduced

so that

|Arg(U)|braid ∼





−4 100 68
211 117 206
157 105 3



 ,

Up to the approximation ±40 we obtain the CP phase δCP = φ13 −
φ12 − φ23 ∼ (−68 + 100 + 206)0 = 2380, which falls in the range of current
experimental values [22]. Table 1 summarize the results.

Table 1. Model predictions vs. NuFIT 6.0 (normal order-
ing). Ranges are 1σ and 3σ limits quoted in Ref. [22]. In the
NuFIT global-fit plots the joint (θ23, δCP ) likelihood surface
exhibits two almost-degenerate local minima, often called “is-
lands.” (p) is for the primary island and (s) for the second
island.

Angles This work NuFIT best fit NuFIT 1σ NuFIT 3σ

θ12 30◦ 33.4◦ 32.7◦–34.2◦ 31.0◦–36.0◦

θ13 10◦ 8.57◦ 8.50◦–8.74◦ 8.27◦–8.95◦

θ23 38◦ 49.2◦ 48.2◦–50.2◦ 41.0◦–52.4◦

δCP 240◦ 197◦ (p) / 259◦ (s) 173◦–224◦ (p) / 247◦–286◦ (s) 116◦–345◦

This Takagi outcome is sensitive to numerical precision. When computed
at standard floating-point resolution without appropriate formatting, the
same matrix yields incorrect angles resembling democratic mixing [34]. The
accurate result only emerges with a Takagi routine with appropriate thresh-
old.
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The success of this minimal braid construction illustrates the nontriv-
ial role of the SU(2)4 anyonic braid structure in encoding realistic flavor
physics, without relying on continuous symmetry assumptions. The matrix
also reflects a robust encoding of CP violation via its complex eigenphases,
linking categorical gauge to observable leptonic parameters.

6. Discussion and Conclusions

Summary of results. In this work we have shown that the sole non-
diagonal braid generator σ2 = FRF−1 arising from the 4-anyon fusion
channel of the SU(2)4 modular tensor category encodes, through its Takagi
factorization, a unitary matrix U that numerically reproduces the observed
PMNS parameters within ∼ 3σ:

θ13 ≃ 10◦, θ12 ≃ 30◦, θ23 ≃ 38◦, δCP ≃ 240◦.

This agreement is achieved without invoking extra flavour groups, Frog-
gatt–Nielsen charges, continuous symmetries, or large parameter scans. In-
stead, it follows from the intrinsic topological data (F - and R-symbols) of a
well-studied anyon theory.

Physical interpretation.

(1) Topological origin of leptonic flavour. The result suggests that lepton-
generation mixing may originate from an underlying topological phase
whose low-energy effective description is the SU(2)4 MTC. In this
picture, different neutrino flavours correspond to distinct fusion chan-
nels, while braiding operations realise basis changes between flavour
and mass eigenstates.

(2) Built-in CP violation. The complex phases of σ2 naturally induce
a Dirac phase that emerges from the same braid data that fix the
mixing angles.

(3) Minimality. Only two generators {σ1, σ2} of the small group (162, 14)
are required. No additional degrees of freedom beyond those already
present in the SU(2)4 category enter the construction.

Phenomenological tests. The framework yields several falsifiable conse-
quences:

• Predicted Majorana phases. Although the Takagi decomposition
fixes U only up to three diagonal phases, our scheme singles out
a definite set via the eigenphases of σ2. These Majorana phases can,
in principle, be probed in next-generation neutrinoless double-beta
decay experiments such as LEGEND [35] and nEXO [36].

• Correlated angle shifts. If future long-baseline facilities (DUNE [37],
T2HK [38]) narrow the allowed region of (θ23, δCP ), the model pre-
dicts specific correlated shifts in θ12 and θ13, testable at JUNO [39]
and IceCube Upgrade [40].

• Absence of charged-lepton corrections. Because the PMNS matrix is
generated directly from a braid operator, charged-lepton rotations
should be small. Observables sensitive to Uντ therefore critically test
the proposal.
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6.1. Open questions.

(1) Embedding into a full quantum field theory. A concrete mechanism
linking the anyonic sector to Standard-Model leptons remains to
be constructed. Possible routes include effective 2D defects in 4D
space-time or holographic duals of 3D TQFTs.

(2) Quark–lepton unification. The same finite group (162, 14) has ap-
peared in attempts to model the CKM matrix [30]. Whether a single

MTC or a larger braided product can generate both CKM and PMNS
consistently is an enticing avenue.

(3) Higher-category generalisations. Extending the analysis to SU(2)k
with k > 4 or to other rank-2 MTCs could reveal a systematic clas-
sification of flavour patterns in terms of braid statistics.

6.2. Concluding remarks. Our findings point to an unexpected bridge
between the mathematics of low-dimensional topology and the flavour struc-
ture of elementary particles. Should future data continue to converge on the
parameter values predicted here, the case for a topological origin of neu-
trino mixing will strengthen considerably. Conversely, precise deviations
would illuminate where additional dynamics, perhaps related to symmetry
breaking, extra dimensions, or quantum gravity, must be incorporated. Ei-
ther outcome promises to deepen our understanding of both neutrinos and
topological quantum matter.

Appendix: check of consistency

An appendix is created to answer your comment that they may be a
wrong numerical result. But it is not the case. It is not needed to add this
appendix in the submission. It can be left private. It is enough to refer to
the Python script I attach, the same than before but with more outputs. To
illustrate these outputs and clarify the “black box” I give some details here.
You can see that everything in my submission is consistent. I do not need
to do any new change in my paper apart from adding the excellent reference
[1] from Ludl et al. I hope you will agree after a further look based on the
clarifications below.

The (complex symmetric) braiding matrix σ2 may be expressed with nu-
merical entries as

σ2 ∼





−0.08682409− 0.49240388j −0.54167522 + 0.45451948j 0.08682409 + 0.49240388j
−0.54167522 + 0.45451948j 0 −0.54167522 + 0.45451948j
0.08682409 + 0.49240388j −0.54167522 + 0.45451948j −0.08682409− 0.49240388j



 ,

After high precision Autunne-Takagi decomposition of σ2 one obtains

Ubraid ∼





0.24533512 + 0.42583594j 0.61016422− 0.5959268j 0.15523615 + 0.08334889j
0.15310808 + 0.68995426j −0.35477426 + 0.05858513j −0.5921935 + 0.14328606j
0.21599048 + 0.46080752j −0.1725632 + 0.33689141j 0.61656955− 0.46644684j



 .

It is straightforward to check that D ∼ U
†
braidσ2U

∗
braid ∼ I and σ2 ∼

UbraidU
T
braid (with 10−16 accuracy).

It follows that we get for the modulus
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|U |braid ∼





0.49145251 0.85289456 0.17619677
0.70673826 0.35957891 0.60928158
0.50891596 0.37851537 0.77313043



 ,

and for the argument (expressed in radians)

Arg(Ubraid) ∼





1.04811631 −0.77359412 0.49274304
1.35242448 2.97793603 2.90419697
1.13248297 2.04417369 −0.6476605



 ,

from which it can esaily be checked that Ubraid ∼ |U |braid exp [jArg(Ubraid)].
With exchange of the first two columns (corresponding to the exchange

of flavour states νe and νµ), we obtain the values of Section 5 for the PMNS
matrix.

If you check this consistency with the truncated values in Section 5, we
roughly get your Equation (1) (where the exchange of the two first columns
is still not applied)

Utrunc ∼





0.2451587 + 0.42541534j 0.60987782− 0.59493953j 0.15512461 + 0.08314057j
0.15324069 + 0.68916855j −0.35414818 + 0.05882233j −0.5918916 + 0.14333643j
0.21582387 + 0.45987396j −0.17226981 + 0.33646264j 0.61677343− 0.46596087j



 ,

Checking the consistency of the product D ∼ U
†
truncσ2U

∗
trunc we obtain

Dtrunc ∼





0.997580077 + 0.00072886j 0.000239137655 + 0.00013277j 0.000311917143 + 0.00045076j
0.000239263518 + 0.00013329j 0.997667434− 0.00057107j 0.000162417719 + 0.00056213j
0.000311865279 + 0.00045045j 0.000163024722 + 0.00056199j 0.999384486− 0.00059656j



 ,

which is still close to the identity matrix I and better than your calculation
(3). You may have done a different truncation than me.
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