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Abstract:
Agent-based modeling is a powerful tool for simulating complex systems. Some

models require large amounts of agents and data. Most agent simulation platforms run
models sequentially and cannot run large models in a reasonable time, or at all. To
solve these problems, Agent-Based Models can use distributed computing to spread
the load and/or the data over multiple computing processors. The distribution of ABM
execution, however, raises complex issues that require advanced skills to be addressed.
This paper presents the concept of Distribution Model that aims at simplifying the
distribution of ABMs. Following the separation-of-concerns approach, we propose
a flexible framework enabling a clear division between the model thematic and its
distributional aspects, fostering greater flexibility in design and implementation. We
present a model-based agent distribution system that uses agents to address distribution
challenges. We demonstrate its capabilities using the GAMA platform, highlighting
how it simplifies model distribution for researchers.

Kkeywords Distribution High Performance Computing Agent-Based Model

1 Introduction
Agent-Based Models (or ABMs) are used to simulate and understand increasingly com-
plex real-world systems. As the scale of these models and the accuracy of the modeled
behaviors increase, performance issues arise when they are run sequentially in a single-
processor simulation, limited by the available computing resources, sometimes to the
point that it can no longer be executed in a reasonable time, or even at all. In this case,
the use of high-performance computing (HPC) techniques, by distributing the simu-
lation on multiple processors opens up interesting prospects for overcoming resource
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constraints and hardware limitations. Despite the intrinsically "distributed" nature of
multi-agent systems, these systems describe a single world with synchronized interac-
tions and shared data, making their distribution challenging. Distributed agent-based
simulations, for instance, require frequent synchronization operations, such as updat-
ing the state of the environment and the agent perceptions. The distribution of an
agent-based model is therefore neither a trivial task, nor easily generalizable.

Some platforms offer features to run ABMs on distributed architectures, including
HPC architectures. But the distribution remains tricky for modelers, since mastering
HPC platforms requires specialized expertise in parallel programming and distributed
systems. On the other hand, thanks to their rich, comprehensive environment, tradi-
tional agent-based modeling platforms (like GAMA or NetLogo) are easy to use, ac-
cessible to modelers of all experience levels and various disciplines. A new approach is
needed, to bridge the gap between modeler-oriented ABM platforms and the advanced
functionalities of distribution platforms (like RepastHPC or D-Mason).

This paper introduces a novel distribution paradigm for Agent-Based Models re-
lying on the separation of concerns: Distribution Model. By employing modeling
techniques, Distribution Model effectively decouples the ABM definition from its dis-
tribution process in two coupled models. The Distribution Model relies on the use of a
modeling language that empowers regular modelers to independently distribute their
ABMs, without requiring specialized technical skills.

In Section 2, we analyze gaps and weaknesses of existing ABM distribution plat-
forms from the modeler perspective. In Section 3, we detail the concept of Distribution
Model, the deployment of the model on a distributed architecture and how it improves
the development cycle. In Section 4, we present an implementation leveraging mod-
eling techniques using agents to solve specific distribution issues: Distribution Agent.
Section 5 presents our implementation of the concepts of Distribution Model and dis-
tribution agents in the GAMA platform. Section 6, concludes the article.

2 Understanding Modeler Challenges in ABM Distri-
bution

In the vast field of agent-based modeling and simulation, many platforms with vari-
ous goals and features exist but few allow for the distribution of models across mul-
tiple processors. Platforms such as NetLogo [33], GAMA [31], Evoplex, Jadex [5],
or Agentscript, allow the execution of agent-based models in a centralized computing
environment, without any particular distribution capability. In contrast, some platforms
are specifically designed to support distribution, such as FPMAS [6], PDES-MAS [29],
Pandora [25], MASS [9], FAME-core [26], or Care HPS [2]. Other centralized plat-
forms, such as DEVS-Suite [21], AnyLogic [4], Jade [1], offer the ability to execute
distributed models in specific scenarios. Finally, although initially centralized, some
platforms have since proposed developments allowing them to distribute a simulation,
such as Flame with FLAME GPU [22], Repast [20] with RepastHPC [11], and Mason
[18] with D-MASON [12]. The goal of this section is to examine modeler experiences
with existing distribution platforms, in order to propose solutions for enhancing acces-
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sibility and for lowering the required skill level for platform operation. Our analysis
starts with an exploration of the distribution platform strategies for mitigating the issues
arising from distributed ABM. The second phase of our analysis centers on the modeler
experience when distributing his own model with current distribution platform. This
analysis concludes by examining the current state of ABM distribution by trying to
argue in favor of separating the model development from the model distribution.

2.1 Platform Approaches to Address Distribution Issues
Platforms approach to distribute an ABM is to divide a simulation across several sim-
ulation processes that are, in turn distributed on distributed platform nodes. This dis-
tribution introduces several issues, each distribution platform offers unique approaches
to solving one or more of these issues. Some studies, [8], [24] present and compare
these different approaches. Based on these studies, we have identified four main issues
and we outline the strategies used by the different distribution platforms.

• Communication protocols ensure data exchange between processes in the distributed
system. Most of platforms rely on Message Passing Interface (MPI) [32] to exchange data
and messages between the simulation processes. Flame’s communication mechanism is
based on a synchronized message board that operates on a publish-subscribe paradigm
[10].

• Partitioning is the strategy used to divide the environment and agents across the simu-
lation processes. The majority of platforms use a grid approach, assigning each grid cell
and its agents to a process. CareHPS proposes both a grid-based approach and a voronoid-
based partitioning [27]. Flame [19] and FPMAS uses a graph system to assign agents to
processes.

• Load balancing dynamically redistributes, the workload evenly among processes, to op-
timize performance. Grid-based approaches use load balancing to adjust cell sizes. For
graph approach, FPMAS proposes different solutions using Zoltan library. Flame’s strat-
egy utilizes round-robin algorithm, storing agents in a queue and cyclically assigns them
to processes. It achieves low-cost execution time but requires costly global MPI commu-
nications.

• Data synchronization mechanism provides agents with the most up-to-date information.
FPMAS introduces synchronization modes [7], interactions are classified according to
read/write operations and location (local or remote). Other platforms strategy for data
synchronization can be described using FPMAS definition: GhostMode for RepastHPC,
GlobalGhostMode for D-Mason. Data synchronization in Flame relies on synchronized
message boards. Pandora divides each cell in four equal sub-portions, each process cycli-
cally runs the portions in the same order to avoid conflicts.

2.2 ABM Distribution: a Complex and Time-Consuming Task
A modeler, with limited distribution experience and working on an ABM facing perfor-
mance issues, may encounter difficulties with the previously listed issues. Using one
of the distribution platforms should be the solution in this case. Current distribution
platforms are however constrained by their approaches to addressing distribution, each
offering a single solution for each issue, limiting their flexibility and adaptability. This
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forces modeler to carefully choose the distribution platform as the platform might not
suit the ABM needs and requires in-depth knowledge and experience in application
distribution. Finally this may discourage modelers from using them to distribute their
models. [23] analyze the characteristics of existing distribution platforms and, among
them, in the programming languages. Interestingly, the programming language used to
develop the platform is identical to the language used by the modeler to distribute its
model: RepastHPC uses C++/ReLogo, D-Mason and JADE use Java, PDES-MAS and
FPMAS use C/C++ and Flame uses C and XML-Schema. While widely used, general
programming languages may not suit modelers accustomed to user-friendly modeling
languages like NetLogo or GAMA, which offer high-level abstractions. Furthermore,
even with distribution-focused platforms (more like libraries than IDEs), modelers still
face a significant distribution workload.

Note that a large number of projects implements tailored approaches: e.g. strip-
based [3], voronoid-based [27], graph-based [15] [16]. Other works implement tailored
load-balancing algorithm: strip [13] or proximity criteria [28].The existence of custom
solutions indicates that distribution platforms may not be readily adaptable to diverse
needs, forcing modelers to develop their solutions. For easier ABM distribution, mod-
elers need user-friendly platforms with integrated distribution features and multiple
solutions tailored to model characteristics, minimizing the technical workload.

2.3 Modeling and Distributing: an Amalgam?
In the current distribution platforms, the separation of concerns principle stated by Di-
jkstra [14] is not respected: platforms require modelers to change the code of their
models to incorporate the necessary code for their distribution. However, the link be-
tween model and distribution code can harm maintainability and adaptability. Incorrect
distribution can lead to result changes, inconsistencies, or errors. Assessing this com-
bined ABM/distribution is complex and requires distribution and modeling expertise.

ABMs are designed for adaptability through modifiable agent properties and behav-
iors for new features. However, embedding distribution functions complicates system
changes, as even minor modifications might necessitate altering distribution functions,
risking errors. Prior points highlight the necessity of a new paradigm to facilitate sim-
ulation distribution with minimal model changes. We argue for a clear boundary be-
tween the modeling and distribution to eliminate possible confusions and facilitate the
distribution process. To our knowledge, only [30] separates the modeling from its dis-
tribution. It uses agent-based models to manage distribution aspects, such as model
deployment, communications, consistency (data projection), flexibility and load bal-
ancing.

3 Decoupling Thematic Modeling from Distribution
We facilitate model distribution by decoupling the Thematic Model (the phenomenon
being modeled) from the Distribution Model, a separate agent-based system for dis-
tributing it. To distribute the Thematic Model, we deploy an instance of the Thematic
Model and the Distribution Model on each available core.
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Figure 1: Thematic and Distribution Models: an instance of each model is run on each process.
Distribution models communicate and exchange data/agents.

Figure 1 presents the positioning of the instances of the Distribution Model and
Thematic Model on a distributed environment. The Distribution Model directly ac-
cesses the data from the Thematic Model through a weak coupling relationship [17].
The Distribution Model orchestrates distribution, retrieving Thematic Model data via
its getters and setters. The primary innovation of the Distribution Model lies in the
complete outsourcing of distribution functions and of the algorithms addressing distri-
bution issues, which until now were implemented directly within the Thematic Model.

4 Modeling Technique for the Distribution
In this section, we present how we use agent modeling techniques in the Distribution
Model to solve distribution issues for the Thematic Model. The use of a modeling lan-
guage for Thematic and Distribution Models provides an elegant and efficient solution
to simplify the distribution process for modelers. Note that this approach could also
give modelers an opportunity access to the distribution level, improve their distribution
skills and use their model knowledge to efficiently distribute their model.

Since the Distribution Model uses a modeling language and our context is agent-
based, it’s logical to base it on agents. Thus, we introduce Distribution Agents for dis-
tribution challenges. Each Distribution Agent handles a specific distribution issue. We
define: Communication Agent (inter-instance communication), Partitioning Agent
(initial partitioning and its issues), Load Balancing Agent (dynamic workload distri-
bution), and Data synchronization Agent (data consistency during interactions)

Figure 2 illustrates a Distribution Model instance that ensures the decoupling be-
tween the modeling and the distribution. The figure shows the handling of distribution
issues outside of the Thematic Model. Distribution Agents directly access Thematic
Model data via their co-model relationship. The Distribution Model depends on Dis-
tribution Agents to gather data from the Thematic Model and to deploy distributed
algorithms to effectively distribute the simulation.
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Figure 2: Internal functioning of a Distribution Model instance: Distribution Agents accessing
the data of the Thematic Model instance.

Figure 3: Synchronized Execution of Thematic and Distribution Models.

4.1 Models Execution and Synchronization
The composition of the Distribution Model is closely linked to the Thematic Model,
as the issues to be managed depend on the Thematic Model characteristics. Thanks
to the modular design of the Distribution Model, the modeler can select the relevant
Distribution Agents needed to distribute its Thematic Model.

When instantiating the Distribution Model (DM) and Thematic Model (TM) pro-
cesses, the initial step is to create the DM environment and the Distribution Agents.
The DM environment is identical to the TM environment. The Thematic Model’s spe-
cific challenge dictates the Distribution Model’s initial setup. For instance, complex,
dynamic environments might require fine-grained partitioning, while many indepen-
dent agents might necessitate even distribution for parallel execution.

DM are controlling the execution of the TM and can trigger the execution of the
next cycle of the TM. After running this cycle, the DM instance can synchronizes with
the other DM instances. Note that, depending on the model needs, a DM instance
can run several cycles of its TM. Figure 3 shows the model pair’s cycle progression,
illustrating that TM instances can execute multiple times between DM cycles (e.g.,

6



once between the first two, twice before the third). Within the red section (DMI) in
Figure 3, Distribution Agents have the capability to synchronize, communicate, and
execute their behavior, thereby enabling Distribution Agent behavior to be triggered.
For example, the Load Balancing Agent behavior can detect an unbalanced workload
between processes and trigger a new partitioning.

4.2 Distributed Algorithms with Distribution Agents
The Distribution Model and the agent framework are used to implement distributed
algorithms, synchronized at each execution step, in distributed agent instances. Diverse
solution outlined earlier in Section 2 can be used.

For illustrative purposes, we detail a Partitioning Agent in the context of environ-
mental partitioning in Alg 1. The K-MEAN algorithm divides a dataset into K clusters,
based on data point proximity. It can be used to group spatially close agents onto the
same process. When the Load Balancing Agent detects an uneven workload distribu-
tion among processes, it triggers the instance of the Partitioning Agent on each process
to define a new partition. Each instance of the Partitioning Agent manages a centroid
that defines the boundaries of its process.

The behavior of each instance of the Partitioning Agent can be defined as follows:
• sendCentroid(): Partitioning Agent broadcasts the coordinates of its centroid to

all other Partitioning Agents located on different processes

Algorithm 1 Behavior of the Parti-
tioning Agent using a distributed K-
MEAN for partitioning
Output: An updated partition for each
process

1: sendCentroid()
2: getClosestCentroids()
3: exchangeDataPoint()
4: updateCentroidLocation()

• getClosestCentroids(): Partitioning
Agent computes the distance be-
tween each data point, on the cur-
rent process, and all the centroids.
It then assigns point agents to the
nearest cluster centroid to be mi-
grated later.

• exchangeDataPoint(): The Parti-
tioning Agent asks the Communi-
cation Agent to migrate agents that
are closer to another centroid lo-
cated on a different process.

• updateCentroidLocation(): Partitioning Agent updates the centroid coordinate
based on newly assigned data point agents. The new location is the average
location of the data point agents on the current process.

This distributed algorithm is one example of the potential applications of the distributed
model approach to solve issues related to ABM distribution. By using Distribution
Agents, we can effectively describe and implement various partitioning techniques,
including partitioning used by previously presented distribution platforms.

4.3 Bridging the Gap Between Modelers and Distribution
The modularity of the architecture and its distribution-based decomposition allow for
the modelers to adopt various approaches to use and to customize Distribution Agents,
depending on their individual skills and needs, and to adapt distributed algorithms to fit
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specific Thematic Models needs. In addition, whenever new Distribution Models are
developed, they can be added to a base of solutions to be reused at the following levels:

• Agent Library: Modelers have access to a library of ready-to-use Distribution Agents
with pre-defined behaviors, giving them access to ready to use DM library. These agents
can be directly used in a DM without requiring any additional work for the modeler.

• Agent Personalization: Modelers can modify the behavior, skills, actions and features
of existing Distribution Agent from the Agent Library to suit their specific needs.

• Advanced Agent Development: Modelers can customize the distribution of their ABM
through modeling or design customized solutions with new Distribution Agents.

5 Distribution Model Implementation With the GAMA
Platform

Having explored the fundamental concepts of the Distribution Model, we now focus on
the concrete implementation of Distribution Models. In this regard, the GAMA plat-
form proves to be a suitable tool, since it is an easy-to-use, open-source modeling and
simulation environment for creating spatially explicit agent-based simulations. Mod-
elers can specify agent behavior in GAMA using GAML, a specialized modeling lan-
guage.

Figure 4: GAMA Thematic Model for crowd
evacuation. Dots represent People agent, red
shapes are exits.

We present an implementation of the Dis-
tribution Model and Distribution Agents
concepts in the GAMA platform. We
select a typical distribution scenario: a
Thematic Model which needs to be dis-
tributed.We then implemented various
Distribution Models with different ap-
proaches to distribute this Thematic Model
1. For Thematic Model, we chose a model
describing a crowd evacuation where ob-
stacles are the buildings, from the GAMA
model library. People agents are placed
in the environment and have to escape

through an exit. A snapshot of this GAMA Thematic Model is shown in Figure 4.
People Agents (colored dots) move towards one of the exits (red shapes). Multiple
Distribution Models with different partitioning and load balancing methods to illus-
trate the flexibility of our approach are presented in the following.

5.1 Static Partitioning : GAMA Grid Species
We present here a static partitioning solution based on a grid approach. The model
uses a Grid Agent to specify the grid dimensions (rows and columns) and neighbor cell
positions. Grids in the Distribution Model are easily defined with the GAMA platform.

1The implementations of these Distribution Models are available on our GitHub repository https:
//anonymous.4open.science/r/Gama_distribution-9906
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(a) 2x2 GAML grid (b) 1x2 GAML grid (c) 3x2 GAML grid

Figure 5: Different configurations of the Grid Agent used for the partitioning of the Thematic
Model. Different configurations can be defined from the same Distribution Model.

Using the same Grid Agent, we can create various grid patterns. Figure 5 illustrates the
partitioning possibilities enabled by the grid approach.

Each process mirrors the environment and manages one grid cell. At the end of
each simulation step, a Partitioning Agent relocates any People agents to the process
responsible for their current cell, ensuring spatial continuity. The static grid parti-
tioning, while simple and generic, cannot adapt to agent movement, causing workload
imbalances and inefficient process usage, and fails to leverage the Thematic Model.
The next section will present a more elaborate solution using dynamic partitioning.

5.2 Load Balancing with Distributed K-MEAN
To dynamically load balance and partition the workload between processes of the
GAMA crowd evacuation Thematic Model, we developed a Distribution Model using
the previously introduced K-MEAN distributed algorithm. In this DM, the Partition-
ing Agent and Load Balancing Agent implement the KMEAN distributed algorithm in
their agent behavior to adapt the dynamic partitioning to the people agent movement.
Figure 6 shows 4 snapshots of the Thematic Model with 5 clusters that dynamically
change.

Despite distinct agent assignment methods (Partitioning in Grid, Load Balancing in
KMEAN), both models utilize the same Communication Agent and snapshot/Thematic
Model cycle execution, illustrating the potential for reuse provided by our approach.

5.3 Evacuation Model Distribution Performance Analysis
The comparison between KMEAN and GRID Distribution Models reveals good perfor-
mance2 across different scales of simulation (see Figure 7). In examining the central-
ized versus distributed execution, both models demonstrate substantial improvements
in performance compared to the centralized approach. This is evident when simulating
20,000 agents, where the centralized execution requires 305 seconds, while both distri-
bution methods achieve dramatic reductions: KMEAN reduces the time to 67.1 seconds

2Computations have been performed on the supercomputer facilities of the Mésocentre de calcul de
Franche-Comté.
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Figure 6: Distributed simulation of the Thematic Model using the distributed KMEAN. Five
instances of the DM are used to distribute the Thematic Model. Each shape is managed by a
different process and formed by the K-MEAN distributed algorithm. The pictures present the
distributed simulation’s evolution over time.

and GRID achieves 64.8 seconds with 8 processors, representing approximately 78%
and 79% improvements respectively. The even distribution of exits in this scenario en-
ables good performance for both models. A more spatially focused exit configuration
would likely disadvantage GRID compared to KMEAN which is more flexible with the
integrated load balancing. Nonetheless, this demonstrates the effectiveness of the Dis-
tribution Model approach to gain performance, even with a simple Distribution Model
like GRID.

Figure 7: Performance of KMEAN and GRID Distribution Models for evacuation simulations
with varying numbers of agents (5,000 to 20,000). The figure shows the average simulation time
as a function of processor count used (1 to 8).

Results demonstrate that both Distribution Models successfully address the perfor-
mance challenges of large-scale agent-based evacuation simulations, with each offer-
ing distinct advantages depending on the specific use case. Results strongly indicate the
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validity and effectiveness of our Distribution Model concept, particularly in handling
the complexities of large-scale agent-based simulations. The observed performance
demonstrates its capability to manage and distribute the computational workload effi-
ciently as the number of agents increases significantly.

6 Conclusion and Future Work
This paper introduces a novel approach to ABM distribution by separating thematic
concerns (Thematic Model) from distribution concerns (Distribution Model). The
benchmark results highlight how this decoupling enables a flexible and scalable ap-
proach, allowing researchers to focus on model design and choose distribution support
independently of implementation. Our approach uses modeling languages to enable
regular modelers to distribute their ABMs independently, without needing distribution
expertise, through a flexible modular Distribution Model based on Distribution Agents.
The reusability and extensibility of Distribution Models and agents, along with a pre-
defined library, enable broad applicability. Our experiments demonstrated successful
GAMA model distribution without modifying GAMA or the Thematic Model. Future
work will expand our approach with more diverse Distribution Models and agents to
improve scalability and efficiency for large ABM simulations. Further research will
aim to establish a formal approach for distribution model development.
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