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• Digital modeling and MDP to create diverse driving profiles for FCHAMR.
• Offline EMS with DP to balance FC degradation and hydrogen consumption.
• Transformer neural network to predict FC power trained by DP data.
• Online EMS with MPC to track optimal FC power obtained by prediction from Transformer network.
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A B S T R A C T
In the age of Industry 4.0, the automation of industrial processes is essential for enhancing
efficiency, productivity, and flexibility. Autonomous mobile robots are pivotal in this transfor-
mation, particularly in material handling and logistics operations within complex industrial en-
vironments. Fuel cell hybrid autonomous mobile robots, a type of autonomous mobile robot that
functions with hybridization of battery and fuel cell, offer significant advantages in operational
efficiency and sustainability. However, the commercialization of these vehicles is impeded by the
limited lifespan of fuel cells and the adverse effects of frequent startup-shutdown cycles, which
lead to significant fuel cell degradation and reduced operational efficiency. This study addresses
these challenges by presenting an innovative, health-aware energy management strategy tailored
for fuel cell hybrid autonomous mobile robots. The proposed strategy aims to balance hydrogen
consumption with fuel cell degradation through a comprehensive two-step approach. First, the
offline phase employs digital modeling combined with a Markov Decision Process to generate
long-term power profiles. This step includes the use of Dynamic Programming to optimize power
distribution, ensuring an efficient energy management strategy. Additionally, a transformer
neural network is trained on this optimized data to accurately predict the fuel cell’s power output.
In the online step, a Model Predictive Control technique is utilized to dynamically track the
fuel cell’s power output based on real-time predictions from the trained transformer model. This
enables the system to adapt to changing operational conditions, maintaining optimal performance
and extending the fuel cell’s lifespan. Our comparative analysis, based on simulations and
experimental tests conducted in a controlled laboratory environment, demonstrates that this
approach enhances both fuel cell lifespan and hydrogen efficiency. Specifically, our strategy
extends the fuel cell’s operational life by 9.5% and achieves a hydrogen consumption of 15.83
grams over a 600-second operational cycle, compared to benchmark methods. The novelty of
this research lies in its integration of advanced predictive models and control techniques, which
collectively optimize the operational efficiency and durability of fuel cell hybrid autonomous
mobile robots.

1. Introduction
1.1. Motivation

In the era of Industry 4.0, the automation of industrial processes has become a pivotal aspect for enhancing
efficiency, productivity, and flexibility. Autonomous Mobile Robots (AMRs) have emerged as key players in this
paradigm, revolutionizing material handling and logistics operations within indoor environments (Mohammadpour
et al., 2022). These AMRs are designed to navigate and transport goods, eliminating the need for manual intervention
and streamlining operations. Efficient navigation is crucial for AMRs to perform their tasks effectively within the
confines of industrial settings. Unlike traditional outdoor vehicles that operate in open spaces, AMRs encounter a
controlled and structured environment, characterized by narrow aisles, congested pathways, and potential obstacles

⋆This work was supported by the Industrial Research Chair Noovelia and by the Natural Science and Engineering Research Council of Canada.
∗Corresponding author

ghofrane.benarfa@uqtr.ca (G. Benarfa); ali.amamou@uqtr.ca (A. Amamou); sousso.kelouwani@uqtr.ca (S. Kelouwani);
marie.hebert@uqtr.ca (M. Hébert); lotfi.zeghmi@uqtr.ca (L. Zeghmi); samir.jemei@univ-fcomte.fr (S. Jemei)

ORCID(s): 0009-0007-2402-1593 (G. Benarfa)

First Author et al.: Preprint submitted to Elsevier Page 1 of 33



Online health-aware energy management strategy of a fuel cell hybrid autonomous mobile robot under startup-shutdown
condition

such as machinery, equipment, and human workers (Tian et al., 2024). In navigating these complex environments,
AMRs rely on two essential components: the local planner and the global planner. The local planner handles real-
time obstacle avoidance and immediate path planning, ensuring safe and efficient navigation through dynamic and
congested areas. Meanwhile, the global planner is responsible for determining the optimal path from start to destination,
taking into account factors such as distance, time, and energy efficiency. This dual-planning approach allows AMRs
to dynamically adapt to immediate environment changes while maintaining an overall efficient route.

Significant research has focused on improving the intelligence of AMRs in complex environments in planning,
navigation, mapping, scheduling, fleet management, etc. (Madridano et al., 2021), yet energy management has not been
extensively studied for these vehicles, leaving a significant gap in understanding and development in this critical area.
AMRs frequently use batteries as their main source of energy. Battery-powered AMRs provide substantial benefits
in terms of sustainability and minimizing environmental impact in indoor settings. By utilizing onboard batteries,
these vehicles eliminate emissions associated with traditional fuel-powered vehicles and offer the additional advantage
of quieter operation. However, battery-powered AMRs face challenges regarding limited battery life, and necessitate
frequent recharging which may result in operational downtime (Graba et al., 2023). Alternatively, fuel cell (FC)-based
AMRs present a promising solution to overcome the limitations of battery-powered systems (Cheng et al., 2022;
Poonthalir & Nadarajan, 2019; Wu et al., 2023). These vehicles offer extended operating times and can quickly refuel
by replacing the FC tanks (Farooq et al., 2023). However, FC-powered AMRs also face certain limitations, such as
slower dynamic performance, limited power density, inefficiency at low loads, limited cold start capability, and FC
degradation (Tsalapati et al., 2021).

Considering the advantages and disadvantages of both battery-powered and FC-based AMRs, hybridization
emerges as a practical approach. FC hybrid AMRs (FCHAMRs) combine the benefits of both battery and FC systems,
allowing for optimized energy utilization and prolonged operation within industrial settings (Ehsani et al., 2018). To
efficiently distribute power between these resources, hybrid systems require the presence of an energy management
strategy (EMS). The EMS plays a crucial role in managing the power flow between the battery and FC, ensuring that
each component operates within its optimal range. This strategic distribution not only enhances the overall efficiency
and reliability of the AMR but also extends the operational time, making FCHAMRs particularly well-suited for
demanding industrial environments.

However, despite these advantages, FCHAMRs still encounter significant challenges, particularly in their energy
efficiency and the degradation of their energy sources (Ghobadpour et al., 2020). Moreover, enhancing the energy
efficiency of the FCHAMR and ensuring the long-term durability of the FC are especially critical in dynamic
environments. These environments are characterized by operational constraints, workload variations, and diverse
mission requirements. In such settings, the vehicles are required to start and stop multiple times during operations. The
frequent cycling (startup-shutdown) of FCs in these conditions leads to heightened mechanical, thermal, and water
management stresses, that negatively impact the FC’s efficiency, lifespan, and overall performance. Figure 1 illustrates
these environmental challenges, including high collision risks, dynamic obstacles, continuous operations, and varied
loads, which collectively cause rapid fluctuations in power demand and contribute to excessive startup-shutdown cycles,
accelerating FC degradation.

Addressing the degradation issue within the EMS is essential for ensuring the seamless and prolonged functioning
of FCHAMRs in such demanding operational environments. The EMS must be capable of managing these stresses
effectively to sustain the longevity of the FC while optimizing the energy efficiency of the system. This involves
developing sophisticated algorithms and control strategies that can dynamically adjust to the varying operational
conditions, workload demands, and mission profiles of the AMR. The core research question is how to sustain
the longevity of the FC and optimize the energy efficiency of the system, all within the constraints of a dynamic
environment.
1.2. Related work

Energy management for FCHAMRs is still a relatively unexplored field, mainly due to the distinct challenges
presented by their dynamic operational environments. On the other hand, many EMSs have been developed for
outdoor FC hybrid electric vehicles (FCHEVs) to efficiently manage power distribution between the battery and the
FC (Eckert, Barbosa, Silva, Roso, Silva, & da Silva, 2022). To effectively explore and develop EMS for FCHAMRs,
it is crucial to examine these established EMSs for FCHEVs. Indeed, these EMSs can be broadly classified into rule-
based, optimization-based and data-based strategies (Zhao et al., 2022). A health-aware rule-based EMS consists of
rules designed based on human expertise to find efficient operating points that mitigate energy source degradation.
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Figure 1: industrial environment challenges

Rule-based EMSs are classified into two categories: deterministic and fuzzy strategies. Deterministic strategies, such
as the thermostat, frequency split, and state machine strategies, are practical for achieving multiple objectives, like
reducing system degradation and fuel consumption (Bayindir et al., 2011; Meintz & Ferdowsi, 2008). For example,
frequency split EMS decomposes power demand into frequency bands to ensure the FC operates within acceptable
ranges (Ibrahim et al., 2014). However, these methods lack flexibility and fail to obtain general solutions. Fuzzy
rule-based strategies use fuzzy inference systems to convert inputs and outputs into linguistic terms, which are then
defuzzified into control signals (Eckert, Barbosa, Silva, Roso, Silva, & Da Silva, 2022; Yavuz et al., 2015). For instance,
Ravey et al. used the FC degradation index as an input to a fuzzy logic controller to manage FC degradation (Ravey et al.,
2015). Martinez et al. combined expert insights using a Type-2 fuzzy system to handle rule uncertainties, controlling
FC reference current to meet power demand and maintain battery SoC (Martínez et al., 2013a). Despite their ease of
implementation, fuzzy strategies struggle to achieve optimality. In summary, rule-based strategies are easy to design
and implement for real-time FCHEV applications but achieving optimality is challenging.

Therefore, optimization-based strategies are introduced and are often classified into global offline optimization
and real-time optimization strategies (Ravey et al., 2012). Global offline optimization strategies aim to find the optimal
solution by solving a health-aware cost function, but rely on the entire driving cycle (Li et al., 2020; Sulaiman et al.,
2018). For example, Dynamic Programming (DP) divides the optimization problem into sub-problems and calculates
the cost function for each discrete time step, finding the minimum cost path (Xu et al., 2012). DP was utilized
in minimizing FC degradation, battery degradation, hydrogen consumption, and recharging costs. However, DP is
sensitive to driving cycles and computationally heavy. Additionally, DP can be a tool for evaluation and comparison,
generating data to train artificial neural networks for real-time near-optimal results. Stochastic search methods, such as
genetic algorithms (Jordán et al., 2022), particle swarm optimization (PSO) (Sarma & Ganguly, 2020), and simulated
annealing, are effective for multi-objective problems. These methods iteratively solve optimization problems, like
the multi-objective fitness function considering FC cost, capacity cost, and total energy cost (Herrera et al., 2016).
However, these methods are also cycle-sensitive and require predefined driving conditions. Consequently, real-time
optimization methods have been introduced to provide reactive and real-time control, ensuring efficient and adaptive
performance in varying operational conditions. Real-time optimization strategies, such as Equivalent Consumption
Minimization Strategy (ECMS) and Equivalent Degradation Minimization Strategy (EDMS), minimize a real-time
cost function (Zeng et al., 2021), often using Pontryagin’s Minimum Principle (PMP) for constrained optimization (Liu
& Liu, 2015). Model Predictive Control (MPC) is another real-time optimization approach that solves the optimization
problem at each sampling instant, involving multiple constraints in control actions (Y. Zhou et al., 2021). MPC has
been used to meet power demands and set battery SoC constraints to prevent degradation, reducing computational
costs compared to PMP and DP while handling moving horizons (Arce et al., 2009). He et al. propose a cost-
minimizing MPC-based power allocation technique for FC/battery hybrid buses, integrating FC lifespan and battery
aging models to balance hydrogen consumption and durability, and enhancing speed forecast accuracy (Martínez
et al., 2013b). Although MPC solutions are typically sub-optimal, combining dynamic programming can enhance
real-time decision-making and health management efficiency. Moreover, Adaptive Dynamic Programming (ADP)
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(Stojanović, 2023) can be utilized in EMS both offline and online; however, it often encounters challenges related to
computational efficiency, scalability, and convergence. Feedback-aided PD-type iterative learning control has been used
in EMS to iteratively optimize power distribution strategies by learning from historical data and previous operational
cycles, thereby improving accuracy and adaptability in dynamic and time-varying environments (Guan et al., 2023).
Additionally, composite adaptive finite-time fuzzy control (Sun et al., 2023) has been applied in EMS to achieve
robust and efficient energy management under varying and complex conditions, ensuring optimal performance despite
dynamic environmental changes. While optimization-based methods have proven effective in EMS, they are inherently
limited by random and model uncertainties. These uncertainties can impact the reliability of model predictions, as real-
world operational conditions often deviate from the predefined scenarios assumed during the optimization process.
Model uncertainties arise from simplifications or assumptions within the system’s mathematical representation,
potentially leading to discrepancies between predicted and actual system behavior. Similarly, random uncertainties, due
to unpredictable fluctuations in environmental and operational factors, introduce variability that these methods cannot
fully account for. Consequently, these factors can affect the consistency and robustness of optimization outcomes,
especially in dynamic environments where the EMS must continuously adapt to changing demands. Addressing these
uncertainties is critical for advancing EMS reliability and robustness in practical applications (Bomze & Gabl, 2023).

Data-based methods, known as intelligent control strategies, are well-suited for solving complex problems and
are widely used in EMS development (W. Chen et al., 2023; Huang et al., 2023; Vichard et al., 2020; X. Wang
et al., 2020). Various machine learning strategies, including neural networks (Z. Chen et al., 2013; Ming et al., 2023),
support vector regression (SVR) (Montero-Sousa et al., 2020), are documented in the literature. Song et al. propose a
degradation-adaptive EMS that dynamically adjusts power distribution based on the FC’s state-of-health (Song et al.,
2021). Using a novel degradation model, the EMS optimizes control to enhance energy efficiency and ensure real-
world feasibility. Q-learning (Fayyazi et al., 2023; R. Wang et al., 2023) has also been extensively used in EMS for
health-aware control, optimizing performance by learning from historical data and adapting to changing conditions.
Reinforcement learning (RL) has been widely applied in EMS. Hu et al. (Hu et al., 2023) propose a power distribution
optimization strategy for FCHEVs using deep reinforcement learning (DRL) and PMP to balance fuel economy, battery
durability, and FC durability, demonstrating significant reductions in degradation. However, machine learning methods
face practicality issues due to the heavy computational load of training datasets. Further methods, such as targeted
transfer learning through distribution barycenter medium (TTL-DBM) (Yang, Lei, Li, & Li, 2024), a federated learning
approach that facilitates decentralized data use without central storage, and label recovery and trajectory designable
network (LRTDN) (Yang, Lei, Li, Li, & Nandi, 2024), a model addressing label inconsistencies across domains, provide
advanced solutions for fault diagnosis. However, even with these advancements, they remain insufficient for fully
addressing the complex, real-time demands of EMS in dynamic environments. Furthermore, remote structural health
monitoring approaches, such as those using satellite sensing in outdoor infrastructure settings, present an interesting
perspective on managing structural health and risk in complex systems. For example, a recent study applied remote
sensing and GIS-based monitoring to urban infrastructure to assess risk and coordinate management strategies across
connected road systems (Troisi & Castaldo, 2022). Although primarily relevant to large-scale outdoor applications,
such techniques emphasize the potential of remote monitoring to enhance real-time decision-making.

A significant amount of research has been devoted to developing health-aware EMS for FCHEVs used in
outdoor applications. However, there has been less effort in the realm of FCHAMRs. Although FCHAMRs share
similarities with FCHEVs, they also have crucial differences, making the direct application of FCHEV algorithms
challenging. Unlike outdoor FCHEVs, FCHAMRs operate in dynamic environments marked by frequent obstacles
and the need for rapid trajectory adjustments. This dynamic nature necessitates continuous modifications to FCHAMR
trajectories, leading to multiple start-stop cycles for the FC. These repetitive cycles heavily impact FC efficiency and
overall lifespan, with start-stop degradation becoming more pronounced. Moreover, the dynamic environment causes
instantaneous changes in energy demand, measured in milliseconds, due to abrupt shifts in task requirements and
workload variations. Such rapid and unpredictable energy needs make it difficult for EMS to keep pace and make
precise real-time decisions. Consequently, there are several significant gaps in the research focusing on health-aware
energy management for FCHAMRs:

• There is a significant shortage of detailed and comprehensive datasets reflecting the specific operational
conditions of FCHAMRs, which hampers the development of robust EMS.

• Existing EMS algorithms are not equipped to handle the high level of adaptability required for FCHAMRs in
dynamic environments with instantaneous energy demand fluctuations.
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• There is a lack of EMS specifically designed to mitigate the negative impact of frequent start-stop cycles on the
FC’s efficiency and durability.

These gaps highlight the urgent need for tailored approaches that address the specific challenges and requirements
in industrial environments, emphasizing the importance of health-aware energy management and start-stop degradation
mitigation for FCHAMRs.
1.3. Contribution and organisation

Inspired by the logic of global and local planning in navigation, this article proposes a two-step EMS framework
that offers a compromise between FC degradation due to startup-shutdown cycles, battery efficiency, and hydrogen
consumption. It comprises two key steps: First, an offline FC health-aware EMS, which operates similarly to the
global planner. This EMS analyzes vast datasets and derives optimal, static solutions based on data created through
simulations with digital modeling and Markov Decision Process (MDP). This step creates a comprehensive EMS
considering all possible scenarios, and the output of the DP becomes the training ground for a Transformer neural
network, enabling precise FC power predictions. Second, an online EMS based on MPC operates like the local
planner. The trained Transformer model receives real-time data from the FCHAMR’s local planner and energy model,
then makes predictions about the power of the FC in a specific window. The MPC tracks the predicted FC power
while using information from the FCHAMR’s sensors and environment to adjust the EMS. By leveraging this two-
module approach, the proposed EMS framework seeks to optimize energy management for improved performance in
FCHAMRs, ensuring rapid system response.

According to the above discussion, the EMS proposed in this paper has three major contributions that highlight the
novelty and the relevance of the study:

• Developing methods to generate and utilize detailed and comprehensive datasets that reflect the specific
operational conditions of FCHAMRs. This is facilitated through the introduction of a generative digital
modeling-MDP approach, enabling rapid generation of diverse requested power profiles for FCHAMR and
eliminating the need for extensive manual data collection in industrial settings.

• Balancing hydrogen consumption and FC degradation induced by recurrent startup-shutdown cycles, ensuring
the longevity of the FC as well as the energy efficiency of the system, in dynamic industrial environments. This
contribution is introduced through the first step of the EMS including the optimal offline power distribution with
DP.

• Handling the high level of adaptability required for FCHAMRs by using an online MPC based EMS with input
from Transformer neural network power prediction, adaptive to real-time adjustments. This step allows the EMS
to effectively respond to instantaneous energy demand fluctuations in dynamic and unpredictable environments.

The rest of the paper is organized as follows. Section 2 describes the FC-battery hybrid system of FCHAMR in
detail. Section 3 describes the energy management strategy with FC health-aware control. Section 4 describes the
benchmarking strategies used to evaluate the proposed methodology and discusses the results. Section 5 summarizes
the conclusions and future challenges.

2. System description
This study utilizes a FCHAMR designed for industrial warehouse applications. Each driving wheel of the

FCHAMR is equipped with a brushless motor that features a single speed gearbox. To ensure balance, the aluminum
body frame is equipped with four castor wheels. Figure 2 shows the studied FCHAMR.
2.1. Hybrid powertrain model

The FCHAMR effects different set of tasks inside the warehouse under certain conditions and parameters: The
linear and angular velocities remain relatively constant over time. Table 1 shows the parameters’ values of the studied
vehicle.

Figure 3 shows the powertrain structure that comprises a 500-W Proton exchange membrane fuel cell (PEMFC)
and a Lithium battery pack.

In this modeling of the FCHAMR’s hybrid powertrain system, several assumptions were made to simplify the
analysis and focus on the key performance aspects:
First Author et al.: Preprint submitted to Elsevier Page 5 of 33
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Figure 2: The studied FCHAMR in the laboratory

Table 1
Technical characteristics of the studied FCHAMR

Parameter Value

Maximum speed 1𝑚∕𝑠
Maximum acceleration 0.08 𝑚∕𝑠2

Maximum load 1000 Kg
FCHAMR mass 100 Kg

Overall dimensions L =1.65 m | W = 0.72 m | H 0.25 m
Battery 24 V, 40 Ah

FC power 500 W
FC auxiliaries No compressors (open cathode FC), 5.2 L 𝐻2 tank, valves, pipe, fan for cooling and air supply

Motors Brushless (BLDC)

Figure 3: Parallel configuration of the FCHAMR

• The FCHAMR operates 24 hours a day, 5 days a week.
• The linear and angular velocities of the FCHAMR remain relatively constant over time.
• Air resistance and aerodynamic drag forces are negligible.
• The coefficient of rolling friction (𝜇) between the wheels and the ground is constant.
• The mass of the FCHAMR is uniformly distributed.
• The power consumption of auxiliary electronics (sensors, computer, etc.) is constant over time.
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• The efficiencies of the motors (𝜂mot), transmission (𝜂tr), and DC/AC converter (𝜂cont) are constant.
• The voltage reference and current draw for the auxiliary systems are constant.

The energy model of the FCHAMR can be expressed as Eq. 1:
𝐸𝐹𝐶𝐻𝐴𝑀𝑅 = 𝐸𝑚𝑜𝑡𝑜𝑟𝑠 + 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑎𝑢𝑥 (1)

Where 𝐸𝐹𝐶𝐻𝐴𝑀𝑅(𝑊 ℎ) represents the total requested energy for the FCHAMR, 𝐸𝑚𝑜𝑡𝑜𝑟𝑠(𝑊 ℎ) is the energy
requested by the motors, 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐(𝑊 ℎ) accounts for the kinetic energy, 𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑊 ℎ) refers to the rolling friction
energy of the FCHAMR wheels with the ground, and 𝐸𝑎𝑢𝑥(𝑊 ℎ) denotes the energy from the auxiliary electronics in
the FCHAMR, such as the computer and different sensors.

Firstly, the auxiliary electronics’ energy is modeled. It is represented by Eq. 2:

𝐸𝑎𝑢𝑥 = ∫
(

𝑉𝑟𝑒𝑓𝐼aux
)

𝑑𝑡 (2)

Where 𝐼𝑎𝑢𝑥(𝐴) denotes the amount of current withdrawn by the auxiliary components, and 𝑉𝑟𝑒𝑓 (𝑉 ) represents the
nominal reference voltage of the FCHAMR.

Furthermore, the rolling friction energy is incorporated into the model, and its calculation is detailed by equations
( 3- 6):

𝑃𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝜇𝑚𝑔(𝑣(𝑡) + 𝑏𝜔(𝑡)) (3)

𝑃𝐿𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝜇𝑚𝑔(𝑣(𝑡) − 𝑏𝜔(𝑡)) (4)

𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑃𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑃
𝐿
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (5)

𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = ∫ 𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑑𝑡 (6)

Here, 𝑃𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑊 ) and 𝑃𝐿𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑊 ) are the rolling friction power for the right and left wheels, 𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑊 ) is the
total rolling friction power, 𝜇 represents the coefficient of rolling friction, 𝑚(𝐾𝑔) is the total mass of the FCHAMR,
𝑔(𝑚∕𝑠2) is the gravitational constant, 𝑏(𝑚) denotes the axial length of the FCHAMR with a parallelepiped shape, while
𝑣(𝑚∕𝑠) and 𝜔(𝑟𝑎𝑑∕𝑠) respectively denote the linear and angular velocities of the FCHAMR’s center of mass. These
velocities can be obtained from the FCHAMR kinematics model. Eq. 7a and Eq. 7b illustrate how to calculate the linear
and angular velocities of the FCHAMR (𝑣 and 𝑤) based on the angular velocities of the wheels, which are measured
by odometry sensors:

𝑣 = 𝑟
2(𝜔𝑅 + 𝜔𝐿)

(7a)

𝜔 = 𝑟
2𝑏(𝜔𝑅 − 𝜔𝐿)

(7b)

In these equations, 𝑟(𝑚) refers to the radius of the FCHAMR’s driving wheel, and 𝜔𝑅(𝑟𝑎𝑑∕𝑠) and 𝜔𝐿(𝑟𝑎𝑑∕𝑠)
represent the rotational velocities of the wheels.

Thirdly, the kinetic energy is analyzed and modeled through equations 8a and 8b:
𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =

1
2
(

𝑚𝑣(𝑡)2 + 𝐼𝜔(𝑡)2
) (8a)
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𝐼 = 1
12
𝑚
(

𝑎2 + (2𝑏)2
) (8b)

Where 𝐼(𝐾𝑔.𝑚2) represents the inertia of the FCHAMR, and 𝑎(𝑚) denotes the geometric length of the FCHAMR
with a parallelepiped shape.

Finally, the motors’ power 𝑃𝑅𝑚 (𝑊 ) and 𝑃𝐿𝑚 (𝑊 ) is characterized using equations 9a and 9b for the mechanical
power of the brushless motors:

𝑃𝑅𝑚 =
(𝑇𝑅𝜔𝑅𝑚)
𝜂𝑚𝑜𝑡𝜂𝑡𝑟𝜂𝑐𝑜𝑛𝑡

(9a)

𝑃𝐿𝑚 =
(𝑇 𝐿𝜔𝐿𝑚)
𝜂𝑚𝑜𝑡𝜂𝑡𝑟𝜂𝑐𝑜𝑛𝑡

(9b)

Here, 𝜂𝑚𝑜𝑡, 𝜂𝑡𝑟 and 𝜂𝑐𝑜𝑛𝑡 respectively represent the efficiencies of the motors, transmission system, and the DC/AC
converter. 𝑇𝑅(𝑁𝑚)and 𝑇 𝐿(𝑁𝑚) signify the torque applied to the right and left motors, while 𝜔𝑅𝑚 (𝑟𝑎𝑑∕𝑠) and 𝜔𝐿𝑚
(𝑟𝑎𝑑∕𝑠) refer to the angular velocities of the right and left motors, calculated by Eq. 10a and Eq. 10b:

𝜔𝑅𝑚 = 𝑁𝑡𝑟𝜔
𝑅 (10a)

𝜔𝐿𝑚 = 𝑁𝑡𝑟𝜔
𝐿 (10b)

Where 𝑁𝑡𝑟 is the transmission ratio of the transmission system. The torque forces 𝑇𝑅 and 𝑇 𝐿 are presented by
equations 11a and 11b, respectively:

𝑇𝑅 = 𝑟 ⋅ 𝐹𝑅 (11a)

𝑇 𝐿 = 𝑟 ⋅ 𝐹𝐿 (11b)
Here, 𝐹𝑅 (𝑁) and 𝐹𝐿(𝑁) represent the forces applied to each wheel. These forces can be calculated from the

traction force 𝐹 (𝑁) and the rotation angle 𝜃 (𝑟𝑎𝑑) of the FCHAMR using Eq. 12:

𝐹𝑅 = 𝐹𝐿 = 1
2

𝐹
cos(𝜃)

(12)

The traction force 𝐹 of the FCHAMR can be determined assuming both 𝛼 and 𝐹𝑎𝑒𝑟𝑜(𝑁) to be null (applicable to
indoor flat surface scenarios) calculated in Eq. 13a- 13d:

𝑚𝑑𝑣
𝑑𝑡

= 𝐹 − 𝐹𝑟𝑒𝑠 (13a)

𝐹𝑟𝑒𝑠 = 𝐹𝑟 + 𝐹𝑎𝑒𝑟𝑜 + 𝑚𝑔 sin(𝛼) (13b)

𝐹𝑟 = 𝑚𝑔𝜇 cos(𝛼) (13c)

𝐹 = 𝑚𝑑𝑣
𝑑𝑡

+ 𝑚𝑔𝜇 (13d)
In summary, the power of the motors (𝑃𝑚𝑜𝑡𝑜𝑟𝑠(𝑊 )) and the energy consumed by the motors (𝐸𝑚𝑜𝑡𝑜𝑟𝑠(𝑊 ℎ)) are

obtained through equations 14a and 14b:
𝑃𝑚𝑜𝑡𝑜𝑟𝑠 = 𝑃𝑅𝑚 + 𝑃𝐿𝑚 (14a)

𝐸𝑚𝑜𝑡𝑜𝑟𝑠 = ∫ 𝑃𝑚𝑜𝑡𝑜𝑟𝑠𝑑𝑡 (14b)

Table 2 presents all the constants that have been used in equations ( 1- 13d).
First Author et al.: Preprint submitted to Elsevier Page 8 of 33



Online health-aware energy management strategy of a fuel cell hybrid autonomous mobile robot under startup-shutdown
condition

Table 2
Technical characteristics of the studied FCHAMR

Constant Value Description

𝑟 0.096 𝑚 Wheel’s radius
𝑏 0.72 𝑚 Axial length

𝜂mot 0.9 Motor’s efficiency
𝜂𝑡𝑟 0.93 Transmission’s efficiency
𝜂cont 0.9 Controller’s efficiency
𝑁𝑡𝑟 1 Transmission’s ratio
𝑔 9.80665 𝑚𝑠−2 Gravitational constant
𝜇 0.02 Rolling coefficient
𝑎 1.65 𝑚 Length of FCHAMR
𝑉ref 24 𝑉 Voltage reference
𝐼aux 3.65 𝐴 Auxiliary current

Figure 4: Horizon 500-W characteristic curves: Power and efficiency curve

2.2. FC modeling
This part introduces the hydrogen consumption model as well as the health model of the FC.

2.2.1. Hydrogen Consumption Model
The utilized FC is the PEMFC Horizon H-500. The characteristic curves of Horizon 500-W when new and after

degradation have been generated and shown in Figure 4 (Kandidayeni et al., 2021).
The FC system is modeled by a semi-empirical equation (Yavuz et al., 2015), presented in Eq. 15, as:
𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑛𝑒𝑟𝑠𝑡 − (𝑉𝑎𝑐𝑡 + 𝑉𝑜ℎ𝑚 + 𝑉𝑐𝑜𝑛𝑐) (15)

where 𝑉𝑐𝑒𝑙𝑙(𝑉 ) represents the FC cell voltage,𝐸𝑛𝑒𝑟𝑠𝑡(𝑉 ) is the Nernst voltage, 𝑉𝑎𝑐𝑡(𝑉 ) is the activation voltage, 𝑉𝑜ℎ𝑚(𝑉 )
represents the ohmic voltage, and 𝑉𝑐𝑜𝑛𝑐(𝑉 ) is the concentration voltage. The FC model is described by equations ( 16a-
16d):

𝐸𝑛𝑒𝑟𝑠𝑡 = 1.229 − 0.85 × 10−3 × (𝑇𝑓𝑐 − 298.15) + 4.3085 × 10−5 × 𝑇𝑓𝑐 × (ln𝑃𝐻2
+ 0.5 ln𝑃𝑂2

) (16a)

𝑉𝑎𝑐𝑡 = 𝜉1 + 𝜉2𝑇𝑓𝑐 + 𝜉3𝑇𝑓𝑐 ln
(

𝐶𝑂2
)

+ 𝜉4𝑇𝑓𝑐 ln
(

𝑖𝑓𝑐
) (16b)

𝑉𝑜ℎ𝑚 = −𝑖𝑓𝑐
(

𝜇1 + 𝜇2𝑇𝑓𝑐 + 𝜇3𝑖𝑓𝑐
) (16c)
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Table 3
Parameters for PEMFC Voltage Calculation

Parameter Symbol Value

Active Area 𝐴cell 50 cm2

Number of Cells 𝑁cell 36
Fuel Utilization 𝑈fuel 80%
Air Utilization 𝑈air 40%

Operating Temperature 𝑇fc 65°C
Nernst Voltage Coefficient 𝜉1 1.229 V

Activation Voltage Coefficient 𝜉2 -0.85 × 10−3 V/K
Ohmic Resistance Coefficient 𝜉3 4.3085 × 10−5 V/K

Concentration Voltage Coefficient 𝜉4 1
Diffusion Mechanism Parameter 𝛽 1.8
Flooding Phenomena Parameter 𝑘 2

𝑉𝑐𝑜𝑛𝑐 = 𝛼
(

𝑖𝑓𝑐
)𝑘 log

(

1 − 𝛽𝑖𝑓𝑐
) (16d)

Where 𝑇𝑓𝑐 (°C) is the FC temperature, 𝑃𝐻2
(𝑃𝑎) is the partial pressure of the hydrogen on the anode side, 𝑃𝑂2

(𝑃𝑎)
represents the oxygen pressure on the cathode side, 𝐶𝑂2

(𝑔∕𝐿) is the oxygen concentration, 𝑖𝑓𝑐(𝐴) represents the FC
current, 𝛽 represents a parameter related to diffusion mechanism (between 0.3 and 1.8), 𝑘 denotes a dimensionless
number related to the water flooding phenomena (between 1 and 4). 𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜇1, 𝜇2, 𝜇3, 𝛼 refer to the online
parameters proposed by the model (Kandidayeni et al., 2021). Table 3 shows the parameters for PEMFC voltage
calculation.

A model for calculating hydrogen consumption has been implemented, which is based on a 36-cell FC system. The
amount of hydrogen consumed, denoted as 𝑚𝐻2

(𝑘𝑔), can be determined using the methodology presented in (D. Zhou
et al., 2017) with Eq. 17a and Eq. 17b:

𝑚𝐻2
= ∫

𝑡

0

𝑃𝑓𝑐
𝜌𝐻2

𝜂𝑓𝑐
𝑑𝑡 (17a)

𝜂𝑓𝑐 =
𝑃𝑓𝑐
𝑃𝐻2

(17b)

In the above equations, 𝜌𝐻2
represents the chemical energy density of 𝐻2 (measured in MJ/kg), 𝑃𝑓𝑐(𝑊 ) is the net

power output of the FC system, 𝜂𝑓𝑐 represents the efficiency of the FC system, and 𝑃𝐻2
(𝑊 ) denotes the theoretical

power supplied by 𝐻2.
2.2.2. FC Health Model

The degradation of FC systems is a complex process influenced by various factors, spanning from electrochemical
to mechanical aspects. Previous research (J. Wang et al., 2022) has highlighted the degradation sources, emphasizing
catalyst layer, membrane layer, and gas diffusion layer degradation. When operating the FCHAMR, the FC is mostly
susceptible to: startup-shutdown, low load, load change, high efficiency region load, and high load situations. This
highlights the urgency for accurate and rapid predictive models to effectively manage FC health.

The FC voltage degradation can be calculated based on (H. Chen et al., 2015) as presented in Eq. 18:

𝑉𝑡 = 𝑁1
𝑐𝑦𝑐𝑙𝑒𝑣1 + 𝑇1𝑣2 +𝑁

2
𝑐𝑦𝑐𝑙𝑒𝑣3 + 𝑇2𝑣4 + 𝑇3𝑣5 (18)

Where 𝑁1
𝑐𝑦𝑐𝑙𝑒 represent the average startup-shutdown numbers per hour; 𝑇1 represent the average low load time

per hour; 𝑁2
𝑐𝑦𝑐𝑙𝑒 is the average load change cycles per hour, 𝑇2 is the average high efficiency region load operation

time per hour; 𝑇3 is the high load operation time per hour. 𝑉𝑡 stands for the average rate of voltage degradation per
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Table 4
Voltage Degradation Rate Under Different Operating Conditions (Cell Level) (He et al., 2022)

Operating Conditions Voltage Degradation Rate

Startup-shutdown 𝑣1 = 13.79𝜇𝑉 ∕𝑐𝑦𝑐𝑙𝑒
Low load 𝑣2 = 9.42𝜇𝑉 ∕ℎ

Load change 𝑣3 = 0.04234𝜇𝑉 ∕𝑘𝑊
High efficiency region load 𝑣4 = 4.881𝜇𝑉 ∕ℎ

High power load 𝑣5 = 11.67𝜇𝑉 ∕ℎ

hour while the vehicle is driving. 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 represents the voltage degradation rate under the corresponding
operating conditions, respectively (He et al., 2022). Table 4 shows the voltage degradation rate under different operating
conditions (BenChikha et al., 2022).

To predict the lifetime of the FC, we employ a FC health model based on Long Short-Term Memory (LSTM)
recurrent neural networks, as proposed in (H. Chen et al., 2015) and prior work of our laboratory (BenChikha et al.,
2022). LSTM enables accurate lifetime prediction by learning non-linear degradation patterns, eliminating the need
for in-depth understanding of FC degradation mechanisms and ensuring computational efficiency. The LSTM model,
previously developed and tested in our laboratory, is trained using 90% of the voltage data and it demonstrates a high
accuracy, with an overall Root Mean Square Error (RMSE) of approximately 0.0079 V. Figure 5 represents the resulting
FC and LSTM fitted voltage signals and lifetime forecasting obtained from our previous work.
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Figure 5: FC and LSTM fitted voltage signals and lifetime forecasting (previous work)

Furthermore, previous research has demonstrated that the shutdown process impacts the degradation rates (Zhang
et al., 2018). The work in reference (Yu et al., 2012) revealed that utilizing an air starvation method during shutdown
processes mitigates degradation, enhancing the FC’s longevity. Therefore, the air starvation shutdown process was
utilized for our experimental FC.
2.3. Battery model

In this study, a Lithium battery pack with a capacity of 40 𝐴ℎ is used as the energy storage unit in the hybrid
powertrain. Eq. 19 represents the open circuit voltage and Eq. 20 represents the internal resistance.

𝑈𝑜𝑐𝑣 = 𝑛𝑈1 (19)

𝑅𝑏𝑎𝑡 = 𝑛𝑅1 (20)
Where 𝑈𝑜𝑐𝑣(𝑉 ) is the open circuit voltage of the battery pack, 𝑛 is the number of cells in series, 𝑈1(𝑉 ) is the open

circuit voltage of the cell, 𝑅𝑏𝑎𝑡(Ω) is the internal resistance of the battery pack and 𝑅1(Ω) is the internal resistance of
the single cell.
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This paper uses the RINT model, which is shown in Eq. 21
𝑈𝐹𝐶𝐻𝐴𝑀𝑅 = 𝑈𝑜𝑐𝑣 − 𝑅𝑏𝑎𝑡𝐼𝑏𝑎𝑡 (21)

Therefore, the expression of battery current is as follows in Eq. 22:

𝐼𝑏𝑎𝑡 =
𝑈𝑜𝑐𝑣 −

√

𝑈2
𝑜𝑐𝑣 − 4𝑅𝑏𝑎𝑡𝑃𝑏𝑎𝑡
2𝑅𝑏𝑎𝑡

(22)

The 𝑆𝑜𝐶 expression of battery is as follows in Eq. 23:

𝑆𝑜𝐶(𝑡 + 1) = 𝑆𝑜𝐶(𝑡) −
100𝐼𝑏𝑎𝑡(𝑇 )Δ𝑡
3600𝑄𝑏𝑎𝑡

(23)

Where 𝑆𝑜𝐶(𝑡), 𝑃𝑏𝑎𝑡(𝑊 ), Δ𝑇 (𝑠), 𝑄𝑏𝑎𝑡(𝐴ℎ) are the battery state of charge, the battery power, the sampling interval
and the nominal battery capacity, respectively.
2.4. Power system topology

The authors present in their work (Tran et al., 2020), a comprehensive analysis of power system topologies for
FC electric vehicles. Among the various options, the active FC-battery topology comprises a unidirectional DC/DC
converter for the FC system and a bidirectional DC/DC converter for the battery system. The choice of this topology
is motivated by several factors (BenChikha et al., 2022). Firstly, this topology offers greater control over the FC and
battery behaviors through the DC/DC converters, enabling efficient management of power flow. Secondly, it proves
advantageous for recharging the battery. Lastly, it provides flexibility for future testing of alternative EMSs. However,
it is essential to acknowledge certain drawbacks associated with this power topology, such as its higher cost and
implementation complexity.

3. EMS with FC health control
This section introduces the design of an EMS that incorporates FC health-aware control. This strategy is composed

of two steps: offline and online. A schematic diagram of the proposed EMS is shown in Figure 6.

Figure 6: Proposed global methodology: Offline and Online modules

In this figure, 𝑃𝐷𝑇 represents the power profile obtained from digital modeling, while 𝑃𝑀𝐷𝑃 is the augmented
power profile derived from the MDP. The DP module outputs the optimal battery 𝑆𝑜𝐶 , 𝑆𝑜𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙, and the optimal
FC power profile, 𝑃𝑓𝑐_𝑜𝑝𝑡𝑖𝑚𝑎𝑙. The estimated 𝑆𝑜𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 and predicted requested power 𝑃𝑟𝑒𝑞_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are obtained
from the local planner and energy model and represent the estimated 𝑆𝑜𝐶 of the battery and the predicted requested
power. 𝑃𝑓𝑐_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the power of the FC as predicted by the Transformer model, and Δ𝑃𝑓𝑐 represents the FC control
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command calculated by the MPC. 𝑆𝑜𝐶(𝑘) and 𝑃𝑟𝑒𝑞(𝑘) denote the battery 𝑆𝑜𝐶 and requested power at instant 𝑘, which
serve as the state variables for the MPC. For further clarification, Figure 7 provides a visual representation of the entire
methodology’s flowchart.

Figure 7: Proposed methodology flowchart

3.1. Offline energy management strategy
The offline module of the EMS incorporates several advanced techniques. A digital model of the FCHAMR and

its environment is developed to rapidly acquire a comprehensive dataset describing the missions. This digital model
allows to efficiently collect extensive and realistic data. To further enrich the dataset, a MDP is employed to generate
requested power profiles based on input profiles derived from the digital simulations. The MDP outcomes serve as
inputs for an offline EMS, which utilizes the DP algorithm. This algorithm optimizes the power allocation decision
throughout the driving cycle. The optimized power allocation results obtained from the DP algorithm are subsequently
utilized to train a Transformer neural network. This neural network model is trained to accurately predict the FC power
output, given the requested power and the 𝑆𝑜𝐶 of the battery. This combination of the DP-optimized power allocation
and the Transformer neural network facilitates precise forecasting of the FC’s power output.
3.1.1. Digital platform for data creation

Simulation is extensively used in robotics due to its potential advantages in cost savings and reduced testing times.
One effective method for utilizing simulation is by creating a digital model of the FCHAMR and its surroundings
using the Robot Operating System (ROS) (Mattila et al., 2022). This section details the generative digital modeling
implementation, including specific algorithms and training procedures to enhance reproducibility and facilitate
adoption. In this study, we model the physical properties of the FCHAMR, including its structure, obstacles, and the
environment. Using a basic 2D map of the environment and a limited set of daily missions assigned to the FCHAMR,
the digital reenacts these predefined missions while ingeniously generating supplementary tasks. Each driving mission
is defined by key parameters such as the FCHAMR’s localization, goal position, speed, wheel currents, and mass
load. This approach eliminates the necessity of physical presence within the warehouse, enabling comprehensive data
collection and insights without being on-site.
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(a) (b)

Figure 8: Gazebo environment: FCHAMR designed model, environment designed model: (a) lateral view (b) top view

To create an accurate digital space (environment and FCHAMR models), a comprehensive data acquisition process
was undertaken. Real-time sensor data from the physical FCHAMR, including position, velocity, battery status,
and environmental parameters, were collected. These data streams were integrated to establish a synchronized and
up-to-date representation of the FCHAMR’s operating conditions. Gazebo, a versatile 3D simulator, was used for
environment modeling (Takaya et al., 2016). Gazebo generates sensor data, calculates physics, and creates specific
robot models. This tool allows us to adjust a robot’s dynamics realistically by modifying its inertial settings and
accurately replicates specific environments, making it an ideal choice for developing the 3D digital model of the
FCHAMR and its surroundings, including obstacles. Using Unified Robot Description Format (URDF) files, we
defined the robot’s kinematic and dynamic parameters, including mass, inertia, joint configurations, and sensor
placements. Gazebo’s physics engine, ODE (Open Dynamics Engine), was employed to simulate realistic interactions
between the robot and its environment. We incorporated various plugins for sensor simulation, such as LiDAR and
camera sensors, to generate accurate sensor data streams. Figures 8(a) and 8(b) illustrate the generated environment
and the digital model of the FCHAMR. The digital implementation involves several key algorithms. The Simultaneous
Localization and Mapping (SLAM) algorithm is used to generate a real-time occupancy grid map of the environment.
The SLAM algorithm processes data from LiDAR and camera sensors to build and update the map while keeping
track of the FCHAMR’s location within it (Bailey & Durrant-Whyte, 2006). For path planning, a two-stage planning
method is employed. The global planner utilizes algorithms such as A* or Dijkstra’s to find the optimal geometric path
to the next station while considering static obstacles. The local planner, Time Elastic Band (TEB) (Mohammadpour
et al., 2024), then refines this path by generating feasible trajectories using translational velocity and rotational velocity
(𝑣, 𝜔) as control signals to navigate dynamic obstacles and adhere to kinematic constraints (Malviya & Kala, 2021).

To ensure the digital space accurately mimics real-world conditions, the following training procedures were
implemented. Real-world sensor data were augmented using noise models to simulate various environmental conditions
and sensor inaccuracies, enhancing the robustness of the SLAM and path planning algorithms. The digital space
conducted numerous missions, varying parameters such as maximum velocity, dynamic obstacles, and load conditions
(e.g., adding three boxes, each weighing 18.5 𝐾𝑔). This variety in training scenarios ensures that the digital space can
handle a wide range of operational conditions. A continuous feedback loop was established, where data from the digital
simulations were compared with real-world mission outcomes. Discrepancies were analyzed to refine the algorithms
and improve the fidelity of the digital space.

The generated map, depicted in Figure 9, represents the operating environment as an occupancy grid obtained using
the SLAM algorithm. This figure illustrates one of the driving missions executed in the digital space. For the navigation
of the FCHAMR, the global planner determines the geometric path to the next station, and the local planner (TEB)
refines this path using control signals to follow the intended trajectory. The FCHAMR travels from the start station
(point 1), pauses at way-point 2, and continues until reaching the finish point (point 3). This mission is repeated with
varying parameters, and Figures 10(a) and 10(b) illustrate extracts of the driving cycle and the generated requested
power profile, respectively.
3.1.2. Markov Decision Process for data augmentation

This paper proposes the use of a MDP-based approach to generate multiple mission profiles from a set of randomly
collected mission profiles executed by the digital platform. The proposed approach works by analyzing the statistical
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Figure 9: digital simulation example mission: scenario with 3 way-points (FCHAMR moves from 1 to 3) with a maximum
linear velocity of 0.5𝑚∕𝑠2.
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Figure 10: Digital space simulation data: (a) Extract of the driving cycle for 10 cycles of the mission. (b) Extract of the
requested power profile for 10 cycles of the mission.

properties of the experimental mission profiles and using this information to construct a MDP. Then, this model
generates a large number of synthetic requested power profiles that are statistically similar to the original data. The
generated requested power profiles are used as inputs for the offline EMS. The use of multiple power profiles allows the
energy management control to consider a variety of possibilities, making it more capable of handling a wider range of
scenarios. In our health-aware energy management strategy for FCHAMRs, we utilize a MDP to augment the required
power data. This approach ensures that we can generate diverse and realistic power demand profiles, enhancing the
robustness of our predictive models and the overall energy management system (EMS). The MDP framework is defined
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by a tuple (𝑆,𝐴, 𝑃 ,𝑅, 𝛾), where𝑆 represents the states corresponding to power demands,𝐴 denotes the possible actions
for transitioning between power states, 𝑃 indicates state transition probabilities, 𝑅 represents the rewards associated
with state transitions, and 𝛾 is the discount factor. The states in our MDP correspond to different levels of required power
(𝑃𝑟𝑒𝑞) at each time step, reflecting the energy demand of the vehicle under various operational conditions. Formally,
let 𝑆 = {𝑃𝑟𝑒𝑞,1, 𝑃𝑟𝑒𝑞,2,… , 𝑃𝑟𝑒𝑞,𝑁} be the set of possible power levels. The actions represent possible adjustments to
the power demand, such as increasing or decreasing the required power, allowing the model to transition between
different power states. Let 𝐴 = {𝑎𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝑎𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑎𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛} be the set of possible actions. The transition probabilities
𝑃 (𝑃𝑟𝑒𝑞,𝑡+1 ∣ 𝑃𝑟𝑒𝑞,𝑡, 𝑎) define the likelihood of moving from one power state to another given a specific action. These
probabilities are derived from historical power demand data and reflect the typical changes in power requirements
over time. The reward function 𝑅(𝑃𝑟𝑒𝑞 , 𝑎) is designed to encourage transitions that lead to realistic and varied power
demand profiles, defined based on the similarity to observed data patterns and the diversity of generated profiles. To
generate augmented power profiles, we utilize the Bellman equations to model the state transitions and optimize the
generation process. The value function 𝑉 (𝑃𝑟𝑒𝑞) and Q-function 𝑄(𝑃𝑟𝑒𝑞 , 𝑎) are iteratively computed to determine the
optimal action at each state to maximize the expected cumulative reward. The value function is given by

𝑉 (𝑃𝑟𝑒𝑞) = max
𝑎∈𝐴

⎡

⎢

⎢

⎣

𝑅(𝑃𝑟𝑒𝑞 , 𝑎) + 𝛾
∑

𝑃 ′
𝑟𝑒𝑞∈𝑆

𝑃 (𝑃 ′
𝑟𝑒𝑞 ∣ 𝑃𝑟𝑒𝑞 , 𝑎)𝑉 (𝑃 ′

𝑟𝑒𝑞)
⎤

⎥

⎥

⎦

, (24)

and the Q-function is given by

𝑄(𝑃𝑟𝑒𝑞 , 𝑎) = 𝑅(𝑃𝑟𝑒𝑞 , 𝑎) + 𝛾
∑

𝑃 ′
𝑟𝑒𝑞∈𝑆

𝑃 (𝑃 ′
𝑟𝑒𝑞 ∣ 𝑃𝑟𝑒𝑞 , 𝑎) max

𝑎′∈𝐴
𝑄(𝑃 ′

𝑟𝑒𝑞 , 𝑎
′). (25)

Using the MDP framework, we generate new required power profiles by simulating the state transitions over a series
of time steps. The process involves initializing from an initial power state 𝑃𝑟𝑒𝑞,0 based on observed data, selecting
an action 𝑎𝑡 at each time step 𝑡 that maximizes the expected reward using the Q-function, transitioning to the next
power state 𝑃𝑟𝑒𝑞,𝑡+1 based on the selected action and the transition probabilities 𝑃 (𝑃𝑟𝑒𝑞,𝑡+1 ∣ 𝑃𝑟𝑒𝑞,𝑡, 𝑎𝑡), and repeating
the process for the desired number of time steps to generate a complete power profile. The data obtained with the
digital space encompasses a total of 86400 seconds, equivalent to approximately 24 hours of constant operation of the
FCHAMR. This dataset involves all the typical missions conducted by the FCHAMR throughout a day. To prepare for
random events and add stochasticity to the repeated missions, the MDP generates data that extends to 432000 seconds,
equating to 5 days of operation. By incorporating this extensive and varied dataset, we improve the predictive accuracy
and robustness of the EMS, ensuring better performance and longevity of the FC under various operational conditions.

This article uses the Kullback-Leibler (KL) divergence to evaluate the similarity between the generated data set
and the actual data, which is shown in Eq. 26:

𝐷𝐾𝐿(𝑁‖𝑄) =
∑

𝑖
𝑃 (𝑖) log

𝑁(𝑖)
𝑄(𝑖)

(26)

Where 𝑁 represents the probability distribution of the actual data and 𝑄 represents the probability distribution of
the generated data. The KL divergence 𝐷𝐾𝐿(𝑁‖𝑄) quantifies the variation between two probability distributions.
The results revealed a minor difference between the two distributions, with the KL divergence being close to
0.032.Therefore, the additional driving cycles generated using the MDP accurately represent the selected data.
3.1.3. Dynamic Programming for offline optimal power allocation

Implementation of an offline energy management system which uses the long-term database will be discussed in
this section based on (W. Zhou et al., 2018). The FCHAMR’s work modes can be classified into four types: (1) Start
Mode (SM), (2) Normal Work Mode (NWM), (3) Off Mode (OM), and (4) Battery Mode (BM). The unified state space
equation of the DP model for FCHAMRs is established in Eq. 27a - 27b:

𝑆𝑜𝐶(𝑘 + 1) = 𝑆𝑜𝐶(𝐾) −
𝐼(𝑘)𝑇𝑠

3600𝑄𝜂𝑠𝑔𝑛(𝐼(𝑘))
(27a)
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𝑃𝐹 (𝑘 + 1) = 𝑃𝑓𝑐𝑜𝑢𝑡 (𝑘) (27b)

𝑀(𝑘 + 1) = 𝜓(𝑃𝐹 , 𝑃𝑓𝑐𝑜𝑢𝑡 , 𝑘) (27c)
Where the state variable is x = [𝑆𝑜𝐶 , M, 𝑃𝐹 ], M represents the work mode, 𝑆𝑜𝐶 represents the 𝑆𝑜𝐶 of the

battery and 𝑃𝐹 denotes the power of the FC, the control variable is the power of the FC 𝑃𝑓𝑐𝑜𝑢𝑡 , 𝐼 expresses the battery
current,𝑄 expresses the battery capacity, 𝜂 expresses the coulombic efficiency of the battery, 𝑇𝑠 expresses the time step,
𝜓(𝑃𝐹 , 𝑃𝑓𝑐𝑜𝑢𝑡 , 𝑘), expresses the relationship between the work mode and the control variable. In addition, the change
rate of the FC system power Δ𝑃𝑓𝑐𝑜𝑢𝑡 , can be calculated in Eq. 28:

Δ𝑃𝑓𝑐𝑜𝑢𝑡 (𝑘) = 𝑃𝑓𝑐𝑜𝑢𝑡 (𝑘) − 𝑃𝐹 (𝑘) (28)
The parameters of the power system of a FCHAMR, including both state variables and control variables, must

satisfy the following constraints in 29:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑓𝑐,𝑚𝑖𝑛 < 𝑃𝑓𝑐 < 𝑃𝑓𝑐,𝑚𝑎𝑥
𝑃𝑏𝑎𝑡,𝑚𝑖𝑛 < 𝑃𝑏𝑎𝑡 < 𝑃𝑏𝑎𝑡,𝑚𝑎𝑥
𝑃𝑓𝑐𝑜𝑢𝑡,𝑚𝑖𝑛 < 𝑃𝑓𝑐𝑜𝑢𝑡 < 𝑃𝑓𝑐𝑜𝑢𝑡,𝑚𝑎𝑥
|Δ𝑃𝑓𝑐𝑜𝑢𝑡 | < Δ𝑃𝑓𝑐𝑜𝑢𝑡,𝑟𝑎𝑡𝑒𝑙𝑖𝑚𝑖𝑡
𝑆𝑜𝐶𝑏𝑎𝑡,𝑚𝑖𝑛 < 𝑆𝑜𝐶𝑏 < 𝑆𝑜𝐶𝑏𝑎𝑡,𝑚𝑎𝑥

(29)

Where 𝑃𝑏𝑎𝑡 is the battery power, 𝑃𝑓𝑐 is the FC power and Δ𝑃𝑓𝑐𝑜𝑢𝑡,𝑟𝑎𝑡𝑒 is the change rate of the FC power. The
subscripts max and min refer to the maximum and minimum limits of each variable.

The optimization objective for the EMS of FCHAMRs includes the cost of frequent startup-shutdowns of the FC
(𝐿𝑓𝑐), the cost of work mode switching (𝐿𝑀 ), the cost of hydrogen consumption (𝐿𝐻2

), and the cost of electric energy
consumption (𝐿𝑏𝑎𝑡) (2018).

Finally, the total cost is calculated by Eq. 30:

𝐽 = Φ(𝑥,𝑁) +
𝑁−1
∑

𝑘=0
𝐿𝑓𝑐(𝑘) + 𝐿𝑀 (𝑘) + 𝐿𝐻2

(𝑘) + 𝐿𝑏𝑎𝑡(𝑘) (30)

Where Φ(𝑥,𝑁) is the cost of the terminal constraint and𝑁 represents the total number of calculation step. The DP
algorithm for energy management consists of forward and backward calculations. During the forward calculation, for
each requested power (𝑃𝑟𝑒𝑞), a set of possible FC power outputs (𝑃𝑓𝑐) is generated, with each 𝑃𝑓𝑐 option associated
with a specific cost. For each 𝑃𝑓𝑐 , the SoC of the battery is computed, and each SoC is assigned a cost, creating a
tree of possibilities for 𝑃𝑓𝑐 and the corresponding 𝑆𝑜𝐶 values. The mode filter of the FC is then applied, with each
operational mode having an associated cost, further expanding the tree with additional possibilities based on the FC’s
mode. In the backward calculation, the algorithm evaluates the tree of possibilities and selects the combination of 𝑃𝑓𝑐 ,SoC, and FC mode that results in the lowest total cost. By summing the costs associated with each combination, the
optimal path is determined, ensuring a thorough exploration of all possible configurations and identifying the most
cost-effective strategy for managing the energy distribution in the FCHAMR.
3.1.4. Transformer neural network for FC power prediction

The Transformer neural network is the neural network model used for this application (Vaswani et al., 2017) in
order to predict the output power of the FC. The Transformer architecture has shown tremendous promise in forecasting
problems (Reza et al., 2022) thanks to its effective handling of sequential input. The Transformer design is particularly
suited for modelling time-series data because it can learn complicated correlations between inputs and outputs, and
can handle long-term dependencies. The dataset from DP (the requested power, the battery’s 𝑆𝑜𝐶 and the FC power)
is utilized as training data to train the Transformer model. The desired power and the battery’s 𝑆𝑜𝐶 are the inputs to
the neural network, while the output is the FC power. Algorithm 1 represents the Transformer-Based Power Prediction
Algorithm.
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Algorithm 1 Transformer-Based Power Prediction Algorithm
1: Input: SoC and P𝑟𝑒𝑞

𝐗 = {(𝑆𝑜𝐶𝑡, 𝑃𝑟𝑒𝑞𝑡)}𝑇𝑡=12: Output: Predicted power of the FC 𝑃𝑓𝑐
3: Initialization:
4: Initialize model parameters: embedding dimension 𝑑, number of heads ℎ, number of layers 𝐿, sequence length 𝑇
5: Define embedding layer 𝐸 ∶ ℝ2 → ℝ𝑑

6: Define positional encoding matrix 𝑃𝐸 ∈ ℝ𝑇×𝑑

7: Define multi-head attention layers 𝐴𝑖 for 𝑖 ∈ {1,… , 𝐿}
8: Define feedforward network 𝐹𝑖 for 𝑖 ∈ {1,… , 𝐿}
9: Step 1: Encoding of Inputs

10: Apply embedding to inputs: 𝐇0 = 𝐸(𝐗) + 𝑃𝐸 {Add positional encodings}
11: Step 2: Attention Layers
12: for 𝑖 = 1 to 𝐿 do

13: 𝐇𝑖 = 𝐴𝑖(𝐇𝑖−1) {Apply multi-head attention layer}
14: end for
15: Step 3: Feedforward Layers
16: for 𝑖 = 1 to 𝐿 do

17: 𝐇𝑖 = 𝐹𝑖(𝐇𝑖) {Apply feedforward network}
18: end for
19: Step 4: Prediction of Power
20: Extract the final representation: 𝐇𝑓𝑖𝑛𝑎𝑙 = 𝐇𝐿[∶,−1, ∶] {Use the last time step’s output}
21: Apply linear transformation to predict power: 𝑃𝑓𝑐 = Linear(𝐇𝑓𝑖𝑛𝑎𝑙)
22: return 𝑃𝑓𝑐 =0

The Transformer-based Power Prediction Algorithm is designed to accurately predict the power output of the FC
using a Transformer neural network. The algorithm leverages the SoC and the requested power (P𝑟𝑒𝑞) as input variables
to generate the predicted power output of the FC (P𝑓𝑐). The process involves several key steps, from initialization to
the final prediction, as outlined below: First, the input sequence, which includes SoC and P𝑟𝑒𝑞 over a time period 𝑇 , is
prepared. This sequence is denoted as 𝐗 = {(𝑆𝑜𝐶𝑡, 𝑃𝑟𝑒𝑞𝑡)}𝑇𝑡=1. The output of the algorithm is the predicted power of
the FC, denoted as P𝑓𝑐 .The algorithm begins with the initialization phase, where essential model parameters are set up. These parameters
include the embedding dimension 𝑑, the number of attention heads ℎ, the number of Transformer layers 𝐿, and the
sequence length 𝑇 . The embedding layer 𝐸 is defined to convert the input sequence into a higher-dimensional space,
facilitating better feature extraction and learning by the neural network. Additionally, a positional encoding matrix
𝑃𝐸 is defined to incorporate information about the position of each element in the sequence, which is crucial for
the Transformer model to understand the order of the sequence. Next, the multi-head attention layers 𝐴𝑖 for each
of the 𝐿 layers are defined. These attention layers allow the model to focus on different parts of the input sequence
simultaneously, capturing various aspects of the data. Similarly, the feedforward networks 𝐹𝑖 for each of the 𝐿 layers
are defined. These networks help in transforming the input data through multiple layers to extract complex features.
In Step 1, the input sequence is encoded. The embedding layer 𝐸 is applied to the inputs, and positional encodings
𝑃𝐸 are added, resulting in the initial hidden state 𝐇0. This step ensures that the model captures both the content
and positional information of the input sequence. In Step 2, the encoded inputs pass through the multi-head attention
layers. For each layer 𝑖 from 1 to𝐿, the hidden state from the previous layer 𝐇𝑖−1 is processed by the attention layer𝐴𝑖.This step allows the model to attend to different parts of the input sequence, effectively capturing dependencies and
relationships between the elements in the sequence. In Step 3, the output from the attention layers is further processed
by the feedforward networks. For each layer 𝑖 from 1 to𝐿, the hidden state𝐇𝑖 is transformed by the feedforward network
𝐹𝑖. This step helps in refining the features extracted by the attention layers, allowing the model to learn more complex
representations of the input data. In Step 4, the final representation of the sequence is extracted. The output from the last
Transformer layer 𝐇𝐿 is used, and only the representation corresponding to the last time step is extracted, denoted as
𝐇𝑓𝑖𝑛𝑎𝑙 = 𝐇𝐿[∶,−1, ∶]. This final representation encapsulates the information from the entire input sequence, focusing
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Table 5
Evaluation metrics results

Metric Value

RMSE 0.0081
MAPE 0.0921

on the most relevant features for the prediction task. A linear transformation is then applied to generate the predicted
power output of the FC, P𝑓𝑐. The linear transformation maps the high-dimensional representation to the desired output
dimension, generating the predicted power value. The algorithm concludes by returning the predicted power of the FC,
P𝑓𝑐 , which can be used for further analysis or as part of a larger energy management system. This Transformer-based
approach ensures accurate and reliable power predictions, leveraging the advanced capabilities of attention mechanisms
and deep neural networks.

To evaluate the accuracy of the predictions obtained from the different models, the following evaluation metrics
(RMSE: Root Mean Square Error and MAPE: Mean Absolute Percentage Error) were used in Eq. 31 and Eq. 32:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑦̂𝑖
)2 (31)

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑦̂𝑖
𝑦̂𝑖

|

|

|

|

(32)

Where 𝑦̂𝑖 is the predicted value and 𝑦𝑖 is the actual value. Table 5 shows the values of the metrics.
According to an examination of the outcomes from the evaluation of the prediction model, the outcome is positive

because it shows that the FC’s power output can be predicted rather accurately by the prediction model. Thanks to
the straightforward correlation in the data, the Transformer model can swiftly make predictions of the FC power in a
matter of milliseconds.
3.2. Online energy management strategy loop based on Model Predictive Control

The proposed methodology employs the local planner to predict the FCHAMR’s velocity by considering factors
such as static and dynamic obstacles, and the desired path. This prediction is then used in the energy model to calculate
the required power for achieving the desired velocity. Subsequently, this predicted power requirement is used as input
for the trained Transformer model to forecast the FC power.

In this work, a predictive model based on a non-linear time-invariant state-space representation of the FCHAMR is
utilized (Martínez et al., 2013b). It includes the battery’s SoC, the FC’s hydrogen consumption rate, and the system’s
power demand. MPC solves an optimization problem at each time step, aiming to minimize a cost function that
considers the deviation from the reference signal obtained from offline energy management. To account for system
dynamics, MPC operates in a receding horizon manner, optimizing over a finite time horizon. Control actions are
applied at each step, and the optimization problem is solved anew with updated measurements for subsequent time
steps.

This study adopts a model focusing on non-linear discrete-time control, where the state space functions and system
variables are defined as follows:

𝑥𝑘+1 = 𝐴(𝑘)𝑥(𝑘) + 𝐵𝑢(𝑘)𝑢(𝑘) + 𝐵𝑣(𝑘)𝑣(𝑘) (33)
𝑦(𝑘) = 𝐶𝑥(𝑘) +𝐷𝑢(𝑘) (34)

In the predictive control strategy, the length of the control horizon is set to be the same as its prediction horizon
𝐻𝑝, with a sampling period Δ𝑇 = 20 ms. Here, 𝑥(𝑘) is the state variable 𝑥(𝑘) = [𝑆𝑜𝐶(𝑘), 𝑃𝑓𝑐(𝑘 − 1)]𝑇 , 𝑢(𝑘) is the
control variable 𝑢(𝑘) = Δ𝑃𝑓𝑐(𝑘), 𝑣(𝑘) is the disturbance signal obtained from the offline EMS 𝑣(𝑘) = 𝑃𝑟𝑒𝑞(𝑘), and
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𝑦(𝑘) is the output variable 𝑦(𝑘) = [𝑆𝑜𝐶(𝑘), 𝑃𝑓𝑐(𝑘)]𝑇 . Meanwhile, the power balance relationship can be expressed in
the discrete form as follows:

𝑃𝑟𝑒𝑞(𝑘) = 𝑃𝑏𝑎𝑡(𝑘) + 𝑃𝑓𝑐(𝑘) (35)
Additionally, the battery SoC dynamics are modeled by first-order differential equations represented as:

𝑆𝑜𝐶(𝑘 + 1) = 𝑆𝑜𝐶(𝑘) −
100𝑃𝑏𝑎𝑡(𝑘)Δ𝑇

3600𝑄𝑏𝑎𝑡𝑈𝐹𝐶𝐻𝐴𝑀𝑅(𝑘)
(36)

Where 𝑈𝐹𝐶𝐻𝐴𝑀𝑅 denotes the FCHAMR voltage. The system matrices can be determined as follows:

𝐴(𝑘) =

[

1 100Δ𝑇
3600𝑄𝑏𝑎𝑡𝑈𝐹𝐶𝐻𝐴𝑀𝑅(𝑘)

0 1

]

(37a)

𝐵𝑢(𝑘) =

[

100Δ𝑇
3600𝑄𝑏𝑎𝑡𝑈𝐹𝐶𝐻𝐴𝑀𝑅(𝑘)

1

]

(37b)

𝐵𝑣(𝑘) =

[

− 100Δ𝑇
3600𝑄𝑏𝑎𝑡𝑈𝐹𝐶𝐻𝐴𝑀𝑅(𝑘)

0

]

(37c)

𝐶 =
[

1 0
0 1

]

(37d)

𝐷 =
[

0 1
] (37e)

The objective is to track the reference power of the FC. This can be accomplished by defining an objective function
𝐽 as follows:

𝐽𝑖 =
𝑖+𝐻𝑝
∑

𝑚=𝑖

(

𝑃𝑓𝑐,𝑟𝑒𝑓 (𝑚) − 𝑃𝑓𝑐(𝑚)
)2 (38)

where 𝑃𝑓𝑐,𝑟𝑒𝑓 represents the power of the FC from the reference signal.
To ensure the proper operation of the power sources, constraints should be established before making control

decisions. The constraints on the FC system are expressed as:
{

0 ≤ 𝑃𝑓𝑐(𝑘 + 𝑖) ≤ 𝑃𝑓𝑐
−Δ𝑃𝑓𝑐 ≤ Δ𝑃𝑓𝑐(𝑘 + 𝑖 − 1) ≤ Δ𝑃𝑓𝑐

(39)

where 𝑃𝑓𝑐 = 500 W and Δ𝑃𝑓𝑐 = 1 W/s.
The power allocation decision in the 𝑖-th receding horizon is expressed mathematically as:

min
Δ𝑃𝑓𝑐 (𝑘),𝑘=𝑖,…,𝑖+𝐻𝑝−1

𝐽 (40)

In this solution, for the optimal control sequence
[

𝑃 ∗
𝑓𝑐(𝑖),… ,Δ𝑃 ∗

𝑓𝑐
(

𝑖 +𝐻𝑝 − 1
)

]

, only the initial element Δ𝑃𝑓𝑐(𝑖)
is applied to the hybrid powertrain model, with the remaining elements discarded. At the next time step, the system
state is updated, and optimization is re-executed to determine the subsequent control action (He et al., 2022).
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4. Results and discussion
In the following section, the benchmarking techniques utilized for evaluation will be outlined, and the obtained

results will be subsequently discussed.
DP provides the optimal solution and is thus the gold standard for benchmarking. Other energy management

algorithms, particularly online algorithms, are compared with results from DP. The DP Benchmark is the one utilized
in 3-1-3 with the cost function indicated in Eq.(30) and constraints shown in Eq.(29). DP is highly effective in
delivering the most energy-efficient and health-preserving outcomes possible under offline conditions. However, DP’s
computational intensity and sensitivity to predefined operational cycles make it impractical for real-time application
in dynamic settings, where energy demand and system conditions fluctuate frequently. For this reason, DP is used here
as an offline benchmark.

Moreover, a multi-objective MPC-based strategy is adopted for comparison, as shown in (2022). The benchmark
MPC provides near-optimal solutions by solving a constrained optimization problem at each step, making it more
adaptable to real-time conditions compared to DP. However, due to the complexity of the MPC’s cost function,
execution times can be relatively long, which may limit its effectiveness in highly dynamic applications where fast,
responsive adjustments are required. Nevertheless, comparing the proposed method with both DP and the benchmark
MPC offers valuable insights into EMS performance, balancing optimality with practical real-time feasibility.

The performance of the developed EMS for the studied FCHAMR is assessed through both simulation and
experimental tests conducted in the lab of the Hydrogen Research Institute (IRH) at the University of Quebec in Trois-
Rivières. The experimental setup includes a comprehensive array of sensors for current, voltage, speed, and position
measurements, all interfaced with a real-time embedded control system running the developed EMS. Data acquisition
is handled by a National Instruments (NI) system, ensuring precise logging of sensor data and system states throughout
the experiments. The experimental environment is a dedicated section of the lab, equipped with multiple workstations
to simulate different operational stations for the FCHAMR. The driving cycle within the lab involves the FCHAMR
navigating between these stations, simulating typical transport tasks. During this cycle, the EMS dynamically manages
the power distribution between the FC and the battery based on real-time data inputs. Sensor data and control signals are
continuously recorded, with the data acquisition system capturing all relevant parameters for detailed post-experimental
analysis.

In parallel to these experimental tests, the EMS is also validated through MATLAB simulations. The same driving
cycle and system parameters are employed in the simulations to ensure consistency and allow for a thorough comparison
between experimental and simulated results. The MATLAB environment models the FC, battery, and FCHAMR
dynamics, providing a comprehensive validation of the EMS. Post-processing and analysis of the collected data from
both the experimental setup and MATLAB simulations are performed to evaluate key performance metrics, including
energy efficiency, FC hydrogen consumption, battery SoC variation, and overall system reliability. This rigorous
experimental setup and procedure ensure that the developed EMS is extensively tested under controlled conditions,
yielding valuable insights into its performance and potential improvements. The detailed approach validates the EMS’s
robustness and efficiency in managing the power demands of the FCHAMR.

Figure 11 represents the mission executed by the FCHAMR for testing the algorithms. The FCHAMR, moving at a
top speed of 0.8 m/s, efficiently navigates from station 1 to station 4 and stops at waypoints 2 and 3 while carrying three
loads. Throughout this process, the vehicle encounters occasional interruptions caused by both moving and stationary
obstacles. While the FCHAMR is moving, the local planner affects velocity predictions. Simultaneously, the required
power is calculated through the energy model and input into the Transformer model during each prediction step. This
model forecasts FC power, which is then supplied to the MPC for dynamic reference in control. Figure 12(a) and
Figure 12(b) illustrate the FCHAMR’s driving cycle across multiple iterations throughout the entire mission as well
as the requested power profile.

Figure 13 demonstrates the tracking of the FC’s reference power by the proposed MPC technique. The estimated
power production follows the reference power with minimal deviation. To maintain the FC at the optimal power level
while adhering to constraints, the MPC algorithm adeptly adjusts control inputs in real time. This dynamic adjustment
is pivotal for the efficient operation of the FC system.

Three control strategies are evaluated on the same requested power based on hydrogen consumption and startup-
shutdown frequency. Figure 14 denotes a comparison of the 𝑆𝑜𝐶 trajectory of the battery. All strategies have the same
initial 𝑆𝑜𝐶 and final 𝑆𝑜𝐶 which allows us to evaluate the performance of the FC at each method. Two similar SoC
profiles are obtained in the proposed MPC strategy (Proposed method) and the Benchmark MPC strategy due to the fact
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Figure 11: Testing scenario: Testing Mission: start station 1, waypoints 2 and 3, final station 4 (The blue lines represent
the links between the stations and the waypoints).

Table 6
Comparison of number of startup-shutdown cycles for 600s

Control strategies Number of startup-shutdown cycles

DP 1
Proposed method 3
Benchmark-MPC 10

that both of them rely on the same cost function. This indicates that both strategies aim to optimize the battery’s state
of charge in a similar manner. However, the Benchmark MPC still uses the battery more than the proposed method.

The results of the offline DP implementation, in Figure 15(a), have shown that it has achieved similar results
compared to the proposed method in Figure 15(b). Certainly, the interval between 10 to 30 seconds notably highlights
the smoother power profile of DP in contrast to the proposed strategy. This disparity can be attributed to the offline
nature of DP, allowing it to optimize power allocation comprehensively beforehand, ensuring a more consistent and
stable power output. In contrast, our online method might encounter slight fluctuations due to real-time adjustments
during the actual operation, leading to a marginally less smooth power profile in certain scenarios. Although the
proposed strategy might experience slight deviations, especially in response to abrupt changes, it still holds the potential
to yield results comparable to the ideal standards in real-time implementations.

Figure 15(c) illustrates the performance of the MPC-based benchmarking technique for managing the energy
of FCHAMRs. Compared to Figure 15(b), Figure 15(c) illustrates that the Benchmark MPC method displays more
noticeable startup-shutdown patterns all along the driving cycle and inaccurate fluctuations particularly within the
140 to 160-second window. Consequently, the inaccuracies stem from the method’s calculation approach, impacting
its ability to swiftly align with the power demands issued by the FCHAMR. Table 6 provides a detailed breakdown
of startup-shutdown occurrences for each methodology for the total driving cycle. The DP approach demonstrates
good stability with just one cycle. The proposed method strategy shows a slightly higher count of three cycles, while
the Benchmark-MPC strategy exhibits more variability with ten cycles. This comparison highlights the differences in
control decisions and precision among the evaluated strategies.

Figure 16 represents the total hydrogen consumption for each method. The DP method exhibits a relatively low
consumption rate of 12.97 g, indicating its efficient utilization of hydrogen during the 600-second operation. On the
other hand, the proposed method slightly increases the consumption to 15.83 g, suggesting a marginally higher demand,
potentially due to its real-time adaptive nature. In contrast, the Benchmark MPC displays a higher consumption rate at
20.13 g, emphasizing its limitations in optimizing hydrogen usage.
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Figure 12: Digital simulation data: (a) Driving cycle: Linear and angular velocity (b) Requested power profile.
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Figure 13: MPC Tracking Results compared with the reference signal

Figure 17 presents the estimated FC lifetime (in hours) for the three control strategies after repeating the driving
cycle for 10,000 iterations. The lifetime is predicted using the method in 2.2.2. Among them, the DP control strategy
exhibits a lifetime value of 2760 hours, followed closely by the proposed method strategy with 2697 hours and the
Benchmark-MPC strategy with 2412 hours. The findings indicate that the proposed method approach enhances the
FC lifespan compared to the Benchmark-MPC, extending it by 285 hours (9.5%). A relatively short timeline of 63
hours (2.1%) separates the lifetime optimization gap from the DP strategy. These outcomes underscore the proposed
strategy’s effectiveness in prolonging the FC’s operational life. Figure 16 and Figure 17 reveal a strategic compromise
to balance the degradation incurred by frequent startup-shutdown cycles with the overall hydrogen consumption in the
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Figure 14: Comparison of the 𝑆𝑜𝐶 trajectory of battery
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Figure 15: The results of FC power output for the three control strategies: (a) DP, (b) proposed method, (c) Benchmark-
MPC

proposed methodology. This equilibrium is important in real-world applications, where the longevity of the FC must
be safeguarded without compromising efficiency or power output.

The average running time for each step for the three real-time energy management techniques is shown in Table 7.
The Benchmark MPC method requires the most computation time (46.5 ms), highlighting its computational complexity.
The running time per step of the proposed strategy is 20 ms, which is equal to the period needed for the local
planner to update its value. The ability to deliver updates within the stringent time constraints of the local planner
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Table 7
Comparison of online running time

Control strategies Average running time per step (ms)

Proposed method 20
Benchmark MPC 46.5

(20 ms) demonstrates the light computational complexity of our methodology and ensures its integration into real-
time applications. This efficiency is paramount in dynamic environments, where rapid decision-making is essential.
Therefore, the proposed methodology optimizes FC performance with fast speed, setting it apart as a robust and
practical solution compared to the online benchmarking technique.
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Figure 17: Estimated FC lifetimes

To validate the effectiveness of the proposed EMS, paired t-tests (Rietveld & van Hout, 2017) were conducted to
compare the performance metrics of the proposed method against those of both the DP and benchmark MPC strategies.
Key performance metrics, including hydrogen consumption, startup-shutdown cycles, and remaining useful life, were
measured across multiple experimental runs to ensure reliability. Each metric was evaluated for normality with the
Shapiro-Wilk test before performing paired t-tests at a 0.05 significance level. The results showed that the proposed
EMS achieved a statistically significant reduction in hydrogen consumption compared to the Benchmark MPC, with a
mean difference of 4.3 g (𝑝 < 0.01 < 0.05), and a slightly higher but comparable consumption to the offline DP method,
with a mean difference of 2.86 g (𝑝 < 0.05). Regarding startup-shutdown cycles, the proposed method averaged 3
cycles, demonstrating a reduction compared to the 10 cycles observed in Benchmark MPC (𝑝 < 0.01 < 0.05), while
showing only a slight increase from the single cycle in the DP (mean difference of 2 cycles, 𝑝 < 0.05). For remaining
useful life, the proposed EMS achieved an increase of 285 hours over the Benchmark MPC (𝑝 < 0.01 < 0.05),
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with a more marginal difference of 63 hours compared to DP (𝑝 < 0.05). These statistical findings underscore that
the proposed EMS not only aligns closely with the offline-optimal DP method but also significantly outperforms the
Benchmark MPC in fuel efficiency, startup frequency reduction, and operational lifespan extension.

In addition to the simulation-based investigations, experimental tests were conducted using the same driving cycle
to validate the proposed approach. Figure 18 presents a comprehensive comparison between the simulation results
and the actual experimental data. The experimental findings align with the simulation results, displaying similar trends
with minor discrepancies observed. Through the highlighted rectangles, a subtle delay of roughly 3 seconds (monitored
within the experiment) has surfaced between observed results and their simulated counterparts. While seemingly minor,
this temporal gap offers insight into the complex interplay between reality and digital modeling, influenced by factors
like data processing and computational intricacies. However, the trend of the curves demonstrates that the proposed
method is still capable of tracking the results. The consistency between the simulation and experimental outcomes
highlights the potential of the approach to provide reliable and efficient energy management for FCHAMR, bridging
the gap between theoretical modeling and real-world application.
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Figure 18: Experimental results vs simulation results

Additionally, to ensure the robustness of our method, we evaluated its performance under varying operational
conditions. Table 8 presents the comparison metrics for standard, high load, low load, high velocity, low velocity, and
varied acceleration conditions on the mission shown in 11. These results further demonstrate the effectiveness of our
proposed method in optimizing energy management for FCHAMRs.

To further illustrate the performance of our proposed method, we conducted additional simulations varying the
mission duration. Table 9 compares the hydrogen consumption, startup-shutdown cycles, and remaining useful life
under different mission times for the three control strategies. The table highlights the superior performance of our
proposed method in terms of hydrogen consumption, startup-shutdown cycles, and remaining useful life compared to
the benchmark MPC.

The analysis of performance metrics under varying operational conditions, as seen in Table 8, provides a
comprehensive evaluation of the proposed method’s robustness and adaptability. In standard conditions, the proposed
method demonstrates a balanced performance with hydrogen consumption slightly higher than DP but significantly
lower than the Benchmark MPC. This indicates that while our method is not as optimal as the offline DP, it still offers
substantial improvements over traditional online methods.

Under high load conditions, the proposed method maintains its efficiency, showcasing its ability to handle
increased power demands with relatively modest increases in hydrogen consumption and startup-shutdown cycles
compared to DP. The remaining useful life of the FC under high load conditions further underscores the method’s
effectiveness in managing degradation, with a minimal reduction in lifespan. In low load conditions, the proposed
method performs exceptionally well, with hydrogen consumption and startup-shutdown cycles only slightly higher than
DP and significantly lower than the Benchmark MPC. This highlights the method’s capability to optimize energy usage
and reduce wear and tear on the FC during less demanding operations. When subjected to high velocity, the proposed
method again demonstrates its adaptability by effectively managing higher power requirements and maintaining a
reasonable hydrogen consumption rate. The startup-shutdown cycles are slightly higher than DP, but the remaining
useful life indicates that the method effectively mitigates the impact of increased operational speed on FC degradation.
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Table 8
Performance Metrics Comparison Under Varying Operational Conditions

Condition Metric DP Proposed Benchmark MPC

Standard
H2 Consumption (g) 12.97 15.83 20.13

Startup-shutdown Cycles 1 3 10
Remaining Useful Life (h) 2999.9799 2999.9695 2999.9470

High Load
H2 Consumption (g) 14.81 17.57 21.00

Startup-shutdown Cycles 2 4 11
Remaining Useful Life (h) 2999.9798 2999.9693 2999.9468

Low Load
H2 Consumption (g) 11.50 13.44 19.00

Startup-shutdown Cycles 0 2 9
Remaining Useful Life (h) 2999.9799 2999.9697 2999.9472

High Velocity
H2 Consumption (g) 14.53 18.11 22.24

Startup-shutdown Cycles 2 5 12
Remaining Useful Life (h) 2999.9798 2999.9692 2999.9465

Low Velocity
H2 Consumption (g) 12.01 15.10 19.78

Startup-shutdown Cycles 1 3 10
Remaining Useful Life (h) 2999.9799 2999.9694 2999.9471

Varied Acceleration
H2 Consumption (g) 13.02 16.22 20.81

Startup-shutdown Cycles 2 4 11
Remaining Useful Life (h) 2999.9798 2999.9693 2999.9468

Table 9
Performance Metrics Comparison Under Varying Mission Times

Mission Time Metric DP Proposed Benchmark MPC

600 seconds
H2 Consumption (g) 12.97 15.83 20.13

Startup-shutdown Cycles 1 3 10
Remaining Useful Life (h) 2999.97 2999.96 2999.94

4 hours
H2 Consumption (g) 51.88 63.32 80.52

Startup-shutdown Cycles 4 12 40
Remaining Useful Life (h) 2999.42 2999.26 2998.58

24 hours
H2 Consumption (g) 311.28 379.92 482.88

Startup-shutdown Cycles 24 72 240
Remaining Useful Life (h) 2996.52 2995.60 2991.48

5 days
H2 Consumption (g) 1556.40 1898.80 2414.40

Startup-shutdown Cycles 120 360 1200
Remaining Useful Life (h) 2982.60 2978.04 2957.40

Conversely, under low velocity conditions, the proposed method closely mirrors the performance of DP, with only
marginal differences in hydrogen consumption and startup-shutdown cycles. This consistency in performance across
different speeds showcases the method’s robustness in varying operational scenarios. In varied acceleration conditions,
the proposed method maintains a balanced performance, demonstrating its ability to handle dynamic changes in power
demands effectively. The hydrogen consumption and startup-shutdown cycles are well-managed, ensuring minimal
impact on the FC’s remaining useful life.

Additionally, the performance metrics under varying mission times, as illustrated in Table 9, further emphasize
the robustness and adaptability of the proposed method. As mission time increases, the advantages of the proposed
method become more pronounced. For shorter missions, such as 600 seconds, the proposed method shows a slight
advantage in hydrogen consumption and startup-shutdown cycles compared to the Benchmark MPC, maintaining
efficiency in short-duration tasks common in industrial environments. As the mission extends to 4 hours, the benefits
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become more evident. The hydrogen consumption remains significantly lower than the Benchmark MPC, highlighting
superior fuel efficiency. The reduced startup-shutdown cycles suggest better management of power transitions, crucial
for maintaining FC health and longevity. The longer remaining useful life of the FC under our method validates
the effectiveness of our energy management strategy. When the mission time is increased to 24 hours, the proposed
method continues to demonstrate its advantages with markedly lower hydrogen consumption and controlled startup-
shutdown cycles, ensuring minimal wear and tear on the FC. This efficiency is crucial for sustaining long-term
operations, with our method showing a significantly longer remaining useful life compared to the Benchmark MPC. For
extended missions, such as 5 days, the strengths of our method are even more pronounced. The significant reduction in
hydrogen consumption and controlled startup-shutdown cycles highlight exceptional fuel efficiency and effective power
management over prolonged periods. The substantial increase in the remaining useful life of the FC demonstrates our
method’s superior capability in preserving FC health and ensuring sustained operational efficiency.

5. Conclusion
In this paper, an online energy management strategy for a FCHAMR with FC health awareness control is proposed

to optimize hydrogen consumption and the startup-shutdown frequency of the FC, based on a two-module framework.
The following are some of the paper’s significant contributions:

• Developing methods to generate and utilize detailed and comprehensive datasets that reflect the specific
operational conditions of FCHAMRs. This is facilitated through the introduction of a generative digital
modeling-MDP approach, enabling rapid generation of diverse requested power profiles for FCHAMRs and
eliminating the need for extensive manual data collection in industrial settings.

• Balancing hydrogen consumption and FC degradation induced by recurrent startup-shutdown cycles, ensuring
the longevity of the FC as well as the energy efficiency of the system in dynamic industrial environments. This
contribution is introduced through the first step of the EMS, including the optimal offline power distribution
with Dynamic Programming (DP).

• Handling the high level of adaptability required for FCHAMRs by using an online Model Predictive Control
(MPC) based EMS with input from Transformer neural network power prediction, adaptive to real-time
adjustments. This step allows the EMS to effectively respond to instantaneous energy demand fluctuations in
dynamic and unpredictable environments.

Through analysis and real-time energy management, the proposed method has demonstrated significant outcomes.
Indeed, the developed approach has extended the FC’s estimated lifetime while optimizing hydrogen consumption.
The results underscore the effectiveness of our EMS, providing an optimal solution for the complex challenges faced
in FCHAMR applications.

However, the study also reveals several limitations and challenges that need to be addressed to further enhance the
EMS’s performance. Theoretical limitations include reliance on predefined models, which may not fully capture the
FC’s dynamic and complex behavior under all conditions. Optimization-based methods used in the EMS are subject
to both model and aleatory uncertainties, which can affect the reliability and robustness of the EMS in dynamic
environments. These factors impact optimization consistency, challenging reliable EMS performance under variable
conditions Practical limitations are evident in the experimental validation phase, where various real-world conditions
and disturbances must be considered to evaluate the EMS’s performance comprehensively. Ensuring robustness and
reliability in such diverse and unpredictable environments is a significant challenge. Addressing these challenges
requires innovative approaches to streamline data processing and integration while maintaining high computational
efficiency.

Future research will focus on several key areas to address these limitations. First, it should focus on utilizing
more sophisticated and flexible models that can adapt to a wider range of scenarios, addressing these uncertainties to
improve robustness. Second, Developing methods for continuously monitoring the FC state through online parameter
identification is crucial. This approach will create a more adaptive EMS, dynamically adjusting based on the FC’s
specific needs to ensure optimal operation under various conditions. Including the load mass in this process will
optimize real-time power distribution. Predicting the FC’s future health state will enhance the EMS by forecasting
degradation trends, anticipating maintenance needs, and extending operational life. Expanding the current digital space
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into a comprehensive digital twin containing all FCHAMR resources and operational data would significantly improve
EMS functionality. A fully integrated digital twin would enable real-time monitoring, analysis, and optimization by
mirroring physical system dynamics and environmental conditions, allowing for precise predictive adjustments in
energy management. Leveraging data from the digital twin will allow for proactive optimization of energy management
strategies, adapting to changing conditions to maximize efficiency and extend FC life. Finally, experimental validation
of the strategy after integrating all the modules is crucial to ensure effective operation in real-world conditions.
Addressing these areas will provide a more robust and efficient EMS for FC hybrid autonomous mobile robots, tackling
current limitations and future challenges. This research represents a significant step towards enhancing the energy
efficiency and operational longevity of autonomous mobile robots in industrial environments.

Nomenclature

General
𝛼 Angle of inclination (radians)
𝛽 Diffusion Mechanism Parameter (dimensionless)
Δ𝑡 Sampling interval (s)
𝜂𝑐𝑜𝑛𝑡 DC/AC converter efficiency (dimensionless)
𝜂𝑓𝑐 Efficiency of the FC system (dimensionless)
𝜂𝑚𝑜𝑡 Motor’s efficiency (dimensionless)
𝜂𝑡𝑟 Transmission system efficiency (dimensionless)
𝜇 Coefficient of rolling friction (dimensionless)
𝜔 Angular velocity of the FCHAMR’s center of

mass (rad/s)
𝜔𝐿 Rotational velocity of the left wheels (rad/s)
𝜔𝑅 Rotational velocity of the right wheels (rad/s)
𝜔𝐿𝑚 Angular velocity of the left motor (rad/s)
𝜔𝑅𝑚 Angular velocity of the right motor (rad/s)
𝐹𝑟 Rolling resistance force vector (N)
⃗𝐹𝑟𝑒𝑠 Resultant force vector (N)
𝐹 Force vector (N)
𝑣 Velocity vector (m/s)
𝜉1 Nernst Voltage Coefficient (V)
𝜉2 Activation Voltage Coefficient (V/K)
𝜉3 Ohmic Resistance Coefficient (V/K)
𝜉4 Concentration Voltage Coefficient (dimension-

less)
𝑎 Geometric length of the FCHAMR (m)
𝐴𝑐𝑒𝑙𝑙 Active area (cm2)
𝑏 Axial length of the FCHAMR (m)
𝐶𝑂2

Oxygen concentration (g/L)
𝐸𝑎𝑢𝑥 Energy from the auxiliary electronics (Wh)
𝐸𝐹𝐶𝐻𝐴𝑀𝑅 Total requested energy for the FCHAMR

(Wh)
𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 Rolling friction energy (Wh)
𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 Kinetic energy (Wh)
𝐸𝑚𝑜𝑡𝑜𝑟𝑠 Energy consumed by the motors (Wh)
𝐸𝑚𝑜𝑡𝑜𝑟𝑠 Energy requested by the motors (Wh)
𝐸𝑛𝑒𝑟𝑠𝑡 Nernst voltage (V)
𝐹 Traction force of the FCHAMR (N)
𝐹𝐿 Force applied to the left wheel (N)
𝐹𝑅 Force applied to the right wheel (N)

𝐹𝑎𝑒𝑟𝑜 Aerodynamic force (N)
𝑔 Gravitational constant (9.80665𝑚∕𝑠2)
𝐼 Inertia of the FCHAMR (𝑘𝑔 ⋅ 𝑚2)
𝐼𝑎𝑢𝑥 Current withdrawn by the auxiliary components

(A)
𝐼𝑏𝑎𝑡 Battery current (A)
𝑖𝑓𝑐 FC current (A)
𝑘 Flooding Phenomena Parameter (dimensionless)
𝑚 Total mass of the FCHAMR (kg)
𝑚𝐻2

Mass of hydrogen consumed (kg)
𝑁𝑐𝑒𝑙𝑙 Number of cells (dimensionless)
𝑁1
𝑐𝑦𝑐𝑙𝑒 Average startup-shutdown numbers per hour (di-

mensionless)
𝑁2
𝑐𝑦𝑐𝑙𝑒 Average load change cycles per hour (dimension-

less)
𝑃𝐿𝑚 Mechanical power of the left motor (W)
𝑃𝑅𝑚 Mechanical power of the right motor (W)
𝑃𝑏𝑎𝑡 Battery power (W)
𝑃𝑓𝑐 Net power output of the FC system (W)
𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 Total rolling friction power (W)
𝑃𝐿𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 Rolling friction power for the left wheels (W)
𝑃𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 Rolling friction power for the right wheels (W)
𝑃𝐻2

Theoretical power supplied by hydrogen (W)
𝑃𝑚𝑜𝑡𝑜𝑟𝑠 Power of the motors (W)
𝑃𝑂2

Oxygen pressure on the cathode side (Pa)
𝑃𝐻2

Partial pressure of hydrogen on the anode side
(Pa)

𝑄𝑏𝑎𝑡 Nominal battery capacity (Ah)
𝑟 Radius of the FCHAMR’s driving wheel (m)
𝑅1 Internal resistance of the single cell (Ω)
𝑅𝑏𝑎𝑡 Internal resistance of the battery pack (Ω)
𝑆𝑜𝐶 State of charge (dimensionless)
𝑇 𝐿 Torque applied to the left motor (Nm)
𝑇𝑅 Torque applied to the right motor (Nm)
𝑇1 Average low load time per hour (h)
𝑇2 Average high efficiency region load operation

time per hour (h)
𝑇3 High load operation time per hour (h)
𝑇𝑓𝑐 FC temperature (°C)
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𝑈1 Open circuit voltage of the cell (V)
𝑈𝑎𝑖𝑟 Air utilization (dimensionless)
𝑈𝑓𝑢𝑒𝑙 Fuel utilization (dimensionless)
𝑈𝑜𝑐𝑣 Open circuit voltage of the battery pack (V)
𝑣 Linear velocity of the FCHAMR’s center of mass

(m/s)
𝑣1 Voltage degradation rate under startup-shutdown

(13.79𝜇𝑉 ∕𝑐𝑦𝑐𝑙𝑒)
𝑣2 Voltage degradation rate under low load

(9.42𝜇𝑉 ∕ℎ)
𝑣3 Voltage degradation rate under load change

(0.04234𝜇𝑉 ∕𝑘𝑊 )

𝑣4 Voltage degradation rate under high efficiency
region load (4.881𝜇𝑉 ∕ℎ)

𝑣5 Voltage degradation rate under high power load
(11.67𝜇𝑉 ∕ℎ)

𝑉𝑡 Average rate of voltage degradation (V/h)
𝑉𝑎𝑐𝑡 Activation voltage (V)
𝑉𝑐𝑒𝑙𝑙 FC cell voltage (V)
𝑉𝑐𝑜𝑛𝑐 Concentration voltage (V)
𝑉𝑜ℎ𝑚 Ohmic voltage (V)
𝑉𝑟𝑒𝑓 Nominal reference voltage of the FCHAMR (V)
𝑁𝑡𝑟 Transmission ratio (dimensionless)
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